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Abstract

Current neural math solvers learn to incor-
porate commonsense or domain knowledge
by utilizing pre-specified constants or for-
mulas. However, as these constants and
formulas are mainly human-specified, the
generalizability of the solvers is limited. In
this paper, we propose to explicitly retrieve
the required knowledge from math problem
datasets. In this way, we can determinedly
characterize the required knowledge and
improve the explainability of solvers. Our
two algorithms take the problem text and
the solution equations as input. Then,
they try to deduce the required common-
sense and domain knowledge by integrat-
ing information from both the problem
text and equation. To show the effective-
ness of our algorithms, we construct two
math datasets and prove by experiments
that our algorithms can retrieve the re-
quired knowledge for problem-solving.

Keywords: Math word problem solving,
knowledge retrieval

1 Introduction

Math word problem (MWP) solving is a spe-
cial subtask of question answering in which
machine solvers need natural language under-
standing and numerical reasoning capability to
solve a given problem. Traditionally, feature-
based solvers (Kushman et al., 2014; Hosseini
et al., 2014) learn to apply the corresponding
operations with the help of salient features or
indicators (e.g., "buy A, B and C'in total” may
indicates a series of addition).

Benefiting from the availability of large scale
datasets, neural solvers have emerged. They
utilize encoder-decoder architectures to en-
code the problem text into hidden represen-
tations and learn to decode them into equa-
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tion strings or operation trees (Wang et al.,
2017; Amini et al., 2019; Xie and Sun, 2019;
Zhang et al., 2020). During the decoding
stage, pre-specified constants and formulas are
either added to the vocabulary or introduced
by some special mechanisms so that the solver
can generate equations that carry mathemat-
ical knowledge. In most cases, the constants
or formulas are limited and human-specified,
impeding the generalizability of the solvers to
different types of problems (e.g., commonsense
problems, geometry problems, etc).

In this paper, we propose to alleviate this
issue by automatically retrieving the required
knowledge from MWP datasets. To do so, our
algorithms try to identify numbers and their
associated concepts or units in the text
(e.g., in "the length is 5 m”, length is the con-
cept and m is the unit) and then deduce the re-
quired knowledge by aggregating information
from solution equations. For example, if there
are two different units in the problem (e.g.,
"the length is 5 m and width is 50 ¢m”), then
our algorithms will try to find the ratio that
possibly bridges these two units. In this way,
our algorithms may be able to retrieve the unit
conversion knowledge that there is a conver-
sion ratio 100 between "cm” and "m”. Techni-
cally, this task differs from standard problem
solving tasks in which we aim to characterize
all the required knowledge in a dataset rather
than predicting the required knowledge for a
single problem.

To verify our algorithms, we construct two
middle-sized MWP datasets and annotate
each problem with the associated knowledge.
Experimental results show the effectiveness of
our algorithms that they can retrieve 69.8%
and 62.5% of the required knowledge for these
two datasets, respectively.
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Type Example

Example Problem

Object property A chicken has two feet

There are 15 chickens and 10 rabbits in the

(commonsense) and a rabbit has four. cage. How many animal feet are in there?
(animal_feet = 15 x 2+ 10 x 4)

Hyper/hyponym A daisy or rose is a Mary bought 3 daisies, 2 roses, and 5

(commonsense) kind of flower; a flower flower pots from a flower store. How many

pot is not a flower.

flowers does she have?

Unit conversion One kilometer equals

Sam just ran a race of 3400 meters long.

(commonsense) 1000 meters. How many kilometers was the race?
Geometry Formulas like "area = The length of a rectangular plot is thrice
(domain) length xbreadth”. its breadth. If the area is 972 sq. m, then

what is the perimeter of the plot?

Table 1: Commonly used commonsense and domain knowledge in MWP solving

2 External Knowledge in MWP
Solving

As with other QA tasks, solving MWPs usu-
ally requires external knowledge that is be-
yond the given information in the problem. Ta-
ble 1 lists the common types of commonsense
and domain knowledge used in MWP solving
with prototypical examples.

