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Abstract

Recently, impressive performance on vari-
ous natural language understanding tasks has
been achieved by explicitly incorporating syn-
tax and semantic information into pre-trained
models, such as BERT and RoBERTa. How-
ever, this approach depends on problem-
specific fine-tuning, and as widely noted,
BERT-like models exhibit weak performance,
and are inefficient, when applied to unsuper-
vised similarity comparison tasks. Sentence-
BERT (SBERT) has been proposed as a
general-purpose sentence embedding method,
suited to both similarity comparison and
downstream tasks. In this work, we show
that by incorporating structural information
into SBERT, the resulting model outperforms
SBERT and previous general sentence en-
coders on unsupervised semantic textual simi-
larity (STS) datasets and transfer classification
tasks.

1 Introduction

Pre-trained models like BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) have demonstrated
promising results across a variety of downstream
NLP tasks. Though BERT-like models have been
shown to capture hidden syntax structures (Clark
et al., 2019; Hewitt and Manning, 2019; Jawahar
et al., 2019), recent works have achieved perfor-
mance improvements on various natural language
understanding (NLU) tasks through the use of a
graph network that captures syntax and seman-
tics information. Xu and Yang (2019) demon-
strate the value of syntax information for pronoun
resolution tasks, using Relational Graph Convo-
lutional Networks (RGCNs) (Schlichtkrull et al.,
2018) to incorporate syntactic dependency graphs.
Wu et al. (2021) argue that semantics has not been
brought to the surface of pre-trained models and
propose to introduce semantic label information
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into RoBERTa via RGCNs. Similar ideas have
been applied to information extraction (Santosh
et al., 2020), sentence-pair classification (Liu et al.,
2020) and sentiment analysis (Wang et al., 2020;
Yin et al., 2020) tasks. Though problem-specific
fine-tuning is required, these improvements sug-
gest that structural supervision is useful, and that
RGCNss serve as an effective structure encoder.
BERT can also be used as a general sentence
encoder, either by using the CLS token (the first
token of BERT output) or applying pooling over
its outputs. However, this fails to produce sentence
embeddings that can be used effectively for similar-
ity comparison. Furthermore, this method of using
BERT for similarity comparison is extremely inef-
ficient, requiring sentence pairs to be concatenated
and passed to BERT for every possible comparison.
In response, Sentence-BERT (SBERT) has been
proposed to alleviate this by fine-tuning BERT on
natural language inference (NLI) datasets using a
siamese structure (Reimers and Gurevych, 2019).
General-purpose sentence embeddings are gener-
ated which outperform previous sentence encoders
on both similarity comparison and transfer tasks.
In this paper, we show that it is possible to im-
prove the SBERT sentence encoder through the
use of explicit syntactic or semantic structure. In-
spired by SBERT’s success in producing general
sentence representations and previous efforts on
introducing structural information into pre-trained
models, we propose a model that combines the
two by training a BERT-RGCN model in a siamese
structure. Under specific structural supervision,
the proposed model is able to produce structure-
aware, general-purpose sentence embeddings. Our
empirical results show that it outperforms SBERT
and previous sentence encoders on unsupervised
similarity comparison and transfer classification
tasks. Furthermore, we find that the produced sen-
tence representation generalises better especially
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on fine-grained classification tasks.

2 Related Work

Sentence encoders have been studied extensively
in years. Skip-Thought (Kiros et al., 2015) has
been trained to predict its surrounding sentences by
using current sentence in a self-supervised fashion.
Hill et al. (2016) proposed a sequential denoising
autoencoder (SDAE) to reconstruct given sentence
representations. InferSent (Conneau et al., 2017),
on the other hand, used labelled NLI datasets
to train a general-purpose sentence encoder in
a BiLSTM-based siamese structure. Cer et al.
(2018) proposed the Universal Sentence Encoder
(USE) model based on transformers (Vaswani et al.,
2017), and trained it with both unsupervised tasks
and supervised NLI tasks. Inspired by InferSent,
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) produces general-purpose sentence embed-
dings by fine-tuning BERT on NLI datasets in a
siamese structure, showing improved performance
on a variety of tasks.

Hidden syntax structures in pre-trained models
have been well explored. Various probing meth-
ods have been used to investigate hidden structures
(Clark et al., 2019; Hewitt and Manning, 2019;
Jawahar et al., 2019). The impact of external struc-
tures on pre-trained models has also been ques-
tioned. Glavas$ and Vuli¢ (2021) examined the ben-
efits of incorporating universal dependencies into
pre-trained models. Dai et al. (2021) showed that
the tree induced from pre-trained models could pro-
duce competitive results compared with external
trees. However, recent improvements have still
been observed on various NLU tasks by incorporat-
ing structural information into pre-trained models.
Yin et al. (2020) proposed SentiBERT to incorpo-
rate constituency tree into BERT for sentiment anal-
ysis. Xu and Yang (2019) modelled each sentence
as a directed dependency graph by using RGCN:ss,
and achieved large improvements on pronoun reso-
lution. Zhang et al. (2020) proposed a semantics-
aware BERT model by further encoding seman-
tic information with BERT using a GRU (Chung
et al., 2014). RGCNs have also been used by Wu
et al. (2021) to introduce semantic information into
RoBERTa, and achieved consistent improvements
when fine-tuned on problem-specific datasets. Sim-
ilar efforts can be seen where researchers try to
provide syntax information via self-attention mech-
anism (Bai et al., 2021; Li et al., 2020).
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3 Model

Inspired by Reimers and Gurevych (2019), we train
our model in a siamese network to update weights
so as to produce similarity-comparable sentence
representations. The model we propose consists of
two components, as shown in Figure 1.

