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Abstract 

We propose the mixed-attention-based 
Generative Adversarial Network (named 
maGAN), and apply it for citation intent 
classification in scientific publication. We 
select domain-specific training data, 
propose a mixed attention mechanism, and 
employ generative adversarial network 
architecture for pre-training language 
model and fine-tuning to the downstream 
multi-class classification task. Experiments 
were conducted on the SciCite datasets to 
compare model performance. Our 
proposed maGAN model achieved the best 
Macro-F1 of 0.8532.  

 
Keywords: attentions, pretrained language 

models, citation intents, scientific 
publications. 
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2 (b)  (fine-tuning) 
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4  

4.1  
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2019)
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4.3  

2
1 SciBERT
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https://paperswithcode.com/sota/citation-intent-
classification-on-scicite
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Background 
information

Recent evidence suggests that co-occurring 
alexithymia may explain deficits [12]. Locally high-
temperature melting regions can act as permanent 
termination sites [6-9]. One line of work is focused on 
changing the objective function (Mao et al., 2016).

 
Method

Fold differences were calculated by a mathematical 
model described in [4]. We use Orthogonal 
Initialization (Saxe et al., 2014)

 
Result 

comparison

Weighted measurements were superior to T2-weighted 
contrast imaging which was in accordance with former 
studies [25-27] Similar results to our study were 
reported in the study of Lee et al (2010)
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 3:  

Model Macro F1 

BiLSTM-Attention+ELMo 82.6 

Structural-scaffolds 84.0 

SciBERT 84.99 

maGAN (ours) 85.32 
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