
Abstract

This paper presents a framework to answer
the questions that require various kinds of
inference mechanisms (such as Extraction,
Entailment-Judgement, and Summariza-
tion). Most of the previous approaches
adopt a rigid framework which handles
only one inference mechanism. Only a few
of them adopt several answer generation
modules for providing different mecha-
nisms; however, they either lack an aggre-
gation mechanism to merge the answers
from various modules, or are too compli-
cated to be implemented with neural net-
works. To alleviate the problems men-
tioned above, we propose a divide-and-
conquer framework, which consists of a set
of various answer generation modules, a
dispatch module, and an aggregation mod-
ule. The answer generation modules are de-
signed to provide different inference mech-
anisms, the dispatch module is used to se-
lect a few appropriate answer generation
modules to generate answer candidates,
and the aggregation module is employed to
select the final answer. We test our frame-
work on the 2020 Formosa Grand Chal-
lenge Contest dataset. Experiments show

1 https://fgc.stpi.narl.org.tw/activity/techai2018

that the proposed framework outperforms
the state-of-the-art Roberta-large model by
about 11.4%.

Keywords: QA, Framework, Divide-and-Conquer
strategy, Answer Aggregation, Inference mechanism

1 Introduction

Natural Language Inference (NLI) is an important
topic in the Artificial Intelligence (AI) field, and
any NLI related issue can be checked by asking an
appropriate corresponding question (Chen, 2018).
Therefore, the Question Answering (QA) task has
become a very suitable testbed for evaluating NLI
models and checking the progress of current tech-
niques. Accordingly, the Ministry of Science and
Technology of Taiwan has organized the Formosa
Grand Challenge Open Contest series1 (FGC) in
2018, which mainly evaluates the reasoning/infer-
ence capability on natural texts, to promote the AI
progress in Taiwan. Specifically, this open contest
covers a variety of answer modes; that is, it needs
different inference mechanisms (such as Extraction,
Entailment-Judgement, Aggregative-Operation,

A Flexible and Extensible Framework for Multiple Answer Modes
Question Answering

Cheng-Chung Fan
Shang-Bao Luo

Kuang-Yu Chang
Meng-Tse Wu
Tzu-Man Wu

Chao-Chun Liang
Kuan-Yu Chen

Keh-Yih Su

Chia-Chih Kuo
Pei-Jun Liao

Chiao-Wei Hsu
Shih-Hong Tsai

Aleksandra Smolka
Hsin-Min Wang

Yu Tsao

Institute of Information Science,
Academia Sinica

Research Center for Information
Technology Innovation,

Academia Sinica

Department of Computer Science and
Information Engineering,

National Taiwan University of Science and
Technology

{jjfan, newsboy3423, simonc, cwhsu,
moju, doublebite, tzum.wu, alsm, ccliang,

whm, kysu}@iis.sinica.edu.tw,

{jerrykuo7727, s2w81234}@gmail.com
kychen@mail.ntust.edu.tw
yu.tsao@citi.sinica.edu.tw

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

33

etc.) to get the desired answer. As a result, the sys-
tem/framework must be able to handle various an-
swer modes at the same time.

The previous frameworks for the QA task could
be classified into two main categories according to
the number of answer modules adopted: (1) Single
answer generation module (Trischler et al., 2017;
Chen, 2018; Shoeybi et al., 2020; Zhang et al.,
2020), which involves only one answer mode, and
allows merely one type of replying format (such as
identifying a span within the given passage, giving
YES/NO answer, free text reply, etc.). (2) Multiple
answer generation modules (Ferrucci, 2012; Andor
et al., 2019; Hu et al., 2019), which adopts several
answer generation modules, and each module con-
ducts a specific inference mechanism (or, answer
mode) with a specific replying format.

Since the first category only considers one an-
swer mode, the types of questions that can be han-
dled are quite limited. For example, it is not suita-
ble for handling the FGC-2020 QA task2, which co-
vers various question types and needs different an-
swer modes to get the desired answers. In contrast,
the approaches under the second category adopt the
divide-and-conquer strategy, which adopts a differ-
ent answer generation module for each specific an-
swer mode. Since each answer generation module
only needs to consider a specific answer mode, it
will be easier to design and add new inference
mechanisms.

Among those second category approaches, the
framework of Watson (Ferrucci, 2012) is not de-
signed for end-to-end training; therefore, it is not
suitable for modern neural-network multi-task
learning due to the complicated flow/architecture
under its statistics-based architecture. Also, the
framework adopted in either (Andor et al., 2019) or
(Hu et al., 2019) does not have an aggregation
layer/module to merge the answers generated from
different answer generation modules (i.e., the out-
put is only picked from a specific module, and
merging is not allowed). Therefore, their ap-
proaches not only have the error accumulation
problem3 (i.e., once a wrong module is selected,
this error will propagate to the next answer-gener-

2 https://scidm.nchc.org.tw/dataset/grandchallenge2020

3 The error accumulation problem of this kind of approaches
is hard to avoid, as it is difficult to know which inference
mechanism should be adopted before we actually see the re-
lated supporting statements (e.g., span-extraction mechanism

ation stage), but also lose the advantage of combin-
ing the strength of different inference mechanisms.
Additionally, all modules will be activated in par-
allel under their frameworks (Andor et al., 2019),
so computing resources on those modules that
should not be activated for a given question would
be wasted.