Commonsense Knowledge is the set of
prior knowledge that solvers are presumed
to hold when dealing with problems concern-
ing some real world scenarios. For example,
as shown in Table 1, object-property or hy-
per/hyponym knowledge is critically needed to
perform arithmetic operations between differ-
ent objects. To calculate the number of flow-
ers, a solver needs to know ”daisy and rose are
hyponyms of flower”. As another example, the
knowledge ”a chicken has two feet; a rabbit
has four” is required to calculate the number
of animal feet.

Domain Knowledge On the other hand,
domain knowledge also plays an essential role
in MWP solving. Ranging from geometry
and probability to combinations and permu-
tations, a solver needs to apply some partic-
ular domain knowledge to solve the MWPs.
In most cases, the domain knowledge is in the
form of formulas. For example, a solver ap-
plies "the area formula for rectangle” to solve
the geometry problem in Table 1. As another
example, a solver may apply the conditional
probability formula to solve a probability prob-
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lem. Therefore, in this work we target on the
domain knowledge that can be represented as
formulas.

3 Retrieving Commonsense
Knowledge

Our first step is to retrieve from MWP
datasets the commonsense knowledge for prob-
lem solving.

3.1 Commonsense Knowledge as
Mapping Ratios

Typically, commonsense knowledge concerns
the introduction of extra numerical informa-
tion, most of which can be regarded as spe-
cific ratios between concepts. For example,
in the first MWP in Table 1, a solver intro-
duces the object-property knowledge to calcu-
late the total number of animal feet, where ”a
chicken has two feet” and ”a rabbit has four
feet”. In fact, ”2” and ”4” serve as the associ-
ated mapping ratios that convert the concepts
of ”chicken” and "rabbit” to "animal feet”.

Likewise, the knowledge of hypernym and
hyponym can be considered as a 1-to-1 ratio
that maps a hyponym to its hypernym or vice
versa. On the other hand, the unit-conversion
knowledge, obviously, can be represented as a
mapping ratio between two units.

3.2 Identifying Mapping Ratios in
Equations

To identify the ratios, our algorithm first ex-
tracts numbers in the text, and then creates
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mappings that map numbers to their corre-
sponding concepts or units, as shown in the
first step in Figure 1. For example, the noun
"pennies” is captured as the unit for the num-
ber 79”. Specifically, we use StanfordNLP
toolkit (Manning et al., 2014) for dependency
parsing in order to locate the numbers and
their head nouns (concepts/units).

On the other hand, for variables, our algo-
rithm uses five simple semantic patterns to
capture the problem target as the correspond-
ing concept or unit, as shown in Table 2. For
example, we capture "cent” from "how many
cents ...” as the unit for variable "x”. In our
pilot study, this heuristic handles about 90%
of the cases.

7

Pattern Rule

The goal object is A
(and B)

We take the first length
unit in the problem as
the goal unit.

how many A (and
B) ...

(what is / find) the
(length / distance)

(what is the / find
the / how much)
time ...

We take the first time
unit as the goal unit.

We take the first mass
unit as the goal unit.

how much weight

how much ... The default unit is dol-
lar.
Table 2: Patterns for capturing the goal con-

cept/unit of the variables

Next, the algorithm deduces the mapping ra-
tios using these number-to-concept mappings.
Here we use basic arithmetic principles for
ratio deduction. For an equation to make
sense, every term must correspond to the same
concept/unit. As in the equation "9 + 4 X
54 10 x 10 = z” in Figure 1, 79”7, 74x5”,
710x10”, and ”z” should share the same con-
cept. Based on the fact that ”9” and ”4” corre-
sponds to "penny” and "nickel”, respectively,
we can thus infer that ”5” serves as the map-
ping ratio that maps "nickel” to "penny”. Fig-
ure 1 illustrates the overall deduction flow for
a single MWP.

