
Abstract

This paper presents a framework to answer 
the questions that require various kinds of 
inference mechanisms (such as Extraction, 
Entailment-Judgement, and Summariza-
tion). Most of the previous approaches 
adopt a rigid framework which handles 
only one inference mechanism. Only a few 
of them adopt several answer generation 
modules for providing different mecha-
nisms; however, they either lack an aggre-
gation mechanism to merge the answers 
from various modules, or are too compli-
cated to be implemented with neural net-
works. To alleviate the problems men-
tioned above, we propose a divide-and-
conquer framework, which consists of a set 
of various answer generation modules, a 
dispatch module, and an aggregation mod-
ule. The answer generation modules are de-
signed to provide different inference mech-
anisms, the dispatch module is used to se-
lect a few appropriate answer generation 
modules to generate answer candidates, 
and the aggregation module is employed to 
select the final answer. We test our frame-
work on the 2020 Formosa Grand Chal-
lenge Contest dataset. Experiments show 

1 https://fgc.stpi.narl.org.tw/activity/techai2018  

that the proposed framework outperforms 
the state-of-the-art Roberta-large model by 
about 11.4%.

Keywords: QA, Framework, Divide-and-Conquer 
strategy, Answer Aggregation, Inference mechanism

1 Introduction

Natural Language Inference (NLI) is an important 
topic in the Artificial Intelligence (AI) field, and 
any NLI related issue can be checked by asking an 
appropriate corresponding question (Chen, 2018). 
Therefore, the Question Answering (QA) task has 
become a very suitable testbed for evaluating NLI 
models and checking the progress of current tech-
niques. Accordingly, the Ministry of Science and 
Technology of Taiwan has organized the Formosa 
Grand Challenge Open Contest series1  (FGC) in 
2018, which mainly evaluates the reasoning/infer-
ence capability on natural texts, to promote the AI 
progress in Taiwan. Specifically, this open contest 
covers a variety of answer modes; that is, it needs 
different inference mechanisms (such as Extraction, 
Entailment-Judgement, Aggregative-Operation,  
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etc.) to get the desired answer. As a result, the sys-
tem/framework must be able to handle various an-
swer modes at the same time. 

The previous frameworks for the QA task could 
be classified into two main categories according to 
the number of answer modules adopted: (1) Single 
answer generation module (Trischler et al., 2017; 
Chen, 2018; Shoeybi et al., 2020; Zhang et al., 
2020), which involves only one answer mode, and 
allows merely one type of replying format (such as 
identifying a span within the given passage, giving 
YES/NO answer, free text reply, etc.). (2) Multiple 
answer generation modules (Ferrucci, 2012; Andor 
et al., 2019; Hu et al., 2019), which adopts several 
answer generation modules, and each module con-
ducts a specific inference mechanism (or, answer 
mode) with a specific replying format.

Since the first category only considers one an-
swer mode, the types of questions that can be han-
dled are quite limited. For example, it is not suita-
ble for handling the FGC-2020 QA task2, which co-
vers various question types and needs different an-
swer modes to get the desired answers. In contrast, 
the approaches under the second category adopt the 
divide-and-conquer strategy, which adopts a differ-
ent answer generation module for each specific an-
swer mode. Since each answer generation module 
only needs to consider a specific answer mode, it 
will be easier to design and add new inference 
mechanisms. 

Among those second category approaches, the 
framework of Watson (Ferrucci, 2012) is not de-
signed for end-to-end training; therefore, it is not 
suitable for modern neural-network multi-task 
learning due to the complicated flow/architecture 
under its statistics-based architecture. Also, the 
framework adopted in either (Andor et al., 2019) or 
(Hu et al., 2019) does not have an aggregation 
layer/module to merge the answers generated from 
different answer generation modules (i.e., the out-
put is only picked from a specific module, and 
merging is not allowed). Therefore, their ap-
proaches not only have the error accumulation 
problem3  (i.e., once a wrong module is selected, 
this error will propagate to the next answer-gener-

2 https://scidm.nchc.org.tw/dataset/grandchallenge2020  

3 The error accumulation problem of this kind of approaches 
is hard to avoid, as it is difficult to know which inference 
mechanism should be adopted before we actually see the re-
lated supporting statements (e.g., span-extraction mechanism 

ation stage), but also lose the advantage of combin-
ing the strength of different inference mechanisms. 
Additionally, all modules will be activated in par-
allel under their frameworks (Andor et al., 2019), 
so computing resources on those modules that 
should not be activated for a given question would 
be wasted.

