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Abstract

A top-down parser for Minimalist grammars
(MGs; Stabler, 2013) can successfully predict
a variety of off-line processing preferences, via
metrics linking parsing behavior to memory load
(Kobele et al., 2013; Gerth, 2015; Graf et al.,
2017). The increasing empirical coverage of this
model is intriguing, given its close association
to modern minimalist syntax. Recently however,
Zhang (2017) has argued that this framework is
unable to account for a set of complexity profiles
reported for English and Mandarin Chinese
stacked relative clauses. Based on these obser-
vations, this paper proposes extensions to this
model implementing a notion of memory reacti-
vation, in the form of memory metrics sensitive
to repetitions of movement features. We then
show how these metrics derive the correct pre-
dictions for the stacked RC processing contrasts.

1 Introduction

This paper expands on a line of work investigating how
a top-down parser for Minimalist grammars (MGs;
Stabler, 2013) can be combined with complexity met-
rics to relate parsing behavior to memory usage, and
successfully used to model off-line processing pref-
erences (Kobele et al., 2013; Gerth, 2015; Graf et al.,
2017). As MGs are close to modern syntactic theory,
this model allows us to investigate the psycholinguis-
tic effects of fine-grained grammatical details. Since
one of the essential aspects of the MG approach is the
interpretability of the linking hypothesis, it is crucial
to probe the empirical coverage of the model. If its pre-
dictions prove to be consistently sound, the MG model
could be used to contribute experimental insights to
the development of grammatical theories (Miller and
Chomsky, 1963; Bresnan, 1978; Joshi, 1990, a.o.).

In this sense, while the MG model has been
used to account for a variety of phenomena cross-
linguistically, Zhang (2017) has recently argued
that the existing implementation seems unable to

reproduce the complexity profiles she found for
the processing of stacked relative clauses (RCs) in
English and Mandarin Chinese.

Consider the following example of a stacked RC
construction, in which a noun phrase (the reporter)
is modified by two relative clauses — an Object RC
(ORC; RC1), and a Subject RC (SRC; RC2):

(1) The reporter [RC1 who the senator attacked __
last year] [RC2 who __ received the Pulitzer
yesterday] is facing a public trial.

In such cases, the parser has to resolve a dependency
between the reporter, and two integration sites within
the RCs: one in object position (RC1), and one in
subject position (RC2).

In order to investigate the processing profile for
this kind of constructions, Zhang (2017) conducted
a series of self-paced reading experiments showing
that English and Mandarin Chinese stacked relatives
are processed faster when RC1 and RC2 are of the
same type (e.g., both ORCs, as in 2) than when they
are of different types (as in 1).

(2) The reporter [RC1 who the senator attacked
__last year] [RC2 who the actor pushed __
yesterday] is n facing a public trial.

The intuition here seems to be that seing the first RC
induces facilitatory effects in processing the second
RC, when these have the same underlying syntactic
structure. According to Zhang, no existing metric
can account for this parallelism effect. This is not
surprising per se, as the MG parser does not keep
track of the relation between structurally independent
clauses. However, this result is made even more
compelling by the fact that the MG parser has been
strikingly successful in accounting for asymmetries in
the processing of RCs cross-linguistically (Graf et al.,
2017; De Santo, 2019, a.o.).

Following insights from the psycholinguistic
literature on syntactic priming, in this paper we
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propose a non-probabilistic extension to the MG
model that is able to account for effects of structural
repetition on memory burden. To do so, the model
will consider how successive occurrences of identical
movement types might affect overall memory costs.

2 MG Parsing

MGs (Stabler, 1996, 2011) are a lexicalized formal-
ism, in which a grammar is a set of lexical items
(LIs) consisting of a phonetic form and a finite,
non-empty string of features. LIs are assembled
via two feature checking operations: Merge —
encoding subcategorization — and Move — allowing
for long-distance movement dependencies. The
fundamental data structure in MGs is a derivation
tree, which encodes the sequence of Merge and Move
operations required to build the phrase structure tree
for a given sentence (Michaelis, 1998; Harkema,
2001). In a derivation tree, all leaf nodes are labeled
by LIs, while unary and binary branching nodes are
labeled as Move or Merge, respectively.