To overcome the problems mentioned above, a
flexible and extensible framework is proposed in
this paper. It adopts a divide-and-conquer strategy,
and possesses the following main modules/func-
tionalities: (1) A supporting evidences locating
module, which extracts supporting evidences from
the passage to narrow down the searching space. (2)
A dispatch module, which would select and acti-
vate several appropriate answer generation mod-
ules; also, the answer type distribution will be pro-
vided to each answer generation module as a refer-
ence, based on the answer mode. (3) A set of an-
swer generation modules, each of them generates a
few local/module outputs (i.e., possible answers) if
it is activated. (4) An aggregation module, which
picks the best answer at the final stage by merging
the answer candidates from those activated answer
generation modules.

The strengths of the proposed framework are
summarized as follows: (1) With the dispatch mod-
ule, it is flexible for handling different question
types with the same framework; as a result, it is ex-
tensible for adding more answer modes in the fu-
ture. (2) With the aggregation module, it is able to
merge the results from various modules; it thus
possesses the capability of combining the strength
of different inference mechanisms, and also re-
duces the error accumulation problem. (3) It is de-
signed to fit the neural-network based end-to-end
multi-task learning framework; therefore, it can be
implemented with an appropriate neural network
without much effort. (4) Since the dispatch module
only activates the corresponding modules accord-
ing to the given question, it will not waste compu-
ting resources on those modules that are irrelevant
and should not be activated.

In comparison with IBM Watson framework,
which adopts a complicated flow/architecture with
probabilistic models, our proposed framework

is usually preferred if the desired answer is explicitly given in
the supporting sentence; otherwise, a more complicated
mechanism must be adopted).

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

34

adopts the neural-network based approach and can
be optimized by the end-to-end training strategy. In
comparison with the approaches from Andor et al.
(2019) and Hu et al. (2019), which lack the mech-
anism to merge different answer candidates, our
proposed framework only activates several possi-
ble/responsible modules and has the ability to ag-
gregate the outputs from various modules.

The proposed framework is tested on the FGC-
2020 QA dataset, which contains 1,322 questions.
This dataset covers eight different answer modes
(i.e., Single-Span-Extraction, Multi-Span-Extrac-
tion, Yes/No, Aggregative-Operation, Arithmetic-
Operations, Date-Duration, Kinship, and Summa-
rization) and ten different answer types (i.e.,
Yes/No, Number-Measure, Kinship, Person, Date-
Duration, Location, Organization, Object, Event,
and Misc). The experiment results show that our
system outperforms the baseline RoBERTa-large
(Liu et al., 2019) model by 11.4%.

In summary, this paper makes the following
contributions: (1) We propose a novel modular
framework/model that is more flexible for han-
dling/adding various inference mechanisms. (2)
We propose a novel aggregation model to merge
various answer candidates. (3) We conduct experi-
ments to show that the proposed framework out-
performs the state-of-the-art RoBERTa-large
model on the FGC-2020 QA dataset.

2 The Proposed Approach

In this section, the proposed divide-and-conquer
QA model is first described in Section 2.1. The de-
scriptions of the architecture of the proposed model
is then presented in Section 2.2. Afterwards, Sec-
tion 2.3 provides the concepts and principles of de-
signing each answer generation module.

2.1 The Proposed Divide-and-Conquer QA
Model

Given a Document D, Question Q, Wikipedia Wk
and some external Knowledge Resources R (such
as WordNet and ConceptNet), we would like to
find out the most likely answer. To reduce the com-
putation cost, we will first extract related Wik-
ipages with an off-the-shelf IR tool (e.g., the
Apache LuceneTM searching engine4). Let Wps de-
note the set of extracted Wikipages, the problem of

4 https://lucene.apache.org/

finding the desired Answer ܣመ thus can be formu-
lized as Equation (1). For conciseness, we will only
use one notation (e.g., “D” (Document)) to denote
both its content and its associated embedding vec-
tor when it can be interpreted without confusion.ܣመ = argmaxܲ(ܦ|ܣ,ܳ, ௞ܹ ,ܴ) ≡ ݔܽ݉݃ݎܽ ܲ൫ܣหܦ,ܳ, ௣ܹ௦ ,ܴ൯, (1)
where A is a specific answer candidate, and ܣመ de-
notes the desired answer which can be: (1) A list of
string/NE/number/date directly extracted from the
document. This list might contain only one element,
or even empty (The string “UNKNOWN” will be
output in this case). (2) An aggregation result (such
as Summarization, Speaker’s View, Arithmetic Re-
sult, Count/Min/Max/Avg, Entailment/Sentiment
Judgment, etc.) induced from the given document.