To overcome the problems mentioned above, a 
flexible and extensible framework is proposed in 
this paper. It adopts a divide-and-conquer strategy, 
and possesses the following main modules/func-
tionalities: (1) A supporting evidences locating 
module, which extracts supporting evidences from 
the passage to narrow down the searching space. (2) 
A dispatch module, which would select and acti-
vate several appropriate answer generation mod-
ules; also, the answer type distribution will be pro-
vided to each answer generation module as a refer-
ence, based on the answer mode. (3) A set of an-
swer generation modules, each of them generates a 
few local/module outputs (i.e., possible answers) if 
it is activated. (4) An aggregation module, which 
picks the best answer at the final stage by merging 
the answer candidates from those activated answer 
generation modules. 

The strengths of the proposed framework are 
summarized as follows: (1) With the dispatch mod-
ule, it is flexible for handling different question 
types with the same framework; as a result, it is ex-
tensible for adding more answer modes in the fu-
ture. (2) With the aggregation module, it is able to 
merge the results from various modules; it thus 
possesses the capability of combining the strength 
of different inference mechanisms, and also re-
duces the error accumulation problem. (3) It is de-
signed to fit the neural-network based end-to-end 
multi-task learning framework; therefore, it can be 
implemented with an appropriate neural network 
without much effort. (4) Since the dispatch module 
only activates the corresponding modules accord-
ing to the given question, it will not waste compu-
ting resources on those modules that are irrelevant 
and should not be activated. 

In comparison with IBM Watson framework, 
which adopts a complicated flow/architecture with 
probabilistic models, our proposed framework 

is usually preferred if the desired answer is explicitly given in 
the supporting sentence; otherwise, a more complicated 
mechanism must be adopted). 
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adopts the neural-network based approach and can 
be optimized by the end-to-end training strategy. In 
comparison with the approaches from Andor et al. 
(2019) and Hu et al. (2019), which lack the mech-
anism to merge different answer candidates, our 
proposed framework only activates several possi-
ble/responsible modules and has the ability to ag-
gregate the outputs from various modules.

The proposed framework is tested on the FGC-
2020 QA dataset, which contains 1,322 questions. 
This dataset covers eight different answer modes 
(i.e., Single-Span-Extraction, Multi-Span-Extrac-
tion, Yes/No, Aggregative-Operation, Arithmetic-
Operations, Date-Duration, Kinship, and Summa-
rization) and ten different answer types (i.e., 
Yes/No, Number-Measure, Kinship, Person, Date-
Duration, Location, Organization, Object, Event, 
and Misc). The experiment results show that our 
system outperforms the baseline RoBERTa-large 
(Liu et al., 2019) model by 11.4%.

In summary, this paper makes the following 
contributions: (1) We propose a novel modular 
framework/model that is more flexible for han-
dling/adding various inference mechanisms. (2) 
We propose a novel aggregation model to merge 
various answer candidates. (3) We conduct experi-
ments to show that the proposed framework out-
performs the state-of-the-art RoBERTa-large 
model on the FGC-2020 QA dataset.

2 The Proposed Approach

In this section, the proposed divide-and-conquer 
QA model is first described in Section 2.1. The de-
scriptions of the architecture of the proposed model 
is then presented in Section 2.2. Afterwards, Sec-
tion 2.3 provides the concepts and principles of de-
signing each answer generation module.

2.1 The Proposed Divide-and-Conquer QA 
Model

Given a Document D, Question Q, Wikipedia Wk 
and some external Knowledge Resources R (such 
as WordNet and ConceptNet), we would like to 
find out the most likely answer. To reduce the com-
putation cost, we will first extract related Wik-
ipages with an off-the-shelf IR tool (e.g., the 
Apache LuceneTM searching engine4). Let Wps de-
note the set of extracted Wikipages, the problem of 

