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Abstract

This study presents a novel QA-based se-
quence labeling (QASL) approach to nat-
urally tackle both flat and nested Named
Entity Recognition (NER) tasks on a Chi-
nese Electronic Health Records (CEHRs)
dataset. This proposed QASL approach
parallelly asks a corresponding natural lan-
guage question for each specific named en-
tity type. It then identifies those associ-
ated NEs of the same specified type with
the BIO tagging scheme. The associated
nested NEs are then formed by overlap-
ping the results of various types. Com-
pared with those pure sequence-labeling
(SL) approaches, since the given question
includes significant prior knowledge about
the specified entity type and the capabil-
ity of extracting NEs with different types,
the nested NER task is thus improved, ob-
taining 90.70% of Fl-score. Besides, com-
pared to the pure QA-based approach, our
proposed approach retains the SL features,
which could extract multiple NEs with
the same types without knowing the ex-
act number of NEs in the same passage in
advance. Eventually, experiments on our
CEHR dataset demonstrate that QASL-
based models greatly outperform the SL-
based models by 6.12% to 7.14% of F1-

score.

Keywords: Nested Named Entity Recog-
nition, Chinese Electronic Health Records,
QA-based Sequence Labeling

1 Introduction

Electronic health records (EHRs) contain rich
medical information and treatment histories of
patients (e.g., various event dates, diagnoses,
and treatments). It is beneficial to understand
the patients’ conditions that all clinicians are
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The patient was admitted to hospital and sent to the emergency on Oct. 5, 2019. Then,
he was discharged on Oct. 7.
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He went to hospital for follow-up treatment on Oct. 16 and Oct. 21.

Figure 1: A common example of Chinese electronic
health records (CEHRs).

involved in their care. In the past, this in-
formation was embedded in unstructured raw
texts and extracted manually to databases.
Therefore, Named Entity Recognition (NER)
task, effectively identifying meaningful named
entities (NEs) from unstructured raw texts,
has emerged as a hot topic among researchers
and practitioners these days.

In Chinese EHRs, a phenomenon often ex-
ists that NEs are overlapped or nested, espe-
cially in event date types. For example, as
shown in Figure 1, The entity (” & /T 2019
$ 10 A 5 B” Oct. 5, 2019) in the passage
has several roles such as the admission date
and the emergency date. However, most mod-
els only focus on handling flat NER in which
NEs do not overlap each other; only a few of
them deal with nested NER in which over-
lapped NEs are allowed.

The NER task has been treated as a se-
quence labeling (SL) problem in previous
works (Lafferty et al., 2001; Hammerton, 2003;
Ratinov and Roth, 2009; Collobert et al., 2011;
Huang et al., 2015; Ma and Hovy, 2016; Peters
et al., 2018; Devlin et al., 2019). With this
approach, flat (non-overlapping) NEs within a
given passage could be simultaneously identi-
fied; however, they failed to detect nested NEs.

To address the issues, various approaches
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have been proposed to solve both flat and
nested NER with public datasets such as
ACE2004 (Doddington et al., 2004), ACE2005
(Christopher Walker et al., 2006), GENIA
(Kim et al., 2003), and NNE (Ringland et al.,
2019). First, stack-based approaches utilize
flat NER layers to sequentially extract en-
tities from inner to outer or outer to inner
(Alex et al., 2007; Ju et al., 2018; Wang et al.,
2020a).  Secondly, graph-based approaches
apply constituency parse trees (Finkel and
Manning, 2009), hypergraphs (Lu and Roth,
2015; Wang and Lu, 2018; Katiyar and Cardie,
2018), or bipartite graphs (Luo and Zhao,
2020) to identify nested NEs. Thirdly, region-
based approaches decompose NER to two
stages: detect all possible spans and clas-
sify them into pre-defined entity types (Xu
et al., 2017; Fisher and Vlachos, 2019; Xia
et al., 2019; Zheng et al.; 2019; Wang et al.,
2020b). Different from public datasets, our
Chinese EHR dataset only contains flat NEs
and nested NEs with different entity types,
meaning that nested NEs with the same types
are not in our consideration. Therefore, many
above attempts are not the most suitable and
intuitive methods for our CEHR dataset due
to their complicated models or frameworks.