Since we will encounter various scenarios that
request different answer modes (among which
each adopts a different strategy to obtain the de-
sired answer), a Divide-and-Conquer framework is
thus proposed to convert a given complicated prob-
lem into a set of simple sub-problems:ܲ൫ܣหܦ,ܳ, ௣ܹ௦,ܴ൯= ∑ ܲ൫ܧ,ܶ,ܯ,ܣ௦ ,ܳ,ܦ௦หܩ, ௣ܹ௦,ܴ൯,ெ,்,ாೞ,ீೞ (2)
where M denotes a specific answer mode, ܶ refers
to a specific answer type that can be used for veri-
fication in each answer generation module, Es
stands for a specific set of supporting evidences,
and Gs represents a specific set of paragraphs. By
doing so, each answer generation module/model
concentrates only on a specific answer mode. The
probability ܲ(ܧ,ܶ,ܯ,ܣ௦ ,ܳ,ܦ|௦ܩ, ௣ܹ௦,ܴ) can be
further decomposed into five terms:ܲ൫ܧ,ܶ,ܯ,ܣ௦ ,ܳ,ܦ௦หܩ, ௣ܹ௦,ܴ൯= ܲ൫ܣหܧ,ܶ,ܯ௦,ܩ௦ ,ܳ,ܦ, ௣ܹ௦,ܴ൯× ܲ൫ܯหܶ,ܧ௦,ܩ௦ ,ܳ,ܦ, ௣ܹ௦,ܴ൯ × ܲ൫ܶหܧ௦,ܩ௦ ,ܳ,ܦ, ௣ܹ௦,ܴ൯ × ܲ൫ܧ௦หܩ௦ ,ܳ,ܦ, ௣ܹ௦,ܴ൯× ܲ൫ܩ௦หܦ,ܳ, ௣ܹ௦,ܴ൯≈ ௦ܧ,ܶ,ܯ|ܣ)ܲ ,ܳ,ܴ) × (ܳ,௦ܧ,ܶ|ܯ)ܲ ௦ܧ|ܶ)ܲ× ,ܳ) × ,ܳ,ܦ,௦ܩ|௦ܧ)ܲ ௣ܹ௦) × ,ܳ,ܦ|௦ܩ)ܲ ௣ܹ௦),

 (3)
where ܲ(ܧ,ܶ,ܯ|ܣ௦ ,ܳ,ܴ) will be generated by each
specific answer generation module, both ܲ(ܧ,ܶ|ܯ௦,ܳ) and ܲ(ܶ|ܧ௦,ܳ) will be generated by

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

35

the Dispatch module, ܲ(ܧ௦|ܩ௦ ,ܳ,ܦ, ௣ܹ௦) will be
generated by the Supporting-Evidence-Locating
module, and ܲ(ܩ௦|ܦ,ܳ, ௣ܹ௦) will be generated by
another Paragraph-Locating module (Section 2.2).

Finally, ∑ ,ܳ,ܦ|௦ܩ,௦ܧ,ܶ,ܯ,ܣ)ܲ ௣ܹ௦,ܴ)ெ,்,ாೞ,ீೞ
will be taken care by the Aggregation module,
which aggregates various answer-candidates gen-
erated by different answer generation modules to
obtain the final answer. It predicts the best answer
based on those obtained answer-module sextuplets
(i.e., <answer mode M, the probability of the an-
swer mode ܯ௣, answer type T, the probability of
the answer type ௣ܶ, answer-candidate ܣ, its associ-
ated confidence-scores ܨ௦>, to be specified later),
where M , ܯ௣ , T , and ௣ܶ are from the Dispatch
module, both ܣ and ܨ௦ are from a specific activated
answer generation module. Therefore, Equation (2)
can be re-written asܲ൫ܣหܦ,ܳ, ௣ܹ௦,ܴ൯= ෍ ௦ܧ,ܶ,ܯ,ܣ)ܲ ,ܳ,ܦ|௦ܩ, ௣ܹ௦,ܴ)ெ,்,ாೞ,ீೞ≡ softmax ߪ ቌܪ ቆ൫ܯ;ܯ௣;ܶ; ௣ܶ;ܨ௦൯୅,ଵ, … ;ܶ;௣ܯ;ܯ), ௣ܶ;ܨ௦)஺,௄ ቇቍ (4)

The above Eq (4) is implemented with a pre-pro-
cessor, which first merges the same answer-candi-
date from various answer generation modules; af-
terwards, for each specific merged answer-candi-
date ܣ (among a varying number of different
merged candidates), it concatenates the corre-
sponding information from each answer generation
module5 to form the input to a mapping function H.
This mapping function H is mainly used to assign
an overall-confidence-score to the given merged
answer-candidate if it is supported/merged by/from
several modules.