Crucially, derivation trees differ from phrase
structure trees in that they allow moved phrases
to stay in their base position, as their landing site
can be fully reconstructed from the feature calculus
(cf. Fig. 1a and 1b). Because of this, MG derivation
trees form a regular tree language, and thus allow
us to exploit simple variants of established parsing
algorithms for context-free grammars.

2.1 Top-Down MG Parsing

In this paper, we are specifically interested in Stabler
(2013)’s top-down parser for MGs, as a variant of
a standard depth-first, top-down parser for CFGs.
This parser hypothesizes sentence structure top-down,
verifies that the words in the structure match the input
string, and outputs an encoding of the sentence in
the form of a derivation tree. Obviously, direct top-
to-bottom and left-to-right scanning of the leaf nodes
yields the wrong word order, as the string yield of a
derivation tree is not the phrase structure tree’s surface
order. To account for this, the MG parser keeps
tracks of the derivational operations which affect the
linear word order. This is memory’s role: if a node is
hypothesized at step i, but cannot be worked on until
step j, it is stored for j−i steps in a priority queue.

To make this traversal strategy easily accessible to
the reader, we follow a notation introduced by Ko-
bele et al. (2013). Practically, the annotation indicates
for each node in the tree when it is first conjectured
by the parser (index, the superscript) and placed in

the memory queue, and at what point it is considered
completed and flushed from memory (outdex, the sub-
script). Moreover, since the details of the feature cal-
culus are mostly irrelevant to the model adopted here,
we discard the features of each LI, and label internal
nodes as standard in minimalist syntax. We also ex-
plicitly include dashed arrows indicating movement re-
lations (cf. Fig. 1b and 1c). Finally, note that Stabler’s
parser is equipped with a search beam to navigate the
parse forest. However, we want to focus exclusively
on the effect of structure building on memory usage.
Thus, we assume a deterministic parser equipped with
a perfect oracle, which always makes the right choices
when constructing a tree (Kobele et al., 2013).

2.2 Measuring Memory Usage
The behavior of Stabler (2013)’s MG parser has been
linked to processing difficulty with complexity met-
rics measuring how building a derivation tree affects
memory (Kobele et al., 2013; Gerth, 2015; Graf et al.,
2017). Henceforth, we refer to this combination as
the MG model. The model refers to memory usage
as TENURE — how long a node is kept in memory
— and SIZE — how much information is stored in a
node (Rambow and Joshi, 1994; Gibson, 2000).

Tenure can be easily computed for a node n via the
annotation schema of Kobele et al., as the difference
between its index and its outdex.1 In Fig. 1c, do is
introduced in memory at step 3, as soon as the parser
predicts that C′ should be expanded in a subtree.
However, do cannot be scanned until the first word
in the input (who) is found (at step 8 and 9). Thus,
tenure for do is 10−3=7.

Defining size in an intuitive way is slightly trickier,
as it relies on how information about movers is stored
by the top-down parser. For our purposes, size can
be understood as measuring the hierarchical length
of a movement dependency, computed as the index of
a mover minus the index of its target site (for details,
see Graf et al., 2015). Considering again the tree in
Fig. 1c, the size of who is 8−1=7.

These general concepts can then be used to define
a vast set of complexity metrics measuring processing
difficulty over a full tree, thus providing a system
to contrast memory burden across derivations. For
instance, tenure has been associated to metrics like
MAXT := max({tenure-of(n)}) — the maximum
amount of time any node stays in memory during
processing. Consider again the tree in Fig. 1c. Tenure

1We refer to tenure values ≤ 2 as trivial, since it is not due
to extra waiting time in the priority queue but to the binary nature
of derivation trees (Graf and Marcinek, 2014).
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Figure 1: Phrase structure tree (a), full MG derivation tree (b), and simplified, annotated MG derivation for Who do the
Gems love? Boxed nodes have tenure value greater than 2, following (Graf and Marcinek, 2014).

in this tree is mostly driven by the movement of the
embedded object, thus MAXT is measured at T and
it is equal to 14− 5 = 9. Similarly, we can define
a size-based metric measuring the overall cost of
movement dependencies across a derivation as SUMS.
In Fig. 1c SUMS is given by the length of the object
movement plus the length of the subject movement:
(8−1)+(6−3)=10.