4 https://lucene.apache.org/ 

finding the desired Answer ܣመ  thus can be formu-
lized as Equation (1). For conciseness, we will only 
use one notation (e.g., “D” (Document)) to denote 
both its content and its associated embedding vec-
tor when it can be interpreted without confusion.ܣመ = argmaxܲ(ܦ|ܣ,ܳ, ௞ܹ ,ܴ)      ≡ ݔܽ݉݃ݎܽ ܲ൫ܣหܦ,ܳ, ௣ܹ௦ ,ܴ൯,             (1) 
where A is a specific answer candidate, and ܣመ de-
notes the desired answer which can be: (1) A list of 
string/NE/number/date directly extracted from the 
document. This list might contain only one element, 
or even empty (The string “UNKNOWN” will be 
output in this case). (2) An aggregation result (such 
as Summarization, Speaker’s View, Arithmetic Re-
sult, Count/Min/Max/Avg, Entailment/Sentiment 
Judgment, etc.) induced from the given document.

Since we will encounter various scenarios that 
request different answer modes (among which 
each adopts a different strategy to obtain the de-
sired answer), a Divide-and-Conquer framework is 
thus proposed to convert a given complicated prob-
lem into a set of simple sub-problems:ܲ൫ܣหܦ,ܳ, ௣ܹ௦,ܴ൯= ∑ ܲ൫ܧ,ܶ,ܯ,ܣ௦ ,ܳ,ܦ௦หܩ, ௣ܹ௦,ܴ൯,ெ,்,ாೞ,ீೞ             (2) 
where M denotes a specific answer mode, ܶ refers 
to a specific answer type that can be used for veri-
fication in each answer generation module, Es 
stands for a specific set of supporting evidences, 
and Gs represents a specific set of paragraphs. By 
doing so, each answer generation module/model 
concentrates only on a specific answer mode. The 
probability ܲ(ܧ,ܶ,ܯ,ܣ௦ ,ܳ,ܦ|௦ܩ, ௣ܹ௦,ܴ)  can be 
further decomposed into five terms:ܲ൫ܧ,ܶ,ܯ,ܣ௦ ,ܳ,ܦ௦หܩ, ௣ܹ௦,ܴ൯= ܲ൫ܣหܧ,ܶ,ܯ௦,ܩ௦ ,ܳ,ܦ, ௣ܹ௦,ܴ൯× ܲ൫ܯหܶ,ܧ௦,ܩ௦ ,ܳ,ܦ, ௣ܹ௦,ܴ൯  × ܲ൫ܶหܧ௦,ܩ௦ ,ܳ,ܦ, ௣ܹ௦,ܴ൯ × ܲ൫ܧ௦หܩ௦ ,ܳ,ܦ, ௣ܹ௦,ܴ൯× ܲ൫ܩ௦หܦ,ܳ, ௣ܹ௦,ܴ൯≈ ௦ܧ,ܶ,ܯ|ܣ)ܲ ,ܳ,ܴ) × (ܳ,௦ܧ,ܶ|ܯ)ܲ ௦ܧ|ܶ)ܲ× ,ܳ) × ,ܳ,ܦ,௦ܩ|௦ܧ)ܲ ௣ܹ௦) × ,ܳ,ܦ|௦ܩ)ܲ ௣ܹ௦),

         (3)
where ܲ(ܧ,ܶ,ܯ|ܣ௦ ,ܳ,ܴ) will be generated by each 
specific answer generation module, both ܲ(ܧ,ܶ|ܯ௦,ܳ)  and ܲ(ܶ|ܧ௦,ܳ)  will be generated by 
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the Dispatch module, ܲ(ܧ௦|ܩ௦ ,ܳ,ܦ, ௣ܹ௦)  will be 
generated by the Supporting-Evidence-Locating 
module, and ܲ(ܩ௦|ܦ,ܳ, ௣ܹ௦)  will be generated by 
another Paragraph-Locating module (Section 2.2).