Specifically, for each merged answer-candidate ܣ, we will have K different ൫ܯ;ܯ௣;ܶ; ௣ܶ;ܨ௦൯ quin-
tuplets, where K is a pre-specified/fixed number of
available answer generation modules. Note that the
relative position of each answer generation module
within the concatenation is fixed (so that the corre-
sponding NN weights can be learnt). The overall-
confidence-score of A is input to a specific non-lin-
ear activation function σ, then a softmax function is

5 Please note that the corresponding information from all
answer generation modules will be input to fix the input
format (i.e., regardless of whether they are activated by the

used to normalize the obtained scores over various
merged answer-candidates.

2.2 The Architecture and Operation Flow

Based on Equations (3) and (4), Figure 1 summa-
rizes the proposed divide-and-conquer QA frame-
work. Sequentially, the Preprocessing-layer first
locates the related Wikipages and annotates the
given question/passage (also those Wikipages)
with their associated linguistic information via off-
the-shelf language tools (e.g., the Stanford
CoreNLP toolkit).

Afterwards, the Embedding-layer obtains con-
textual word embeddings through a pre-trained
language model (e.g., BERT, RoBERTa (Liu et al.,
2019) or XLNet (Yang et al., 2019)), and generates
the associated hierarchical embeddings (including
the document embedding, paragraph embeddings,
and sentence embeddings). The hierarchical em-
beddings will be shared among subsequent layers.

The Paragraph-Locating-layer then narrows
down the searching space to only refer to those
closely related paragraphs/passages within docu-
ments/pages via the so-called “semantic retrieval”
model (Nie et al., 2019).

The Supporting-Evidence-Locating-layer iden-
tifies the associated Supporting Evidences and also
outputs an associated score of the specified config-
uration. Basically, only content similarity is con-
sidered here, and no reasoning is conducted (which
will be done later in the Answer-Generation-layer).
It can be implemented by a BERT-based model
with output vectors connected to a binary classifier.

The Dispatch-layer generates the corresponding
answer mode and answer type probability distribu-
tions for the given question-passage pair, and then
activates the answer-generation-modules associ-
ated with the top-D answer modes; also, the answer
type probability distribution will be sent to each an-
swer generation module for reference. Please note
that one answer mode can activate several corre-
sponding answer generation modules simultane-
ously if the ensemble approach is adopted; also, all
those activated answer generation modules will be
operated in parallel. In the current implementation,
the Dispatcher-layer is a BERT-based classifica-
tion model.

Dispatch module or not; however, for those inactivated
modules, their associated fields will be set to null/zero).

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

36

The Answer-Generation-layer includes various
answer generation modules and generates the lo-
cal/module output (i.e., the answer-candidate) from
each selected answer generation module. Further-
more, each module is expected to generate top-N
answer-candidates with their associated confi-
dence scores (Details are given in Section 2.3).

The Aggregation-layer generates the desired fi-
nal answer via aggregating various local/module
answer-candidates (Section 2.4). Please note that
an answer mode may be handled by several differ-
ent answer generation modules at the same time, if
an ensemble approach is adopted. The influence of
each answer generation module is implicitly de-
cided by its associated NN weights of a feedfor-
ward neural network adopted in this layer.

The External-Resources and their accessing util-
ities/tools provide additional information (to sup-
plement the training data-set and those on-line re-
trieved documents) to increase the knowledge cov-
erage of the test data. Currently, they include Word-
Net, ConceptNet, Wikipedia, and other available
resources/tools (e.g., Stanford CoreNLP).

Last, the Online-Working-Memory is a working-
memory used to save the intermediate/linguistic-
analysis results (e.g., Hierarchy Embeddings about
the question/related-passages, POS/NE annotation,
dependency-tree, etc.) that can be shared among
various layers/modules later.

2.3 The Adopted Answer Generation Mod-
ules

Figure 2 shows the answer generation modules
adopted in this work. Since this paper mainly ad-
dresses the framework design, we will only briefly
sketch the adopted implementation of each module.
The Single-Span-Extraction module adopts an en-
semble approach. It is implemented by choosing 12
best RoBERTa-large models with AdaBoost algo-
rithm (Yang et al., 2018). The implementation of
the Multi-Span-Extraction module is based on the
tag-based multi-span extraction model (Segal et al.,
2020), which treats the task as a sequence tagging
problem (i.e., for each token in the passage, decide
whether it is part of the answer span). Since the im-
plementations of the Arithmetic-Operation and
Date-Duration modules are similar, we merge
these two functionalities into one module in this
task. In this merged module, a RoBERTa-base
model is first used to extract top K candidates, and
then a rule-based procedure is adopted for perform-
ing some arithmetic operations such as calculating
the duration from the beginning and ending dates.