The metrics discussed so far are the most straight-
forward in quantifying memory usage with respect to
the geometry of a derivation tree. However, it is possi-
ble to refine them to be sensitive to different aspects of
the structure building process. For instance, interme-
diate movement steps do not affect the tree traversal
strategy of the MG parser, and thus do not affect
tenure-based metrics. For this reason, past work tends
to ignore intermediate landing sites in computing
memory metrics (Graf et al., 2015; De Santo, 2019).
However, as size-based measures do vary depending
on whether we consider intermediate movement steps
or not, Graf and Marcinek (2014) propose a variant
(e.g. SUMS′) to take those into account.

Graf and Marcinek (2014) also define recursive
variants — e.g. MAXTR, listing the tenure of all nodes
in a derivation in descending order. Recursive met-
rics are interesting in that they highlight the contrast
between a derivation that has a high MAXT value
just on a single node, versus a derivation that has
the same identical high value, but on multiple nodes.
For instance, take two derivations t1 and t2, such that
MAXTR(t1)=[15,5,5] and MAXTR(t2)=[15,15,15].
These two derivation trees receive exactly the same
score under MAXT (15), and thus are predicted to be
equally difficult. However, we can contrast the two
derivations over MAXTR, by a pointwise comparison

of the two lists. MAXTR then predicts t1 to be easier
than t2. Note that these variants can also be mixed, so
that SUMS′R is a recursive version of SUMS that also
takes intermediate movement steps into account.

Finally, Graf et al. (2015) introduce ranked metrics
〈M1,M2, ... ,Mn〉, inspired by constraint ranking in
Optimality Theory (Prince and Smolensky, 2008).
Take the ranked metric 〈MAXT,SUMS〉. As a lower
ranked metric matters only if all higher ranked metrics
have failed to pick out a unique winner, if two con-
structions result in a tie over MAXT, then their SUMS
values will decide which of the two is the winner.

At this point, the reader might concerned about the
amount of possible metric combinations. However,
the issue of potential empirical indeterminacy is
addressed by searching for a restricted set of metrics
that account for a variety of diverse phenomena across
languages. Notably, there is increasing evidence
that a ranked combination of 〈MAXT,SUMS〉
accounts for a vast set of off-line processing contrasts
cross-linguistically (Graf et al., 2017; Liu, 2018; Lee,
2018; De Santo, 2019; De Santo and Shafiei, 2019;
De Santo, 2020). Given these promising results, it
is important to investigate empirical limitations of the
MG model. This is the focus of the rest of this paper.

3 Processing Stacked Relative Clauses

As mentioned before, stacked RCs are constructions
in which a relativized noun phrase is modified by
two relative clauses. While relative clauses have
been focus of extensive experimental investigation
cross-linguistically, not much work can be found on
the comprehension of stacked RCs. To address this
gap, Zhang (2017) explored their processing profile
in English and Mandarin Chinese, in a 2×2 design
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Language Processing Contrast Example #

English
SS<OS 3.a < 3.b
OO<SO 3.d < 3.c

Mandarin
SS<OS 4.a < 4.b
OO<SO 4.d < 4.c

Table 1: Summary of processing preferences for the
stacked RCs effects evaluated in this paper. The first letter
in each acronym indicates the type of the first RC, and the
second letter the type of the second RC — i.e., SS stands
for an SRC stacked above an SRC. x < y means that x is
easier to process than y.

crossing extraction type (subject or object) with the
position of the RC (RC1 or RC2). Zhang reports
faster reading times when RC1 and RC2 are of the
same type (both SRCs or both ORCs), than when
they are of different types (i.e. SS < OS and OO <
SO; where x < y means that x is easier to process
than y, see Table 1). Crucially, she argues that the MG
model would fail to capture these complexity profiles.
In what follows, we first confirm this observation.