Finally, ∑ ,ܳ,ܦ|௦ܩ,௦ܧ,ܶ,ܯ,ܣ)ܲ ௣ܹ௦,ܴ)ெ,்,ாೞ,ீೞ  
will be taken care by the Aggregation module, 
which aggregates various answer-candidates gen-
erated by different answer generation modules to 
obtain the final answer. It predicts the best answer 
based on those obtained answer-module sextuplets 
(i.e., <answer mode M, the probability of the an-
swer mode ܯ௣, answer type T, the probability of 
the answer type ௣ܶ, answer-candidate ܣ, its associ-
ated confidence-scores ܨ௦>, to be specified later), 
where M , ܯ௣ , T , and ௣ܶ  are from the Dispatch 
module, both ܣ and ܨ௦ are from a specific activated 
answer generation module. Therefore, Equation (2) 
can be re-written asܲ൫ܣหܦ,ܳ, ௣ܹ௦,ܴ൯= ෍ ௦ܧ,ܶ,ܯ,ܣ)ܲ ,ܳ,ܦ|௦ܩ, ௣ܹ௦,ܴ)ெ,்,ாೞ,ீೞ≡ softmax ߪ ቌܪ ቆ൫ܯ;ܯ௣;ܶ; ௣ܶ;ܨ௦൯୅,ଵ, … ;ܶ;௣ܯ;ܯ), ௣ܶ;ܨ௦)஺,௄ ቇቍ    (4)

The above Eq (4) is implemented with a pre-pro-
cessor, which first merges the same answer-candi-
date from various answer generation modules; af-
terwards, for each specific merged answer-candi-
date ܣ  (among a varying number of different 
merged candidates), it concatenates the corre-
sponding information from each answer generation 
module5 to form the input to a mapping function H.  
This mapping function H is mainly used to assign 
an overall-confidence-score to the given merged 
answer-candidate if it is supported/merged by/from 
several modules. 

Specifically, for each merged answer-candidate ܣ, we will have K different ൫ܯ;ܯ௣;ܶ; ௣ܶ;ܨ௦൯ quin-
tuplets, where K is a pre-specified/fixed number of 
available answer generation modules. Note that the 
relative position of each answer generation module 
within the concatenation is fixed (so that the corre-
sponding NN weights can be learnt). The overall-
confidence-score of A is input to a specific non-lin-
ear activation function σ, then a softmax function is 

5 Please note that the corresponding information from all 
answer generation modules will be input to fix the input 
format (i.e., regardless of whether they are activated by the 

used to normalize the obtained scores over various 
merged answer-candidates. 

2.2 The Architecture and Operation Flow

Based on Equations (3) and (4), Figure 1 summa-
rizes the proposed divide-and-conquer QA frame-
work. Sequentially, the Preprocessing-layer first 
locates the related Wikipages and annotates the 
given question/passage (also those Wikipages) 
with their associated linguistic information via off-
the-shelf language tools (e.g., the Stanford 
CoreNLP toolkit).

Afterwards, the Embedding-layer obtains con-
textual word embeddings through a pre-trained 
language model (e.g., BERT, RoBERTa (Liu et al., 
2019) or XLNet (Yang et al., 2019)), and generates 
the associated hierarchical embeddings (including 
the document embedding, paragraph embeddings, 
and sentence embeddings). The hierarchical em-
beddings will be shared among subsequent layers.

The Paragraph-Locating-layer then narrows 
down the searching space to only refer to those 
closely related paragraphs/passages within docu-
ments/pages via the so-called “semantic retrieval” 
model (Nie et al., 2019).

The Supporting-Evidence-Locating-layer iden-
tifies the associated Supporting Evidences and also 
outputs an associated score of the specified config-
uration. Basically, only content similarity is con-
sidered here, and no reasoning is conducted (which 
will be done later in the Answer-Generation-layer). 
It can be implemented by a BERT-based model 
with output vectors connected to a binary classifier.

The Dispatch-layer generates the corresponding 
answer mode and answer type probability distribu-
tions for the given question-passage pair, and then 
activates the answer-generation-modules associ-
ated with the top-D answer modes; also, the answer 
type probability distribution will be sent to each an-
swer generation module for reference. Please note 
that one answer mode can activate several corre-
sponding answer generation modules simultane-
ously if the ensemble approach is adopted; also, all 
those activated answer generation modules will be 
operated in parallel. In the current implementation, 
the Dispatcher-layer is a BERT-based classifica-
tion model.

Dispatch module or not; however, for those inactivated 
modules, their associated fields will be set to null/zero). 
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The Answer-Generation-layer includes various 
answer generation modules and generates the lo-
cal/module output (i.e., the answer-candidate) from 
each selected answer generation module. Further-
more, each module is expected to generate top-N 
answer-candidates with their associated confi-
dence scores (Details are given in Section 2.3).