Furthermore, the Entailment-Judgement module
is implemented by using a pre-trained BERT mode
and fine-tuning it for the Yes-No task (Devlin et al.,
2019). The Common-Sense-Inference is imple-
mented with a template-based approach to answer
Kinship questions. Firstly, the given question is to-
kenized by Stanford CoreNLP toolkit. The Chinese
kinship associated terms (e.g., father, son, etc.) col-
lected from related Wikipages are added to the dic-
tionary of that toolkit to increase its accuracy rate.
Afterwards, a rule-based procedure tries to fill in
the slots of the question template with appropriate
tokens. Last, the Summarization module is imple-
mented by modifying an existing BERT-based ex-
tractive summarization algorithm (Liu, 2019)

Please note that some of the answer generation
modules are not implemented here, which include
the Compare-Members module and the Speaker-
View modules, since they do not occur in the FGC-
2020-pre dataset. Also, the Aggregative-Operation
module is merged into Multi-Span-Extraction
module, since there are only few questions in this
dataset (and the Aggregative-Operation could be
subsequently taken on the members that are ex-
tracted from the Multi-Span-Extraction module).

{
Passage,
Question
}

Pre-load
Wikipages

Preprocessing-layer
Wiki

Articles
Retriever

Stanford
CoreNLP
Toolkit

Paragraph/Supporting-Evidence-Locating-layer

BERT-based Semantic-Retrieval Neural
Network

External
Resources

Online-
Working-
Memory

Best
Answer

Embedding-layer

Pre-trained model
(BERT/RoBERTa/XLNet)

Dispatch-layer

Answer-Generation-layer

Aggregation-layer

Figure 1. The proposed DNN system architecture

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

37

2.4 The Proposed Aggregation Module

As described in section 2.1, this module will adopt
a pre-processor to first merge answer candidates
from various answer generation modules. Figure 3
shows an example of the merging process. Suppose
we have three answer generation modules (i.e., M1,
M2, M3) and pick top-3 answer candidates from
each answer generation module, where Cij denotes
the rank-j answer candidate in answer generation
module-i. After the merging process, there are four
merged answer-candidates (i.e., MC1, MC2, MC3,
MC4) left. For example, MC1 groups two answer
candidates C11 and C33 as they are identical.

The mapping function H is implemented by a
Feed-Forward network and its output is connected
to a binary classifier (T/F) as showed in Figure 4.
The overall-confidence-score of each merged an-
swer candidate is given by the score of the output
T. Take MC1 as an example, we will have two quin-
tuplets input from module-1 and module-3 while
other modules are with zero vectors.

6 https://fgc.stpi.narl.org.tw/activity/2020_Talk2AI

3 Evaluation

To verify the validity and effectiveness of the pro-
posed framework, we have tested it on the FGC-
2020 dataset. The details of the dataset and various
experiments conducted are presented below.

3.1 Dataset

Officially, FGC-2020 organizer had released both
FGC-2020-pre dataset, which is mainly used to let
each team train their own model, and FGC-2020-
final test set, which is mainly used to evaluate the
final round performance. Since the FGC-2020-fi-
nal test set is not open to various teams before the
final contest, the following description is mainly
for the FGC-2020-pre dataset. Each released ques-
tion in the FGC-2020-pre dataset is associated with
an official category tag among Elementary, Ad-
vanced, and Argumentation6 . Table 1 shows the
statistics of those question categories. Also, as
those Argumentation questions do not have the
golden answers provided by the FGC organizer, we
exclude them from the FGC-2020-pre dataset.

To train the models and get a sense about our
performance before the final competition, we fur-
ther divide the remaining FGC-2020-pre data into
our own training/development/test three subsets.
To avoid distribution mismatch problem, we keep

Answer-Generation Modules:

Arithmetic-Operation

Compare-Members

Aggregative-Operation

Date-Duration

Summarization

Speaker-View

Entailment-Judgement

Common-Sense-Inference

Single-Span-Extraction

Multi-Span-Extraction

Answer-Type Probability Distribution:
Yes/No, Number-Measure, Kinship,
Person, Date-Duration, Location,
Organization, Object, Event, Misc

Answer-Mode Probability
Distribution:

Extraction

Arithmetic-Operation

Comparison

Aggregative-Operation

Date-Duration

Summarization

Speaker-View

Entailment-Judgement

Common-Sense-Inference

Dispatch-layer

Figure 2. The adopted answer generation modules.

:ଵܯ ,ଵଵܥ ,ଵଶܥ :ଶܯଵଷܥ ,ଶଵܥ ,ଶଶܥ :ଷܯଶଷܥ ,ଷଵܥ ,ଷଶܥ ଷଷܥ ெ௘௥௚௘ሳልልልሰ :ଵܥܯ ,ଵଵܥ ,ଷଷܥ :ଶܥܯ ,ଵଶܥ ,ଶଵܥ :ସܥܯ:ଷܥܯଷଶܥ ଶଷܥ,ଵଷܥ ,ଶଶܥ ଷଵܥ
Figure 3. An example of merging answer candi-
dates from different answer generation modules.