Finally, the algorithm collects the ratio can-
didates for the whole dataset. It calculates the
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Problem: | have 9 pennies, 4 nickels, and 10
dimes. How many cents do | have?

9+4*5+10*10=x

l Create mapping

9 — penny, 4 — nickel, 10 - dime, x — cent

l Apply mapping

penny + 5*nickel + dime*dime = cent

Equation:

Wi Y s e
{ { penny } { Sxnickel ; i dime*2 ; L

nickel = 5 penny

nickel = cent

nickel = 5 dime”®2
(a wrong one)

Figure 1: Flow of commonsense knowledge re-

trieval

occurrence frequency for each candidate and
then removes the ones whose counts are less
than a pre-specified threshold A, as a way to
filter wrongly generated ratios (like the one in
red in Figure 1).

4 Retrieving Domain Knowledge

Our next target is to retrieve the domain
knowledge involved in MWP solving. We con-
sider the types of domain knowledge used in
the form of formulas, and assume they (at least
the common ones) appear in more than one
problem in a dataset so that our algorithm can
discover them by finding common patterns.

4.1 Formulas and Concept Mappings

Generally, a solver uses a formula by substi-
tuting values (numbers) into it and then gen-
erating corresponding equations. As a result,
the generated equations more or less keep the
skeleton of the source formula, as shown in Fig-
ure 2. Thus, our goal is to retrieve the underly-
ing formula from equations by considering the
mapping between numbers and domain con-
cepts.

To find the mapping, our algorithm per-
forms entity recognition and relation predic-
tion to identify domain concepts, numbers,
and their mapping relationships, respectively.
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Find the area of the rectangle of
length 15 cm and breadth 6 cm.

Mapping: length x width = area
15 < length
6 <> width i

X <> area

15x6=x

Figure 2: Simple example showing the idea that
we have a mapping in mind when using formulas

As different domains may come with different
domain language in their problem description,
here we use neural models (which are more gen-
eralizable than semantic rules) for this task.
Our pilot study showed that little labeled data
is enough to train the models. Specifically, we
employ two intuitive Bert-based models for en-
tity recognition (Devlin et al., 2018) and rela-
tion prediction (Shi and Lin, 2019), and label a
small amount of data to finetune both models.

Here we describe the entity and relation
types as well as the model architectures we
use in details. In this work, we consider geom-
etry as the sample domain knowledge, and we
identify four important entity types that are
related to geometry domain: object, attribute,
value, and target. Table 3 gives a detailed de-
scription for each entity. We use the architec-
ture in Figure 3 to discern these entities in the
problem text. Specifically, the model is based
on Bert (Devlin et al., 2018) and fine-tuned on
our MWP entity data using 10 tagging.

Next, we seek to predict relationships be-
tween these entities. The relation types that
we use are: attribute-of, value-of, and none,
as described in Table 4. We adopt the frame-
work of (Shi and Lin, 2019) for our model, as
shown in Figure 4. In this framework, a special
format is used for the input, in which entity
mentions are replaced with entity-type masks
in their original position and then moved to
the end of the input. Such arrangement helps

[cLs]

r
CJ
r

OBJECT OBJECT none none none ATTRIBUTE

L LLLL.

Bert

t

@

... rectangular plot

softmax
classifier
layer

[CLS] is thrice its breadth .... [SEP]

Figure 3: Architecture of entity recognition model
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Description

A geometric shape or
real-world object, such as
"circle” or ”cylindrical
container”.

Attribute of the objects,
such as "length”, "width”.
Number or value of

a quantity, such as "two”
triangles and ”5” cm.

Entity types

object

attribute

value

The goal of the problem,
such as ”"volume” in
"what is the volume of X”.

target

Table 3: Entity types and their descriptions

attribute-of

E:j softmax classifier layer

[

[CLS] The [ATTR] of a [OBJ] is

)

Figure 4: Architecture of relation extraction
model. The original sentence "The length of a rect-
angular plot ...” becomes "The [ATTR] of a [OBJ]

. 7 and both entities are moved to the end of the
input.