The Aggregation-layer generates the desired fi-
nal answer via aggregating various local/module 
answer-candidates (Section 2.4). Please note that 
an answer mode may be handled by several differ-
ent answer generation modules at the same time, if 
an ensemble approach is adopted. The influence of 
each answer generation module is implicitly de-
cided by its associated NN weights of a feedfor-
ward neural network adopted in this layer.

The External-Resources and their accessing util-
ities/tools provide additional information (to sup-
plement the training data-set and those on-line re-
trieved documents) to increase the knowledge cov-
erage of the test data. Currently, they include Word-
Net, ConceptNet, Wikipedia, and other available 
resources/tools (e.g., Stanford CoreNLP).

Last, the Online-Working-Memory is a working-
memory used to save the intermediate/linguistic-
analysis results (e.g., Hierarchy Embeddings about 
the question/related-passages, POS/NE annotation, 
dependency-tree, etc.) that can be shared among 
various layers/modules later.

2.3 The Adopted Answer Generation Mod-
ules

Figure 2 shows the answer generation modules 
adopted in this work. Since this paper mainly ad-
dresses the framework design, we will only briefly 
sketch the adopted implementation of each module. 
The Single-Span-Extraction module adopts an en-
semble approach. It is implemented by choosing 12 
best RoBERTa-large models with AdaBoost algo-
rithm (Yang et al., 2018). The implementation of 
the Multi-Span-Extraction module is based on the 
tag-based multi-span extraction model (Segal et al., 
2020), which treats the task as a sequence tagging 
problem (i.e., for each token in the passage, decide 
whether it is part of the answer span). Since the im-
plementations of the Arithmetic-Operation and 
Date-Duration modules are similar, we merge 
these two functionalities into one module in this 
task. In this merged module, a RoBERTa-base 
model is first used to extract top K candidates, and 
then a rule-based procedure is adopted for perform-
ing some arithmetic operations such as calculating 
the duration from the beginning and ending dates. 

Furthermore, the Entailment-Judgement module 
is implemented by using a pre-trained BERT mode 
and fine-tuning it for the Yes-No task (Devlin et al., 
2019). The Common-Sense-Inference is imple-
mented with a template-based approach to answer 
Kinship questions. Firstly, the given question is to-
kenized by Stanford CoreNLP toolkit. The Chinese 
kinship associated terms (e.g., father, son, etc.) col-
lected from related Wikipages are added to the dic-
tionary of that toolkit to increase its accuracy rate. 
Afterwards, a rule-based procedure tries to fill in 
the slots of the question template with appropriate 
tokens. Last, the Summarization module is imple-
mented by modifying an existing BERT-based ex-
tractive summarization algorithm (Liu, 2019)

Please note that some of the answer generation 
modules are not implemented here, which include 
the Compare-Members module and the Speaker-
View modules, since they do not occur in the FGC-
2020-pre dataset. Also, the Aggregative-Operation 
module is merged into Multi-Span-Extraction 
module, since there are only few questions in this 
dataset (and the Aggregative-Operation could be 
subsequently taken on the members that are ex-
tracted from the Multi-Span-Extraction module).

{
Passage, 
Question
}

Pre-load 
Wikipages

Preprocessing-layer
Wiki 

Articles 
Retriever

Stanford 
CoreNLP 
Toolkit

Paragraph/Supporting-Evidence-Locating-layer

BERT-based Semantic-Retrieval Neural 
Network

External 
Resources

Online-
Working-
Memory

Best 
Answer 

Embedding-layer

Pre-trained model
(BERT/RoBERTa/XLNet)

Dispatch-layer

Answer-Generation-layer

Aggregation-layer

Figure 1. The proposed DNN system architecture
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2.4 The Proposed Aggregation Module

As described in section 2.1, this module will adopt 
a pre-processor to first merge answer candidates 
from various answer generation modules. Figure 3 
shows an example of the merging process. Suppose 
we have three answer generation modules (i.e., M1, 
M2, M3) and pick top-3 answer candidates from 
each answer generation module, where Cij denotes 
the rank-j answer candidate in answer generation 
module-i. After the merging process, there are four 
merged answer-candidates (i.e., MC1, MC2, MC3, 
MC4) left. For example, MC1 groups two answer 
candidates C11 and C33 as they are identical.