3.1 Modeling Assumptions

We test the MG model over stacked RC preferences,
considering test cases for English as in (3), and
Mandarin Chinese as in (4):

(3) a. The horse that kicked the elephant that
chased the wolf left home SS

b. The horse that the elephant kicked that
chased the wolf left home OS

c. The horse that kicked the elephant that
the wolf chased left home SO

d. The horse that the elephant kicked that
the wolf chased left home OO

(4) a. Nage
DEM

tile
kick-PERF

xiaoma
horse

de
REL

zhuile
chase-PERF

daxiang
elephant

de
REL

gongniu
bull

likaile
leave-PERF

jia
home

‘The bull that kicked the horse that chased
the elephant left home.’ SS

b. Nage
DEM

xiaoma
horse

tile
kick-PERF

de
REL

zhuile
chase-PERF

daxiang
elephant

de
REL

gongniu
bull

likaile
leave-PERF

jia
home

‘The bull that the horse kicked that chased
the elephant left home.’ OS

c. Nage
DEM

tile
kick-PERF

xiaoma
horse

de
REL

daxiang
elephant

zhuile
chase-PERF

de
REL

gongniu
bull

likaile
leave-PERF

jia
home

‘The bull that kicked the horse that the
elephant chased left home.’ SO

d. Nage
DEM

xiaoma
horse

tile
kick-PERF

de
REL

daxiang
elephant

zhuile
chase-PERF

de
REL

gongniu
bull

likaile
leave-PERF

jia
home

‘The bull that the horse kicked that the
elephant chased left home.’ OO

For reference, the first letter in each acronym indicates
the type of the first RC, and the second letter the
type of the second RC — for instance, SS stands
for an SRC stacked above an SRC. Notably, while
English RCs are post-nominal, they are pre-nominal
in Mandarin Chinese.

As the MG model is sensitive to fine-grained
structural information, we consider two RC analy-
ses: a promotion (Kayne, 1994), and a wh-movement
analysis (Chomsky, 1977). Importantly, both analyses
assume that the syntactic derivation of RCs in
Mandarin Chinese is complicated by a sequence of
remnant movement operations necessary to arrive
at the prenominal word order. Figure 2 shows an
example of an annotated stacked RC derivation fed
to the model. While the features triggering movement
are not relevant to the current implementation of the
MG metrics, the tree has feature-annotated movement
arrows for reasons that will be clarified in Section 4.

3.2 Original Model: Results
To match Zhang (2017)’s experimental data, the
parser should predict the set of processing preferences
summarized in Table 1.2 Confirming Zhang (2017)’s
observations, the MG model is not able to account for
the facilitatory effects found in stacked RCs. Notably,
the main metric discussed in the past literature as a
good predictor of processing difficulty for RCs cross-
linguistically (〈MAXT, SUMS〉) correctly accounts

2Technically, the parser is also able to make predictions
about all other conceivable comparisons. However, we limit the
discussion to those that can be directly extracted from Zhang
(2017)’s analysis.
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Figure 2: Annotated derivation for an English stacked RC
(OO), built following the promotion analysis. Movement
arrows are labelled with their respective Move feature.

for the SS < OS contrast in both languages (Table 2).
However, this seems to be an accident due to SUMS
favoring a subject gap over an object gap, and in fact
leads to the wrong prediction in the OO< SO case.
Importantly, these results hold both for English and
Mandarin — thus independently of whether the RC
is pre-nominal or post-nominal. As the end goal is
to provide a model of sentence processing consistent
across phenomena and languages, the MG approach
in its current form remains unsatisfactory.

4 Feature Sensitive
Metrics & Memory Reactivation

Zhang (2017) argues that the preference for symmet-
rical (SS, OO) constructions over asymmetrical (SO,
OS) ones derives from similar structural configura-
tions being observed twice in a row — processing

OO<SO SS < OS

English
MAXT Tie Tie
SUMS × X

Mandarin
MAXT Tie Tie
SUMS × X

Table 2: Summary of the performance of 〈MAXT, SUMS〉
on staked RCs in Mandarin Chinese and English under a
promotion and a wh-movement analysis.

the underlying structure for the first RC reduces the
processing load for the second RC. Failure on these
effects is then unsurprising, as the existing metrics are
by design unable to account for effects due to similar
structural configurations being built twice in a row.