Bert

[SEP] length [SEP] rectangular plot [SEP]

inform the model the two entities to focus on.
Specifically, the model takes the problem text
and two entities as input and is fine-tuned to
predict their corresponding relation. Finally,
we construct a concept mapping between an
attribute and a number if there is a ”"value-of”
relationship between them.

Types Description

Relation between object and
attribute, such as ”circle” and
“radius” in the description
“the radius of the circle”.

attribute-of

Relation between value and

value-of attribute, such as "radius” and
74” in "the radius is 4 cm”.
none None of the relations above.

Table 4: Relation types and their descriptions

4.2 Formula Candidate Generation

As shown in Section 3, our algorithm uses the
mappings generated by entity recognition and
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Problem: A rectangle is 25 by 16 cm. If a triangle with
base 10 cm has the same area as the
rectangle, what is its height?

Equations: 25*16=x, x/10%2=y
o |

l Create mapping |
- @@ -

25 - p1, 16 — p2, x — area, 10 — base, y — height

l ‘Generate candidates ]

(1) p1*p2 = area
(2) base * hegith/2 = area

Figure 5: Flow of domain knowledge retrieval. We
use i, to indicate that the concept of the number
is unknown.

relation extraction models to generate formula
candidates from the equations. Then, it splits
long candidates into shorter ones by addition
and subtraction operators, and normalize the
resulted candidates in order to reduce the de-
gree of freedom. After that, the algorithm
gathers all formula candidates for each MWP
in the dataset and calculates the occurrence
frequency of these candidates. Finally, it re-
moves the candidates whose counts are less
than a pre-specified threshold A.

5 UnitQA & GeometryQA

To check the effectiveness of our methodology,
we construct two middle-sized MWP datasets:
UnitQA and GeometryQA. The first dataset
contains 1128 MWPs that require the com-
monsense unit-conversion knowledge, while
the second dataset contains 675 MWPs that
require geometric domain knowledge.

Problems of both datasets are collected from
two large-scale datasets: Dolphin18K (Huang
et al., 2016) and MathQA (Amini et al., 2019).
We collect these MWPs using some domain-
relevant keywords. Then, we manually anno-
tate the required external knowledge (if any)
for each problem, as shown in Figure 6. We
select only a subset of problems from the large
datasets because we would like to focus on ba-
sic problems first. The more advanced ones
are left for future work.

Table 5 shows the statistics of UnitQA.
It contains a total of 1128 MWPs, 305 out
of which require unit-conversion knowledge
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Ronnie had a board that was 5 meters long, he
sawed off 80 centimeters to use on his garden how
much of the board was left?

Answer: 420
Equations:  5*100-80 = x
Knowledge: (length, 100 * centimeter = meter)

A rectangle is 25 by 16 cm. If a triangle with base 10 cm
has the same area as the rectangle, what is its height?

Answer: 80
Equations: 25*16=x, x/10* 2=y
Knowledge: (rectangle, length * breadth = area)

(triangle, base * height / 2 = area)

Figure 6: Sample MWPs from UnitQA (above)
and GeometryQA (below). The annotation is in
the form of ”(type, knowledge)”.

across 43 different types, including the con-
version knowledge between units of money,
time, length and so on. To test the capa-
bility for retrieving other types of common-
sense knowledge, we also heuristically select
25 problems that require object-property or
hypernym /hyponym knowledge. Due to
data sparsity, these problems are not large
enough to form a dataset, yet they should help
demonstrate the effectiveness of our algorithm
(details described in Section 6.2).

Table 6 shows the statistics of GeometryQA.
It contains 675 MWPs, 570 out of which re-
quire 40 different formulas for 18 different geo-
metric objects, including circle, rectangle, and
so on. In addition, we annotate an extra
193/46 geometric MWPs with corresponding
entities/relationships to train the two different
BERT models. We found that a small amount
of annotated MWPs are enough to make accu-
rate entity and relation predictions.