Feed-Forward

Module-1
(M;Mp;T;Tp;Fs)

Module-2
(M;Mp;T;Tp;Fs)

Module-3
(M;Mp;T;Tp;Fs)

Module-K
(M;Mp;T;Tp;Fs)

Binary Classifier

Overall-Confidence-
Score

 (M;Mp;T;Tp;Fs)
of C11

(0;0;0;0;0) (M;Mp;T;Tp;Fs)
of C33

(0;0;0;0;0)

Figure 4. The NN-based aggregation module.

Question Category Count Percentage
Elementary 929 70.27%
Advanced 378 28.59%
Argumentation 15 1.14%
Total 1,322 100.00%

Table 1. The statistics of the question categories in
the FGC-2020-pre dataset.

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

38

the distributions of question categories in each sub-
set as similar as possible while dividing them. The
statistics of each subset are shown in Table 2.

Figure 5 shows the distributions of answer mode
and answer type in the training/development/test
subsets, where the vertical axis displays various an-
swer modes/types and the horizontal axis indicates
their corresponding percentages. It is observed that
the distributions of answer mode in training/devel-
opment/test subsets are similar but that of answer
type are significantly different (especially in the
test subset); it is due to that we divide the dataset
based on the given documents (and then adjust
them according to answer modes), but each docu-
ment is associated with a varying number of ques-
tions/types.

3.2 The Baseline Adopted

Since RoBERTa (Liu et al., 2019) is the state-of-
the-art pre-trained model for single-span extraction

(if ensemble approaches are excluded) on both
SQuAD (Rajpurkar et al., 2016) and DRCD (Shao
et al., 2018) datasets when we were preparing for
the FGC preliminary round (2019/12/24), it was
chosen as our baseline model.

3.3 Overall System Performance on Official
Pre-released Dataset

Table 3 gives the performances of our proposed
model and the above baseline (RoBERTa-large) on
both the FGC-2020-pre test-set and the FGC-2020-
final test-set. In comparison with the baseline, we
have enjoyed 11.4% (= 70.5% - 59.1%) overall im-
provement on the FGC-2020-pre test-set. This
shows when the dataset contains the questions with
various answer modes, customizing the model ar-
chitecture for each specific answer mode (which
needs a different inference mechanism) is better
than adopting a monolithic architecture (and then
applying it to various answer modes). The ad-
vantage of adopting the proposed Divide-and-Con-
quer framework is thus shown.

Furthermore, the top-1 and top-2 accuracy rates
of the answer mode are 98.9% and 100.0%, respec-
tively; and those of the answer type are 93.7% and
95.3%, respectively. This shows that the Dispatch-
layer is quite promising. The performance of an-
swer type prediction is inferior to that of answer
mode, as we have more answer types than answer
modes.

Last, an intuitive approach to implement the Ag-
gregation-layer is to simply pick up the answer
candidate with the highest score (which is calcu-
lated by multiplying its associated confidence
score and the corresponding answer mode proba-
bility) among various candidates. It is surprised to
find that this intuitive approach (with EM 70.5%)
is 0.6% better than our proposed NN-based ap-
proach (with EM 69.9%) in this test-set. A possible
reason could be that there is almost no overlapping
among various top-3 candidate-sets (obtained from
different answer generation modules) in this data-
set; as the result, the advantage of merging the

Dataset Count Percentage
Training 875 66.94%
Development 242 18.52%
Test 190 14.54%
Total 1,307 100.00%

Table 2. The statistics of training/development/test
subsets in the FGC-2020-pre dataset.

Figure5. The distributions of answer mode and an-
swer type in the training/development/test subsets of
the FGC-2020-pre dataset.

Dataset Baseline Proposed

FGC-2020-pre test-set 59.1% 70.5%

FGC-2020-final test-set 36.9% 39.1%

Table 3. The EM (Exact Match) scores of the base-
line and the proposed model on the FGC-2020-pre
and the FGC-2020-final test-sets.

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

39

same answer-candidate generated from different
inference mechanisms thus disappears.

3.4 The Performance on Official Final Test-
set

Since we have got FGC-2020-final test-set after the
contest, we also show its distributions of answer
mode and answer type in Figure 6. It includes total
46 question-passage pairs (again, 4 Argumentation
questions are excluded). It is observed that the dis-
tributions of both answer mode and answer type in
the final run are very different from those in the
FGC-2020-pre dataset. This indicates that we have
a serious mismatch problem in both answer mode
and answer type, which implies that shallow statis-
tical information (which BERT mainly utilizes)
would be less useful and deep understanding would
be more demanding.

The obtained performance is given in Table 3. In
comparison with the baseline, we only got 2.2% (=
39.1% - 36.9%) overall improvement. Comparing
with the improvement obtained on the FGC-2020-
pre test-set (11.4%), the gap shrinks considerably
because the problems in the FGC-2020-final test-
set is much more difficult (and thus beyond not
only the capability of the baseline but also the ca-
pability of our proposed approach).