Interestingly, Zhang (2017)’s account of these
processing profiles mirrors a wider psycholinguistic
phenomenon known as syntactic priming. In partic-
ular, activation-based accounts (Troyer et al., 2011;
Reitter et al., 2011) of structural priming effects sug-
gest that residual memory activation of a previously
encountered syntactic structure leads to short-term
priming effects (Pickering and Branigan, 1998).

Recall now that, while MGs are a rich, lexicalized
encoding of current minimalist analyses, the existing
literature on MG parsing has consciously adopted
metrics that ignore the feature-based component of
MG trees. However, in MGs the features carried
by a lexical item express all the information needed
to reconstruct that item’s argument structure. In
fact, MG features explicitly capture the sequence
of Merge and Move operations that the parser has
to resolve to build a syntactic derivation. Thus, it
should be possible to make the parser aware of
structural operations that have recently taken place, by
making it sensitive to recurring feature configurations.
Residual activation approaches then give us a way to
investigate priming phenomena with an MG parser,
by reintegrating features into the MG derivations and
introducing metric measuring feature reactivation. 3

Following these ideas, this section explores
different complexity metrics measuring a notion of
reactivation as associated to movement features.

3Importantly, the fact that we take memory activation
processes as an inspiration is not to be interpreted as a stance
against other accounts of syntactic priming effects (for instance,
implicit learning accounts (Bock and Griffin, 2000; Bock et al.,
2007)). However, this approach is in line with the choice to
ignore the effects of probabilistic information on processing
difficulty — and, in fact, to put aside all other factors apart from
purely structural ones.
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Figure 3: Example tree for memory reactivation.

4.1 Encoding Feature Reactivation
The first question to ask is, of course, how to encode
reactivation in the MG parser. Here, we follow a pro-
cedure based on how the parser keeps track of movers.

Intuitively, movers are stored by the MG parser in
specific memory cells, each dedicated to a particular
movement type (i.e., feature). Movers triggered by
the same feature are thus stored in the same cell. We
assume now that if a memory cell has been inactive
for a long time, storing a mover in that cell comes
with a certain cost. However, if that memory cell has
recently stored another mover, putting/maintaining
the next mover into it should be less costly.4

This procedure is implemented by counting the
number of parsing steps between movements of
the same type, thus effectively accounting for the
derivational time between two movers. Given Kobele
et al. (2013)’s annotation schema, REACTIVATION

(R) is computed as:

R For each node mi associated to a movement feature
f−, reactivation is i(mi)− o(mi−1); the index
of mi minus the outdex of the closest preceding
node associated to f−, if it exists.

Consider the derivation in Figure 3, with two
NP movers associated to a feature f . R for NP2 is
measured by subtracting from its index the outdex of
the previous node associated to f (NP1; w−y).

This definition of reactivation essentially indexes
how costly it is to store some kind of movers com-

4Note that this is different from the effect of having similar
elements occupying a memory cell at the same time (Van Dyke
and McElree, 2006; Jäger et al., 2015, a.o.). The reader might
wonder how facilitatory effects due to memory reactivation
interact with classical interference effects among multiple
elements sharing similar features stored in memory. Recall
though that we are only considering movement features, and that
the SMC excludes cases in which multiple movers of the same
type are in memory at the same time.

pared to others, based on what has been previously
observed during the course of the parse. Note,
however, that reactivation is supposed to encode
facilitatory effects induced by structural repetition.
According to the definition above, there is no reactiva-
tion value assigned to movement features appearing
for the first time. This might lead to issues in our com-
parative approach, as derivations without movement
repetitions would have non-existent reactivation val-
ues — and thus, counterintuitively, might be evaluated
as recruiting fewer memory resources. To account for
that, REACTIVATION is operationalized as a metric as:

R(mi) :=





1− 1
i(mi)−o(mi−1)