This study proposed a simple and effective
framework of Question Answering Sequence
Labeling (QASL). Inspired by Li et al., 2020
(Li et al., 2020), we also re-formalize the NER
task to a Question Answering (QA) problem
to naturally tackle both flat and nested NER.
However, different from this work (Li et al.,
2020), we modified the strategy of span selec-
tion from predicting start and end positions
of entity spans to directly assigning BIO la-
bels to tokens in the input passage. To be
more specific, the QASL approach first adopts
the corresponding string of the specified NE-
type as the query. It then identifies NEs with
the BIO tagging scheme by parallelly querying
the corresponding NE-type-string (e.g. “AI%
B #,” Admission Date) for each specific NE
type. Asshown in Figure 2, the QASL first as-
signs BIO labels (i.e., Begin (B), Inside (I), or
Other (O)) (Ramshaw and Marcus, 1999) to
the passage based on a given query/type ( “A
B #,” Admission Date). According to the
assigned BIO labels, the NE-date (” % /L 2019
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¥ 10 A 5 A7, Oct. 5, 2019) is thus identi-
fied. Afterward, the QASL conducts the same
procedure based on another query/type ( 2
# B #1,” Emergency Date), and thus identify
the same entity with a different type. Last,
by conducting the above procedure, all NEs in
the passage could be extracted whether they
are overlapped or not.

The modification of the span selection strat-
egy has two advantages: (1) BIO labels implic-
itly tell models the start and end positions of
entities and contain rich information among
tokens (Wang et al., 2020b) for models. (2)
BIO tagging scheme is simple and effective
methods to select multiple spans for QA (Se-
gal et al., 2020). It can do well no matter
models know how many NEs exist in advance
according to questions.

In summary, the contributions of this paper
are:

e We propose a novel QA-based sequence
labeling (QASL) approach to naturally
deal with both flat and nested NER.

e We present the first work to handle
the Chinese electronic health records
(CEHRs) dataset for both flat and nested
NER (To the best of our knowledge).

e We conduct the experiments on a CEHR
dataset to show that the proposed QASL
is effective.

2 QA-based Sequence Labeling

2.1 Task Formulation

Given a passage S = {si,s2,...,8,}, where
n is the length of the passage, find all the
named entities in S with various entity types
(according to a pre-specified type-set) E
{e1,€2,...,em}, where m is the number of en-
tity types. In the framework of QQA-based Se-
quence Labeling (QASL), for each entity type
e € FE, it is firstly mapped into a predefined
query qe = {q1, q2, ..., qx }, where k is the length
of query. Then, for each ¢. € @, we find
the corresponding named entities (with the
same specified type) in S by simply labeling
s;jasl; € L ={B,I,0} according to the BIO
scheme (Ramshaw and Marcus, 1999). The as-
sociated nested named entities are then formed
by overlapping the NER result of each type.
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The patient was admitted to hospital and sent to the emergency on Oct. 5, 2019. Then, he was discharged on Oct. 7. He went to i
hospital for follow-up treatment on Oct. 16 and Oct. 21.

Figure 2: An overview of proposed Question Answering Sequence Labeling (QASL) framework.

2.2 Proposed QASL Model
2.2.1 Query Generation

Since the question could encode prior knowl-
edge about entity types and significantly in-
fluence the final results, it is important to
generate appropriate questions. To gener-
ate the benchmark questions, Li et al. (Li
et al., 2020) adopted the Annotation Guide-
line Notes (e.g., Find locations in the text, in-
cluding non-geographical locations, mountain
ranges, and bodies of water.) to construct
the required training data. They achieved the
highest Fl-score on English OntoNotes 5.0.
However, it would not only require an ex-
pensive cost to generate the benchmark ques-
tions following the guidelines manually, but
the questions generated by the guidelines also
remain unknown to utilize for another dataset.
To avoid those drawbacks mentioned above,
we let the questions be keywords (i.e., Chinese
NE-Types) in this study, as shown in Table
1. The questions can be easily transformed
into the name of entity types, and they can
be utilized by different datasets. Therefore, it
does not require manual generation, which is
expensive, and it is easily generalized by dif-
ferent datasets.