Figure 7 further shows the overall system per-
formance on the FGC-2020-pre and FGC-2020-fi-
nal test sets in each category. Surprising in coinci-
dence, the accuracy rates on Elementary, Advanced,
and Overall categories are 0.391, 0.391, and 0.391,
respectively. In comparison with the overall perfor-
mance of the FGC-2020-pre test-set, the accuracy
rate drops 0.314 (from 0.705 to 0.391). Figure 8
additionally shows the accuracy rates associated
with various answer-modes (Please note that there
is no Kinship answer mode question in this test-set).
We even have 0% and 15.4% accuracy rates for the
Arithmetic-Operation and Multi-Span-Extraction
answer modes, respectively. The obtained poor
performances clearly indicate that these two an-
swer-modes are more difficult to handle, which fits
our intuition.

4 Error Analysis and Discussion for Of-
ficial Final Test-set

As Figure 7 shows, the overall system performance
degrades significantly (down 0.314, from 0.705 to
0.391) when we move from FGC-2020-pre test-set
to FGC-2020-final test-set. It is mainly because the
questions in the FGC-2020-final test-set is gener-
ally more difficult than that in the FGC-2020-pre
test-set. And it is also because the involved topics
(also their associated lexicons), the distributions of

Figure 6. The distributions of answer mode and an-
swer type in the FGC-2020-pre and FGC-2020-final
test-sets.

Figure 7. The overall system accuracy rate on the
FGC-2020-pre and FGC-2020-final test-sets.

Figure 8. The accuracy rates associated with vari-
ous answer modes on the FGC-2020-final test-set.

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

40

both answer mode and answer type drift signifi-
cantly from FGC-2020-pre test-set to FGC-2020-
final test-set (as shown in Figure 6).

Since almost all our current answer generation
modules adopt BERT-based approaches, and it is
well-known that BERT conducts the inference
mainly based on surface-clues/hidden-distribution-
bias (Naik et al., 2018; Poliak et al., 2018; Jiang
and Marneffe, 2019; McCoy et al., 2019), the mis-
match of those surface-clues/distributions thus
causes serious degradation. On the other hand, it
also implies that BERT-based approaches, alt-
hough they have become state-of-the-art models,
are still not capable to handle the FGC-2020 kind
of tests (which require deep reasoning and cannot
be falsely solved simply with surface-clues/distri-
bution-bias).

Specifically, the performance of the Elementary
questions drops more (down 0.436, from 0.827 to
0.391) in comparison with that of Advanced ones
(down 0.158, from 0.549 to 0.391). The perfor-
mance of the Advanced questions is less affected
because those questions require deeper reasoning,
and is thus less affected by the drift of topics and
the distribution of answer mode/answer type men-
tioned above.

If we zoom into various answer modes, it is ob-
served that the Multi-Span-Extraction causes most
overall degradation in the FGC-2020-final test-set,
which is mainly due to both its low accuracy rate
(15.4% in Figure 8) and its high answer mode por-
tion (28% in Figure 6)). It seems that the tag-based
approach (Section 2.3) is not capable of handling
the Multi-Span-Extraction questions involved in
this dataset, as getting a multi-span answer needs
to locate various list-members via matching the
structures (Gentner and Markman, 1997) of the
question and the passage, not just regarding it as a
sequence-tagging task.

5 Conclusion

We proposed a divide-and-conquer model/frame-
work for answering the questions in FGC-2020 QA
dataset, which covers various answer modes. With
the proposed Dispatch-layer, the proposed frame-
work is flexible for handling various answer modes
with different modules simultaneously, and is ex-
tensible for adding new answer modes and answer
types in the future. Also, with the proposed Aggre-
gation-layer, the proposed framework can take ad-
vantage of different inference mechanisms, and
also reduce the error accumulation problem. Last,

due to its design for fitting the end-to-end multi-
task learning framework, the proposed framework
could be implemented with an appropriate neural
network and is thus more suitable for end-to-end
optimization without much effort.

We have tested the proposed framework on 2020
Formosa Grand Challenge Contest QA dataset.
The experiment results show that our system out-
performs the baseline RoBERTa-large model about
11.4% on the FGC-2020-pre test-set. However, the
overall system performance drops significantly
(about 31.4%) from the FGC-2020-pre test-set to
the FGC-2020-final test-set. On the other hand, to-
gether with our another dialog sub-system (tested
on the FGC-2020-final Dialog test-set), we ob-
tained 44.1 total score (out of 100; the human per-
formance is 68.2), which outperforms that of the
official top one system (announced in this contest)
7.4 points.

References
Daniel Andor, Luheng He, Kenton Lee, and Emily Pit-

ler. 2019. Giving BERT a Calculator: Finding Op-
erations and Arguments with Reading Comprehen-
sion. arXiv:1909.00109v2.