UnitQA

Total problems 1128
Knowledge required 305
Total knowledge types 43

Types of unit conversion: money(34.9%),
length(32.6%), time(14%), mass(11.6%),
volume(4.7%), and area(2.3%).

Table 5: Dataset statistics of UnitQA
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GeometryQA

Total problems 675

Knowledge required 570 (84% of 675)
Total formula types 40

There are 40 types of geometric formu-
las for 18 objects, including the area,
perimeter, and volume formulas for
square, circle, cubic, sphere, and so on.

Table 6: Dataset statistics of GeometryQA

6 Experimental Results

6.1 Experimental Settings

We use exact the same setting for both models
and implement them based on HuggingFace!.
The dropout rate is set to 0.1. The parame-
ters are optimized by Adam (Kingma and Ba,
2014), with learning rate le-4, batch size 50,
and a max sequence length for the input 68.

6.2 Retrieving Commonsense
Knowledge

We first conduct experiment on UnitQA to re-
trieve the commonsense unit-conversion knowl-
edge. We test with threshold A = 0,2,5 (for
larger dataset, the A should be adjusted ac-
cordingly.) Table 7 shows the overall perfor-
mance of the experiment. When A\ = 0, where
no candidate is eliminated for insufficient fre-
quency, it shows an upper bound of the recall
(79%). As expected, when the threshold in-
creases, it causes a decrease in recall and an
increase in precision. We found that for A = 2,
about 67% of the unretrieved cases are due
to concept identification errors, where the con-
cept for numbers are wrongly identified. This
suggests the limit of our rule-based deduction
strategy.

Due to data sparsity, we have not collected
enough problems that require object-property
or hyper/hyponym knowledge. Yet, in our
small-scale experiment (about 25 problems),
our algorithm can identify about 68% of the re-
quired knowledge and retrieve something like
“chicken < 2 feet” , “rabbit <> 4 feet” , and
" bicycle <> 2 wheels” for the first and second
types of knowledge in Table 1.

"https://github.com/huggingface/transformers
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Recall

79.1% (34/43)
69.8% (30/43)
20.9% (9/43)

Precision

47.8% (33/69)
90.9% (30/33)
100% (9/9)

> > >
[

ot N O

Table 7: Precision and recall for retrieving the unit-
conversion knowledge in UnitQA with A =0,2,5

6.3 Retrieving Domain Knowledge

In this experiment, we test the effectiveness of
our algorithm for retrieving domain knowledge
on Geaometry@QA. We test with A = 0,2, 5. Ta-
ble 8 presents the overall knowledge retrieval
result. When A = 0 , where no candidate is
eliminated for insufficient frequency, it shows
an upper bound of recall (70%). As expected,
when the threshold increases, it causes a de-
crease in recall and an increase in precision.
We conduct error analysis on A = 2 and find
that about 75% unretrieved formulas are also
caused by concept identification errors. That
is, if an equation contains several variables,
our algorithm cannot always find the corre-
sponding concept for each variable and thus
unable to retrieve the correct formula.

Recall

70% (28/40)
62.5% (25/40)
20% (8/40)

Precision

71.8% (28/39)
92.6% (25/27)
80% (8/10)

> > >
I

ot N O

Table 8: Precision and recall for knowledge re-
trieval on GeometryQA with A =0,2,5

7 Conclusion

In this paper, we introduced a task of re-
trieving the required knowledge for math word
problem datasets. By explicitly identifying the
required knowledge, we can characterize the
datasets and assist current neural solvers. We
then proposed two algorithms which retrieves
the commonsense and domain knowledge, re-
spectively, and constructed two datasets with
each MWP annotated with the required knowl-
edge. Experimental results demonstrated the
effectiveness of our algorithms.
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