2.2.2 Input Layer

In this paper, we use BERT with whole word
masking (BERT-wwm) as the backbone model
(Cui et al., 2019). Follow the typical setup

20

(Li et al., 2020), the question ¢. and the pas-
sage S are concatenated with the special to-
kens [CLS] and [SEP], as shown in Figure
2. Then, word embeddings, segmentation em-
beddings, and positional embeddings for each
token are summed together to generate final
input representations.

2.2.3 BERT Encoder

The adopted BERT encoder consists of 12
Transformer blocks and 12 self-attention heads
by taking the input representation from the in-
put layer and then outputting a context rep-
resentation. Different from the original BERT
(Devlin et al., 2019), BERT-wwm focuses on
Chinese language by pre-training with whole
word masking (Cui et al., 2019). We only use
the passage representations C' € R™ % from
the last hidden layer of BERT-wwm, where d;
is the dimension with a default value 768 and
n is the length of the passage.

2.2.4 Output Layer

This study tests two different structures of
output layers: a softmax classifier and a
BiLSTM-CRF layer. First, the softmax classi-
fier is that the model predicts the conditional
probability distributions P overall categorical
labels L = {B,I,0}, given the passage repre-
sentations C' from BERT encoder:

P(L|C;0) = softmaz(C - V) € R™3 (1)



The 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
Taoyuan, Taiwan, October 15-16, 2021. The Association for Computational Linguistics and Chinese Language Processing

Abb. Entity Type Abb. Entity Type Abb. Entity Type

ADD  AdmissionDate OPD OutpatientDate RTD RadiotherapyDate
DCD  DischargeDate OPDS  OutpatientDateStart RTDS  RadiotherapyDateStart
1CD InIntensiveCareDate OPDE  OutpatientDateEnd RTDE  RadiotherapyDateEnd
OCD  OutlntensiveCareDate OpPC OutpatientCount RTC RadiotherapyCount
IBD InBurnWaeDate EMD EmergencyDate CTD ChemotherapyDate
OBD  OutBurnWaeDate EMDS  EmergencyDateStart CTDS  ChemotherapyDateStart
IND InNegativePressureDate EMDE EmergencyDateEnd CTDE  ChemotherapyDateEnd
OND  OutNegativePressureDate EMC EmergencyCount CTC ChemotherapyCount
SGN  SurgeryName SGD SurgeryDate SGDE  SurgeryDateEnd

DTN  Drug/TreatmentName SGDS SurgeryDateStart SGC SurgeryCount

DPN  DepartmentName

Table 1: The names and abbreviation of entity types.

where 0 is the set of all trainable parameters
in the model. V € R4*3 is also the trainable
parameter. On the other hand, the BiLSTM-
CRF first outputs the concatenated hidden
representations H € R"*% given the passage
representations C' from BERT encoder, where
ds is also the dimension with a value of 768.
For each h; € H and ¢; € C:

= [his ) (2)

1,9)

h = LSTM(c;, Ti— (3)

(_

hi = LSTM(c;, oi—1;9) (4)

where 7, ? are the trainable parameters in
BIiLSTM. Besides, the CRF layer (Lafferty
et al., 2001) defines the probability of the pre-
dicted BIO label sequence Y given the input
label sequence X transformed from a given
passage S:

escore(X,Y)

(5)
2y
The score (Lample et al., 2016) is defined as

the sum of transitions and emissions from the

BiLSTM:

P(Y|X;0) = gscore(X,Y)

score(X,Y)

Z Try, i + Z Em,

where T'r is a transition matrix in which
T'ry, yi+1 is the transition parameter from the
label y; to the y;+1. Em is an emission matrix
where E'm,, represents the scores of the label
y; at the i-th position.

Em=H-U ¢ R (7)
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where U € R%*3 ig the trainable parameters.
At test time in the structure of the softmax

classifier, we take the labels with the largest

probability as the predicted results.