The mapping function H is implemented by a 
Feed-Forward network and its output is connected 
to a binary classifier (T/F) as showed in Figure 4. 
The overall-confidence-score of each merged an-
swer candidate is given by the score of the output 
T. Take MC1 as an example, we will have two quin-
tuplets input from module-1 and module-3 while 
other modules are with zero vectors.

6 https://fgc.stpi.narl.org.tw/activity/2020_Talk2AI 

3 Evaluation

To verify the validity and effectiveness of the pro-
posed framework, we have tested it on the FGC-
2020 dataset. The details of the dataset and various 
experiments conducted are presented below.

3.1 Dataset

Officially, FGC-2020 organizer had released both 
FGC-2020-pre dataset, which is mainly used to let 
each team train their own model, and FGC-2020-
final test set, which is mainly used to evaluate the 
final round performance. Since the FGC-2020-fi-
nal test set is not open to various teams before the 
final contest, the following description is mainly 
for the FGC-2020-pre dataset. Each released ques-
tion in the FGC-2020-pre dataset is associated with 
an official category tag among Elementary, Ad-
vanced, and Argumentation6 . Table 1 shows the 
statistics of those question categories. Also, as 
those Argumentation questions do not have the 
golden answers provided by the FGC organizer, we 
exclude them from the FGC-2020-pre dataset.

To train the models and get a sense about our 
performance before the final competition, we fur-
ther divide the remaining FGC-2020-pre data into 
our own training/development/test three subsets. 
To avoid distribution mismatch problem, we keep 

Answer-Generation Modules:

Arithmetic-Operation

Compare-Members

Aggregative-Operation

Date-Duration

Summarization

Speaker-View

Entailment-Judgement

Common-Sense-Inference

Single-Span-Extraction

Multi-Span-Extraction

Answer-Type Probability Distribution:
Yes/No, Number-Measure, Kinship, 
Person, Date-Duration, Location, 
Organization, Object, Event, Misc

Answer-Mode Probability 
Distribution:

Extraction

Arithmetic-Operation

Comparison

Aggregative-Operation

Date-Duration

Summarization

Speaker-View

Entailment-Judgement

Common-Sense-Inference

Dispatch-layer

Figure 2. The adopted answer generation modules.

:ଵܯ ,ଵଵܥ ,ଵଶܥ :ଶܯଵଷܥ ,ଶଵܥ ,ଶଶܥ :ଷܯଶଷܥ ,ଷଵܥ ,ଷଶܥ ଷଷܥ ெ௘௥௚௘ሳልልልሰ :ଵܥܯ ,ଵଵܥ ,ଷଷܥ :ଶܥܯ       ,ଵଶܥ ,ଶଵܥ :ସܥܯ:ଷܥܯଷଶܥ ଶଷܥ,ଵଷܥ ,ଶଶܥ   ଷଵܥ
Figure 3. An example of merging answer candi-
dates from different answer generation modules.

Feed-Forward

Module-1
(M;Mp;T;Tp;Fs)

Module-2
(M;Mp;T;Tp;Fs)

Module-3
(M;Mp;T;Tp;Fs)

Module-K
(M;Mp;T;Tp;Fs)

Binary Classifier

Overall-Confidence-
Score

 (M;Mp;T;Tp;Fs) 
of C11

(0;0;0;0;0) (M;Mp;T;Tp;Fs) 
of C33

(0;0;0;0;0)

Figure 4. The NN-based aggregation module.

Question Category Count Percentage
Elementary 929 70.27%
Advanced 378 28.59%
Argumentation 15 1.14%
Total 1,322 100.00%

Table 1. The statistics of the question categories in 
the FGC-2020-pre dataset.
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the distributions of question categories in each sub-
set as similar as possible while dividing them. The 
statistics of each subset are shown in Table 2. 

Figure 5 shows the distributions of answer mode 
and answer type in the training/development/test 
subsets, where the vertical axis displays various an-
swer modes/types and the horizontal axis indicates 
their corresponding percentages. It is observed that 
the distributions of answer mode in training/devel-
opment/test subsets are similar but that of answer 
type are significantly different (especially in the 
test subset); it is due to that we divide the dataset 
based on the given documents (and then adjust 
them according to answer modes), but each docu-
ment is associated with a varying number of ques-
tions/types.