, if (i(mi)−o(mi−1))>0

0, if (i(mi)−o(mi−1))≤0
1, if ¬∃o(mi−1)

In short, to guarantee that each node in the derivation
is assigned a reactivation value, we assume that a
movement node has an encoding cost of 1 — which
can be lowered if a mover associated to the same fea-
ture had been previously seen (and has been removed
from memory). If there is not such an antecedent (i.e.,
if that node is the first in the derivation to be associ-
ated to a movement feature of type f ), reactivation
is capped at 1. Once reactivation is defined, what
remains to be explored is how it interacts with the
original storage-based metrics in the MG literature.
The insight that reactivation should directly impact
the cost of maintaining a node in memory can be
formalized in metrics that weight the tenure value of a
node based on its feature reactivation. We implement
this idea as follows. For each node mi associated to
a movement feature f , its BOOST (BT) is:

BT :=TENURE(mi)∗R(mi)

Since reactivation is meant to encode a facilitatory ef-
fect, values for BT will decrease as the number of sim-
ilar movement dependencies in a derivation increases.

4.1.1 Defining Metrics
As for tenure and size, we define multiple metrics
that compute reactivation and boost values over a full
derivation. Let M be the set of movement features
in a derivation tree T , and M f the set of all nodes m
associated to a feature f−∈M in the string yield of
T . Then, to evaluate the overall effect of reactivated
nodes during the entire parse, we consider:

SUMR :=∑ f∈M ∑mi∈M f R(mi)

MAXR :=max({max({R(mi)|mi∈M f}| f ∈M )})

6



Load Type
T(mi) o(mi)−i(mi)
S(mi) i(mi)−o(m j), with m j target of mi

R(mi) 1− 1
i(mi)−o(mi−1)

BT(mi) TENURE(mi)∗R(mi)

Filtered Metrics
M′ M with intermediate movement steps
MR applies M recursively

Metric Type
MAXM max({M(m), ∀m in a derivation})
SUMM sum({M(m), ∀m in a derivation})
AVGM avg({M(m), ∀m in a derivation})

Table 3: Summary of memory load types.

AVGR := SUMR
∑ f∈M |M f |

SUMBT, MAXBT, and AVGBT are computed for
boost mirroring those defined for reactivation.

5 Testing Feature Reactivation5

As before, we compare the MG parser’s performance
of the OO vs. SO and SS vs. OS contrasts for both
English and Mandarin Chinese, again under a pro-
motion analysis (Kayne, 1994), and a wh-movement
analysis (Chomsky, 1977) of RCs.

As pointed out above, syntactic choices are a
crucial degree of freedom for the modeling approach.
Extending the model with metrics sensitive to feature
reactivation complicates this picture even further,
as we will have to commit to a set of features
consistent with the derivational operations posited
by each analysis (Adger, 2003; Collins and Stabler,
2016). As this paper constitutes a first exploration of
feature-based MG metrics, it seems reasonable to be
as conservative as possible in the choice of feature
overlap. Specifically, since reactivation metrics are
restricted to movement operations, we only focus on
whether particular movement steps could reasonably
be triggered by the same feature, or not. For instance,
we assume that movement of the head of the RC
is triggered by the same feature in both subject and
object RCs (see Appendinx A). When in doubt — i.e.,
in cases in which both interpretations are consistent
with what discussed in the literature — we assume
that movement was triggered by distinct features.

5Code and MG derivations for all simulations can be found
at: https://github.com/aniellodesanto/mgproc_react.

5.1 Modeling Results

With all preliminaries in place, we can now look
at how reactivation-based metrics perform on the
processing of stacked RC. A reminder of the memory
types introduced in this paper, and short-hand
notations for filtered metrics is in Table 3.