Y* = argmaz(P(L|C;0)) € R™  (8)

At test time in the structure of BiLSTM-
CRF, we take the label sequence with the
largest score as the predicted results by ap-
plying the Viterbi algorithm (Viterbi, 1967).

c Rnxl

Y* = argmaz(score(X,Y")) 9)

3 Experiments

3.1 Dataset

In this paper, all the experiments are con-
ducted on our Chinese electronic health
records (CEHR) dataset.! The CEHR dataset
is annotated with SQuAD-like style by several
well-trained annotators. It is a set of (Pas-
sage, Queries, Answers). There are 31 entity
types in the CEHR dataset, as shown in Ta-
ble 1. We extracted that dataset with only
flat NEs from the original CEHR, dataset as
a flat NER dataset, and we took the origi-
nal CEHR as a nested NER dataset. In the
flat NER dataset, the number of passages is
4,328, and the average length of these passages
is 70.43. The number of flat NE in these pas-
sages is 21,616. On the other hand, in the
nested NER dataset, the number of passages
is 7,907, and the average length of these pas-
sages is 76.08. The number of flat and nested
NEs in these passages is 43,577 and 6,978, re-
spectively. Eventually, the flat NER dataset
and nested NER dataset are split for training,

development, and test set with the ratio 8:1:1.

!The personal privacy information of all patients in
CEHR has been de-identified during the labeling stage.
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Model P R F1 Model P R F1

Bert 95.45 96.33 95.89 Bert 89.39 78.83 83.78
-BiLSTM-CRF 95.37 96.46 95.91 -BiLSTM-CRF 89.02 78.74 83.56
Bert-QA 94.24 95.23 94.73 Bert-QA 87.67 92.26 89.90
-BiLSTM-CRF 95.06 95.98 95.52 -BiLSTM-CRF 91.01 90.40 90.70

Table 2: Model Performance on flat NER.

3.2 Baselines and Parameter Settings

In this study, we propose and test two differ-
ent kinds of QASL-based models: BERT-QA
and BERT-QA-BiLSTM-CRF. For compari-
son, we consider BERT and BERT-BiLSTM-
CRF as two baselines, which treat NER as a
traditional sequence labeling problem. For the
parameter settings of all models, the max se-
quence length is 512. The batch size is 8. The
learning rate is 5 x 107°. The number of lay-
ers, neurons, and dropout ratio in BiLSTM is
1, 384, and 0.5, respectively. The epoch is 40,
and the model with the best Fl-score in the
development set will be the adopted system.

4 Results and Discussion

Table 2 and Table 3 show the experimen-
tal results on flat NER and nested NER, re-
spectively. As shown in Table 2, for flat
NER, QASL-based models are slightly inferior
to the baseline models by -0.39% (in terms
of Fl-score) for BERT-QA (vs. BERT) and
by -1.16% for BERT-QA-BIiLSTM-CRF (vs.
BERT-BiLSTM-CRF). The slight decrease in
performance of QASL-based models results
from two main reasons: (1) QASL-based mod-
els are primarily designed to solve nested NER.
Thus, QASL-based models are much more
complicated than SL-based models, so that
they are overqualified for flat NER that is far
simpler than nested NER. (2) searching spaces
of QASL-based models are much larger than
that of SL-based models. QASL-based mod-
els are designed to search for various possible
NEs without knowing how many they are in
given passages in advance. In contrast, SL-
based models directly assume that each possi-
ble entity span only has one entity type. The
above two reasons cause the slight decrease of
Fl-score of QASL-based models compared to
SL-based models.

As shown in Table 3, for nested NER, we ob-
served that QASL-based models significantly

22

Table 3: Model Performance on nested NER.

outperformed baseline models by +6.12% and
+7.14% for BERT-QA (vs. BERT) BERTQA-
BiLSTM-CRF (vs. BERT-BIiLSTM-CRF), re-
spectively. The substantial improvement of
Fl-scores is mainly from the boosted recall
scores, attributed to the framework of QASL,
which successfully detects nested NEs in the
given queries and passages. Additionally,
BERT-QA-BiLSTM-CRF achieves a 90.70%
Fl-score, which is +0.80% over that of BERT-
QA. This is primarily because the BiLSTM-
CRF structure makes QASL-based models as-
sign more reasonable labels to tokens, reducing
impossible outputs, thus leading to a higher
F1-score.