3.2 The Baseline Adopted

Since RoBERTa (Liu et al., 2019) is the state-of-
the-art pre-trained model for single-span extraction 

(if ensemble approaches are excluded) on both 
SQuAD (Rajpurkar et al., 2016) and DRCD (Shao 
et al., 2018) datasets when we were preparing for 
the FGC preliminary round (2019/12/24), it was 
chosen as our baseline model.

3.3 Overall System Performance on Official 
Pre-released Dataset

Table 3 gives the performances of our proposed 
model and the above baseline (RoBERTa-large) on 
both the FGC-2020-pre test-set and the FGC-2020-
final test-set. In comparison with the baseline, we 
have enjoyed 11.4% (= 70.5% - 59.1%) overall im-
provement on the FGC-2020-pre test-set. This 
shows when the dataset contains the questions with 
various answer modes, customizing the model ar-
chitecture for each specific answer mode (which 
needs a different inference mechanism) is better 
than adopting a monolithic architecture (and then 
applying it to various answer modes). The ad-
vantage of adopting the proposed Divide-and-Con-
quer framework is thus shown. 

Furthermore, the top-1 and top-2 accuracy rates 
of the answer mode are 98.9% and 100.0%, respec-
tively; and those of the answer type are 93.7% and 
95.3%, respectively. This shows that the Dispatch-
layer is quite promising. The performance of an-
swer type prediction is inferior to that of answer 
mode, as we have more answer types than answer 
modes. 

Last, an intuitive approach to implement the Ag-
gregation-layer is to simply pick up the answer 
candidate with the highest score (which is calcu-
lated by multiplying its associated confidence 
score and the corresponding answer mode proba-
bility) among various candidates. It is surprised to 
find that this intuitive approach (with EM 70.5%) 
is 0.6% better than our proposed NN-based ap-
proach (with EM 69.9%) in this test-set. A possible 
reason could be that there is almost no overlapping 
among various top-3 candidate-sets (obtained from 
different answer generation modules) in this data-
set; as the result, the advantage of merging the 

Dataset Count Percentage
Training 875 66.94%
Development 242 18.52%
Test 190 14.54%
Total 1,307 100.00%

Table 2. The statistics of training/development/test 
subsets in the FGC-2020-pre dataset. 

Figure5. The distributions of answer mode and an-
swer type in the training/development/test subsets of 
the FGC-2020-pre dataset.

Dataset Baseline Proposed

FGC-2020-pre test-set 59.1% 70.5%

FGC-2020-final test-set 36.9% 39.1%

Table 3. The EM (Exact Match) scores of the base-
line and the proposed model on the FGC-2020-pre 
and the FGC-2020-final test-sets.
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same answer-candidate generated from different 
inference mechanisms thus disappears.

3.4 The Performance on Official Final Test-
set

Since we have got FGC-2020-final test-set after the 
contest, we also show its distributions of answer 
mode and answer type in Figure 6. It includes total 
46 question-passage pairs (again, 4 Argumentation 
questions are excluded). It is observed that the dis-
tributions of both answer mode and answer type in 
the final run are very different from those in the 
FGC-2020-pre dataset. This indicates that we have 
a serious mismatch problem in both answer mode 
and answer type, which implies that shallow statis-
tical information (which BERT mainly utilizes) 
would be less useful and deep understanding would 
be more demanding. 

The obtained performance is given in Table 3. In 
comparison with the baseline, we only got 2.2% (= 
39.1% - 36.9%) overall improvement. Comparing 
with the improvement obtained on the FGC-2020-
pre test-set (11.4%), the gap shrinks considerably 
because the problems in the FGC-2020-final test-
set is much more difficult (and thus beyond not 
only the capability of the baseline but also the ca-
pability of our proposed approach).

Figure 7 further shows the overall system per-
formance on the FGC-2020-pre and FGC-2020-fi-
nal test sets in each category. Surprising in coinci-
dence, the accuracy rates on Elementary, Advanced, 
and Overall categories are 0.391, 0.391, and 0.391, 
respectively. In comparison with the overall perfor-
mance of the FGC-2020-pre test-set, the accuracy 
rate drops 0.314 (from 0.705 to 0.391). Figure 8 
additionally shows the accuracy rates associated 
with various answer-modes (Please note that there 
is no Kinship answer mode question in this test-set). 
We even have 0% and 15.4% accuracy rates for the 
Arithmetic-Operation and Multi-Span-Extraction 
answer modes, respectively. The obtained poor 
performances clearly indicate that these two an-
swer-modes are more difficult to handle, which fits 
our intuition.