In the vast space of possible metrics we found a re-
duced selection of ranked metrics which — depending
of the syntactic analysis — lead to the correct predic-
tions. With a promotion analysis, the correct con-
trasts are predicted by a metric ranking MAXR′ first:
〈MAXR′, AVGBT〉. This metric picks on the series of
remnant movement dependencies in the construction
of stacked RCs, but fails to work with a wh-movement
analysis due to the whole RC movement increasing
the tenure value that modulates AVGBT. In order to
correctly account for the way movement dependencies
are structured in the wh-movement analysis, it is nec-
essary to rank a boost based metric high. Specifically,
〈MAXBT, MAXR′R〉makes the correct predictions in
this latter cases. In what follows, we discuss the results
by metric rank: rank 1 indicates metrics evaluated in-
dividually, while rank 2 refers to metrics evaluated as
ranked (ordered) pairs, as discussed in Section 2.2.

Rank 1 Metrics First, we consider the performance
of individual reactivation metrics (rank 1 metrics, e.g.
MAXR). None of these metrics is able to account
for the stacked RC contrasts both in English and in
Mandarin. Precisely, a majority of the new metrics
predicts the English processing profile correctly. Most
of the same metrics also successfully account for the
OO<SO contrast in Mandarin. What these metrics
are unable to capture is the Mandarin SS<OS asym-
metry, due to the pre-nominal nature of RCs in the
language. These results hold independently of syntac-
tic analysis. Things improve when we start looking at
ranked metrics. Consistently with previous literature
(and with the goal of keeping the space of possible
metrics contained), we focus on metrics of rank 2.

Rank 2 Metrics For the promotion analysis,
consider the performance of 〈MAXR′, AVGBT〉
(Table 5). AVGBT makes the correct prediction on
every contrast, except the SS<OS case in Mandarin.
MAXR′ helps with this, as it ties on every contrast ex-
cept the one missed by the boost based metrics. Note
that this result depends on the prime variant MAXR′—
MAXR leads to predicting a tie in Mandarin. Thus, it
looks like intermediate movement steps significantly
contribute to deriving the correct processing profiles.

However, no metric ranking MAXR′ first succeeds
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Language Processing Contrast 〈MAXR′, AVGBT〉 〈MAXBT, MAXR′R〉
Promotion Wh-movement Promotion Wh-movement

English
OO<SO X X X X
SS<OS X × X X

Mandarin
OO<SO X X X X
SS<OS X X × X

English SRC<ORC X × X X
Mandarin ORC<SRC X X × X

Table 4: Summary of processing preferences for stacked RCs and single RCs effects by contrast and analysis, as
predicted by 〈MAXR′, AVGBT〉 and 〈MAXBT, MAXR′R〉.

when using a wh-movement analysis of RCs. For in-
stance, under this analysis MAXR′ fails on the English
SS<OS contrast, predicting the opposite processing
preference (Table 5). What seems to be needed to
account for the structural relations in each language
under this analysis, is to consider metrics ranking a
max, boost-based metrics as their highest metric, and
some recursive variant of R′ ranked lowest.

Table 5 illustrates the performance of 〈MAXBT,
MAXR′R〉. MAXBT makes the correct predictions for
English, but fails to account for the SS<OS contrast
in Mandarin. MAXR′R is then necessary to discrim-
inate in that case. Note that the recursive variant of
MAXR′ is necessary, as MAXR′ by itself also predicts
a tie on this contrast. Moreover, this metric (and, in
fact, all metrics ranking MAXBT high) fails when
considering a promotion analysis of RCs (Table 5).

MAXR′ AVGBT

Promotion
English

OO<SO Tie X
SS<OS X X

Mandarin
OO<SO Tie X
SS<OS X ×

Wh
English

OO<SO Tie X
SS<OS Tie ×

Mandarin
OO<SO Tie X
SS<OS X ×

MAXBT MAXR′R

Promotion
English

OO<SO X X
SS<OS X ×

Mandarin
OO<SO Tie X
SS<OS × X

Wh
English

OO<SO X X
SS<OS X ×

Mandarin
OO<SO Tie X
SS<OS Tie X

Table 5: Individual performances of MAXR′ andAVGBT,
and of MAXBT and MAXR′R.