5 Related Work

5.1 Named Entity Recognition

Most traditional feature-based approaches
treated NER as a sequence labeling problem,
thereby adopting Conditional Random Field
(CRF) to resolve the NER task (Lafferty et al.,
2001; Ratinov and Roth, 2009). Recently,
deep learning techniques have achieved good
results on NER tasks, such as LSTM (Ham-
merton, 2003), CNN-CRF (Collobert et al.,
2011), BiILSTM-CRF (Huang et al., 2015), and
BiLSTM-CNN-CRF (Ma and Hovy, 2016).
Besides, transfer learning has been applied
to language models to improve model perfor-
mance, such as ELMo (Peters et al., 2018), and
BERT (Devlin et al., 2019). However, nested
named entities cannot be recognized by the
above approaches.

5.2 Nested Named Entity Recognition

Stack-based approaches have been used to ex-
tract entities from inner to outer or outer to
inner, can handle the nested NER task. Alex
et al. (Alex et al., 2007) proposed two multi-
layers CRF models to recognize nested named
entities; however, this approach cannot handle
nested entities of the same entity type. Ju et
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al. first (Ju et al., 2018) introduced a layered
sequence labeling model to recognize inner-
most entities and then feed them into the next
layer to extract outer entities. This method
can deal with nested entities of the same type
but suffers from error propagation among lay-
ers. Wang et al. (Wang et al., 2020a) proposed
Pyramid, a novel layered model consisting of
a stack of interconnected layers, to recognize
entities without layer disorientation and error
propagation.

Graph-based approaches have also been pro-
posed to solve the nested NER task. Finkel
and Manning (Finkel and Manning, 2009) used
a CRF-based model to detect nested named
entities with the assistance of constituency
parse trees. Lu and Roth (Lu and Roth,
2015) introduced a hypergraph allowing edges
to connect to multiple nodes to recognize over-
lapping entities. Wang and Lu (Wang and Lu,
2018) improved the spurious structures of the
hypergraph by proposing neural segmental hy-
pergraphs. Katiyar and Cardie (Katiyar and
Cardie, 2018) used a LSTM model to learn a
hypergraph representation for nested named
entities. However, the hypergraph structure
would become too complicated to be optimized
if there are too many entities in the input sen-
tences. Luo et al. (Luo and Zhao, 2020) pro-
posed a novel bipartite flat graph network to
recognize outermost entities and then use a
graph module to extract inner ones.

Region-based approaches have utilized a
pipeline framework with an end-to-end train-
ing paradigm to resolve the nested NER task.
Specifically, these approaches first extract pos-
sible spans from the input sentence and then
classify their entity types. Xu et al. (Xu et al.,
2017) examined all possible spans (up to a cer-
tain length) of the input sentence and then fed
their representation into a feed-forward neu-
ral network to classify entity types. Fisher
and Vlachos 2019 (Fisher and Vlachos, 2019)
first merged tokens into entities through real-
valued predictions and then labeled them the
corresponding entity types. Xia et al., 2019
(Xia et al., 2019) detected all possible spans
through a detector and classified entities into
pre-defined categories. Zheng et al., 2019
(Zheng et al., 2019) applied a single-layer se-
quence labeling model to identify the bound-
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aries of potential entities using context in-
formation and then classify these boundary-
aware regions into their entity type or non-
entity. Wang et al., 2020 (Wang et al., 2020b)
developed a head-tail detector and a token in-
teraction tagger to identify nested named en-
tities with appropriate model complexity.

Some researchers have attempted to trans-
form NLP tasks into QA tasks, such as relation
extraction (Levy et al., 2017; Li et al., 2019),
summarization (McCann et al., 2018), named
entity recognition (Li et al., 2020), and senti-
ment analysis (Yin et al., 2020). Li et al., 2020
(Liet al., 2020) treated NER as a QA problem.
Each entity (y) and its entity type (x) can be
parameterized as a question (g(x)) whose an-
swer is (y). According to questions, models
can parallelly identify nested named entities
by using different questions. In addition, they
can naturally solve flat NER as well.

6 Conclusion

This paper proposes a novel QA-based se-
quence labeling (QASL) approach to solve
both flat and nested NER. The proposed
framework comes with three key advantages:
(1) It can recognize both flat and nested en-
tities with a single model; (2) It combines
QA and SL framework to solve NER and
the problem of multiple spans selection; (3)
The queries, encoding significant prior knowl-
edge about entity types, are constructed with-
out manual cost and are independent. The
conducted experiments on Chinese electronic
health records (CEHRs) have clearly shown
the effectiveness of our proposed framework.
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