4 Error Analysis and Discussion for Of-
ficial Final Test-set

As Figure 7 shows, the overall system performance 
degrades significantly (down 0.314, from 0.705 to 
0.391) when we move from FGC-2020-pre test-set 
to FGC-2020-final test-set. It is mainly because the 
questions in the FGC-2020-final test-set is gener-
ally more difficult than that in the FGC-2020-pre 
test-set. And it is also because the involved topics 
(also their associated lexicons), the distributions of 

Figure 6. The distributions of answer mode and an-
swer type in the FGC-2020-pre and FGC-2020-final 
test-sets.

Figure 7. The overall system accuracy rate on the 
FGC-2020-pre and FGC-2020-final test-sets. 

Figure 8. The accuracy rates associated with vari-
ous answer modes on the FGC-2020-final test-set. 
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both answer mode and answer type drift signifi-
cantly from FGC-2020-pre test-set to FGC-2020-
final test-set (as shown in Figure 6). 

Since almost all our current answer generation 
modules adopt BERT-based approaches, and it is 
well-known that BERT conducts the inference 
mainly based on surface-clues/hidden-distribution-
bias (Naik et al., 2018; Poliak et al., 2018; Jiang 
and Marneffe, 2019; McCoy et al., 2019), the mis-
match of those surface-clues/distributions thus 
causes serious degradation. On the other hand, it 
also implies that BERT-based approaches, alt-
hough they have become state-of-the-art models, 
are still not capable to handle the FGC-2020 kind 
of tests (which require deep reasoning and cannot 
be falsely solved simply with surface-clues/distri-
bution-bias). 

Specifically, the performance of the Elementary 
questions drops more (down 0.436, from 0.827 to 
0.391) in comparison with that of Advanced ones 
(down 0.158, from 0.549 to 0.391). The perfor-
mance of the Advanced questions is less affected 
because those questions require deeper reasoning, 
and is thus less affected by the drift of topics and 
the distribution of answer mode/answer type men-
tioned above. 

If we zoom into various answer modes, it is ob-
served that the Multi-Span-Extraction causes most 
overall degradation in the FGC-2020-final test-set, 
which is mainly due to both its low accuracy rate 
(15.4% in Figure 8) and its high answer mode por-
tion (28% in Figure 6)). It seems that the tag-based 
approach (Section 2.3) is not capable of handling 
the Multi-Span-Extraction questions involved in 
this dataset, as getting a multi-span answer needs 
to locate various list-members via matching the 
structures (Gentner and Markman, 1997) of the 
question and the passage, not just regarding it as a 
sequence-tagging task.

5 Conclusion

We proposed a divide-and-conquer model/frame-
work for answering the questions in FGC-2020 QA 
dataset, which covers various answer modes. With 
the proposed Dispatch-layer, the proposed frame-
work is flexible for handling various answer modes 
with different modules simultaneously, and is ex-
tensible for adding new answer modes and answer 
types in the future. Also, with the proposed Aggre-
gation-layer, the proposed framework can take ad-
vantage of different inference mechanisms, and 
also reduce the error accumulation problem. Last, 

due to its design for fitting the end-to-end multi-
task learning framework, the proposed framework 
could be implemented with an appropriate neural 
network and is thus more suitable for end-to-end 
optimization without much effort. 

We have tested the proposed framework on 2020 
Formosa Grand Challenge Contest QA dataset. 
The experiment results show that our system out-
performs the baseline RoBERTa-large model about 
11.4% on the FGC-2020-pre test-set. However, the 
overall system performance drops significantly 
(about 31.4%) from the FGC-2020-pre test-set to 
the FGC-2020-final test-set. On the other hand, to-
gether with our another dialog sub-system (tested 
on the FGC-2020-final Dialog test-set), we ob-
tained 44.1 total score (out of 100; the human per-
formance is 68.2), which outperforms that of the 
official top one system (announced in this contest) 
7.4 points.
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