5.2 Additional Simulations

As a first step in a broader evaluation of reactivation
metrics, we look at the processing asymmetry for
single subject (SRC) and object (ORC) relative

clauses in English and Mandarin. While English
native speakers notoriously show a marked preference
for SRC < ORC, conflicting evidence has been
reported for Mandarin (Gibson and Wu, 2013, a.o.).
In this respect, Zhang (2017)’s own experiments
report an ORC < SRC preference in Mandarin. Here,
we follow Zhang (2017), as we relied on her results
for the stacked RC cases.

As shown in Table 4, the same metrics successful in
the stacked RC cases also perform well on the single
RC cases. Crucially, the SRC vs. ORC asymmetry has
not been directly associated to memory reactivation
effects in the psycholinguistic literature. Thus, it is sur-
prising that metrics solely relying on such mechanism
seem able to reproduce this contrast. Importantly, the
metrics correctly replicate both the difference between
the Mandarin and English preferences for single RCs,
and their shared profiles for the stacked cases. For the
promotion analysis, this is due to MAXR’ picking up
on the extra remnant movement steps necessary to the
prenominal RC configuration, and leading to the Man-
darin preference for an object gap in the single RC
case. That preference is then subsumed by the general
parallelism effects that arise in the stacked cases.

6 Conclusion

The MG parser enriched with feature reactivation
successfully predicts the stacked RC contrasts
reported for English and Mandarin, on two syntactic
analyses of RCs. The idea that encoding something
in memory comes at a cost has been well motivated
by psycholinguistic insights (Van Dyke and McElree,
2006; McElree et al., 2003; McElree, 2006; Lewis
et al., 2006; Villata et al., 2018), but has been lacking
from the definitions of memory usage adopted by
the MG approach. Overall then, these results are
encouraging, as they demonstrate how the MG model
can be refined to extend its empirical coverage, in
ways that maintain (or even improve) the cognitive
plausibility of its memory mechanisms.
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While earlier MG processing results did not vary
significantly depending on the choice of syntactic
analysis, that is not the case for reactivation metrics.
In future, it will crucial to understand why these
results heavily depend on a very specific analysis.
As mentioned, the number of possible metrics
exponentially increases the degrees of freedom of
the model. Following what was done for the set
of original metrics, this issue can be addressed by
careful empirical testing. By establishing a small
number of metrics that transparently account for a
variety of cross-linguistic asymmetries, it would then
be possible to leverage experimental results to choose
among competing syntactic choices (Rambow and
Joshi, 1994; Kobele et al., 2013). This paper offered
the first steps in this direction, by comparing the
results on the new metrics both over the phenomenon
that inspired them, and single RCs across structurally
different languages. The obvious next step is an ex-
tensive evaluation of the performance of reactivation
metrics over the full set of phenomena modeled by
the MG model in the past. Moreover, the focus on
stacked RCs was motivated by Zhang (2017) using
them as an argument against existing formulations
of the MG parsing model. A necessary step will be
to move away from such a specific construction, and
test the new metrics’ performance over better attested
cases of syntactic priming and parallelism effects
(Pickering and Ferreira, 2008; Dubey et al., 2008,
2006; Mahowald et al., 2016). Finally, extending the
definition of feature reactivation from Move features
to Merge features would allow us to reproduce on a
wider variety of sentence processing phenomena (e.g.,
interference effects; Van Dyke and McElree, 2006).
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derivation trees for Stacked RC in English and
Mandarin Chinese used as input to the MG parser.
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Figure 4: Annotated English stacked RC (SS vs OS), built following the promotion analysis.
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Figure 5: Annotated English stacked RC (OO vs SO), built following the promotion analysis.
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Figure 6: Annotated Mandarin stacked RC (SS vs OS), built following the promotion analysis.
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Figure 7: Annotated Mandarin stacked RC (OO vs SO), built following the promotion analysis.
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Figure 8: Annotated English stacked RC (SS vs OS), built following the wh-movement analysis.
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Figure 9: Annotated English stacked RC (OO vs SO), built following the wh-movement analysis.
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Figure 10: Annotated Mandarin stacked RC (SS vs OS), built following the wh-movement analysis.
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Figure 11: Annotated Mandarin stacked RC (OO vs SO), built following the wh-movement analysis.
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