Dan-Qi Chen. 2018. Neural Reading Comprehension
and Beyond. Ph.D. Dissertation. Stanford Univer-
sity.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kris-
tina Toutanova. 2019. BERT: Pre-training of Deep
Bidirectional Transformers for Language Under-
standing. arXiv:1810.04805v2.

David Ferrucci. 2012. Introduction to ‘This is Watson’.
IBM J. RES. & DEV. VOL. 56 NO. 3/4 PAPER 1.

Dedre Gentner and Arthur B. Markman. 1997. Struc-
ture mapping in analogy and similarity. American
Psychologist, 52(1):45–56.

Ming-Hao Hu, Yu-Xing Peng, Zhen Huang, and Dong-
sheng Li. 2019. A Multi-Type Multi-Span Net-work
for Reading Comprehension that Requires Discrete
Reasoning. arXiv:1908.05514v2.

Chu-Ren Huang, Shu-Kai Hsieh, Jia-Fei Hong, Yun-
Zhu Chen, I-Li Su, Yong-Xiang Chen, and Sheng-
Wei Huang. 2008. Chinese Wordnet: Design, Imple-
mentation, & Application of an Infrastructure for
Cross-lingual Knowledge Processing. In Chinese
Lexical Semantic Workshop 2008.

 Nan-Jiang Jiang and Marie-Catherine de Marneffe
(2019). Evaluating BERT for natural language in-
ference: A case study on the Commitment Bank. In
Proceedings of the 2019 Conference on Empirical

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

41

Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 6086–6091.

Cheng-Ru Li, Chi-Hsin Yu, and Hsin-Hsi Chen. 2011.
Predicting the Semantic Orientation of Terms in E-
HowNet. In Proceedings of the 23rd Conference on
Computational Linguistics and Speech Processing,
pages 151–165.

Yang Liu. 2019. Fine-tune BERT for Extractive Sum-
marization. arXiv:1903.10318v2.

Yin-Han Liu, Myle Ott, Naman Goyal, Jing-Fei Du,
Mandar Joshi, Dan-qi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT Pre-
training Approach. arXiv:1907.11692v1.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the Wrong Reasons: Diagnosing Syntactic
Heuristics in Natural Language Inference. In Pro-
ceedings of the 57th Annual Meeting of the Associ-
ation for Computational Linguistics. Association
for Computational Linguistics, pages 3428–3448.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress Test Evaluation for Natural Language Infer-
ence. In Proceedings of the 27th International Con-
ference on Computational Linguistics. Association
for Computational Linguistics, pages 2340–2353.

Yi-Xin Nie, Song-He Wang, and Mohit Bansal. 2019.
Revealing the importance of semantic retrieval for
machine reading at scale. arXiv:1909.08041v1.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language infer-
ence. In Proceedings of the Seventh Joint Confer-
ence on Lexical and Computational Semantics. As-
sociation for Computational Linguistics, pages
180–191.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. SQuAD: 100,000+ Ques-
tions for Machine Comprehension of Text. arXiv:
1606.05250v3.

Sebastian Ruder. 2017. An Overview of Multi-Task
Learning in Deep Neural Networks.
arXiv:1706.05098v1.

Elad Segal, Avia Efrat, Mor Shoham, Amir Globerson,
and Jonathan Berant. 2020. A Simple and Effective
Model for Answering Multi-span Questions.
arXiv:1909.13375v1.

Chih-Chieh Shao, Trois Liu, Yu-Ting Lai, Yi-Ying
Tseng, and Sam Tsai. 2018. DRCD: a Chinese Ma-
chine Reading Comprehension Dataset.
arXiv:1806.00920.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Pat-
rick LeGresley, Jared Casper, and Bryan Catanzaro.
2020. Megatron-LM: Training Multi-Billion Pa-
rameter Language Models Using Model Parallel-
ism. arXiv:1909.08053v4.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2018.
ConceptNet 5.5: An Open Multilingual Graph of
General Knowledge. arXiv:1612.03975v2.

Adam Trischler, Tong Wang, Xing-Di Yuan, Justin
Harris, Alessandro Sordoni, Philip Bachman, and
Kaheer Suleman. 2016. NewsQA: A Machine Com-
prehension Dataset. arXiv:1611.09830v3.

Dong-Dong Yang, Sen-Zhang Wang, and Zhou-Jun Li.
2018. Ensemble Neural Relation Extraction with
Adaptive Boosting. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, pages 4532–4538.

Zhi-Lin Yang, Zi-Hang Dai, Yi-Ming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. arXiv:1906.08237v2.

Yu Zhang and Qiang Yang. 2021. A Survey on Multi-
Task Learning. arXiv:1707.08114v3.

Zhuo-Sheng Zhang, Jun-Jie Yang, and Hai Zhao. 2020.
Retrospective Reader for Machine Reading Com-
prehension. arXiv: 2001.09694v3.

The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

42