Softmax Classifier

_—
— 0000 0000 |
concat concat
[ R-GCN ] [ R-GCN ]
pooling T '[ pooling
7[ BERT ] [ BERT ]7
| Sentence A | | Sentence B |

Figure 1: The proposed model in siamese structure

BERT: Each sentence is first fed into the pre-
trained BERT-base model to produce both a sen-
tence representation, by applying mean-pooling,
and an original contextualised sequence-length to-
ken representation, which is used to initialise a
RGCN.

Structure Information: We use Spacy depen-
dency parser (Honnibal et al., 2020) with its middle
model to obtain dependency parse trees for all input
sentences. We also experimented with the use of
semantic graphs', since Wu et al. (2021) has shown
that semantic information benefits pre-trained mod-
els. However, we found semantic graphs to be
less effective than syntactic dependency trees when
evaluated on our development set, and as a result,
in the experiments below, we restrict our attention
to the use of syntactic dependency graphs.

RGCN: RGCNs, proposed by (Schlichtkrull
et al., 2018), can be viewed as a weighted mes-
sage passing process. At each RGCN layer, each
node’s representation will be updated by collect-
ing information from its neighbours and applying
edge-specific weighting:

Wt = ReLUWRL + 3"
reRjeNT v

1

WhL) (1)

"For semantic graphs, we use the semantic parser produced
by Che et al. (2019).



where N and W} are the neighbours of node i and
the weight of relation r € R, respectively. c; , is
the normalisation constant and normally set to be
| N/ | which is the number of neighbours under rela-
tion 7. W} is the self-loop weight. In our case, each
sentence is first parsed into a dependency tree, then
modelled as a labelled directed graph by an RGCN,
where nodes are words and edges are dependency
relations. Following Schlichtkrull et al. (2018),
we allow information to flow in both directions
(from head to dependent and from dependent to
head). Following Wu et al. (2021), we pass BERT
output through an embedding projection which is
made of an affine transformation and ReLLU non-
linearity, then use the transformed representations
to initialise RGCN'’s node representations. Since
BERT and Spacy use different tokenisation strate-
gies, we align them by taking the first subtoken as
its word representation from BERT for each word
in the RGCN. A structure-aware sentence represen-
tation is derived from RGCN’s output by applying a
mean-pooling over its node representations. During
training, rather than using ¢;, = |N/|, we found
it best to apply the normalisation factor across re-
lation types, ¢;» = ¢; = »_, |N/|, the number of
neighbours. We use a one-layer RGCN, as we find
that a deeper network lowers the performance.

Connect BERT and RGCN: The concatenation
of BERT and RGCN’s sentence representations are
then passed through a layer normalisation layer to
form the final sentence representation. Sentence
embeddings of given sentence-pair are then inter-
acted before passing to the final classifier for train-
ing. As for the interaction, we use the concatena-
tion of sentence embedding u, v and the element-
wise difference |u — v|, which has been found to
be the best concatenation mode by Reimers and
Gurevych (2019). In this siamese structure, all pa-
rameters are shared and will be updated correspond-
ingly. We use cross-entropy loss for optimisation.

4 Experiments

We compare our model with SBERT?, InferSent’,
USE*, average GloVe vectors, and also two strate-
gies using pre-trained BERT to produce sentence
representations (BERT-CLS and BERT-AVG). For

*https://github.com/UKPLab/sentence-transformers, we
use its BERT-base-nli-mean model

3https://github.com/facebookresearch/InferSent

“https://tfhub.dev/google/universal-sentence-encoder-
large/3
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all experiments on these models, we use released
pre-trained models and scripts to produce sentence
embeddings.

4.1 Training Details

In order to produce general-purpose sentence em-
beddings, we follow SBERT in training the model
on a combination of the SNLI (Bowman et al.,
2015) and the MNLI datasets (Williams et al.,
2018). They contain 570,000 and 430, 000 sen-
tence pairs, respectively, which are annotated as
contradiction, entailment, or neutral. Our model is
trained for one epoch, and we use a batch-size of
16, the Adam optimizer with learning rate 2e—S5,
and a linear learning rate warm-up over 10% of
the training data. For RGCN layer, we use dropout
of 0.2 and hidden dimension of 512. Following
SBERT, we evaluate our model on the STS bench-
mark development set in Spearman rank correlation
for every 1, 000 steps during training, and save the
best model.

4.2 Evaluation - Unsupervised STS

First, we evaluate our model on semantic textual
similarity (STS) datasets. Here we use STS12-16
tasks (Agirre et al., 2012, 2013, 2014, 2015, 2016),
SICK-Relatedness (SICK-R) (Marelli et al., 2014)
test set and STS benchmark (STSb) (Cer et al.,
2017) test set. These datasets are labelled from
0 to 5 on semantic relatedness of sentence pairs.
We obtain these datasets via SentEval (Conneau
and Kiela, 2018). In this evaluation, we test dif-
ferent encoders’ performance without using any
task-specific training data.

Model | STSI2 | STS13 | STS14 | STS15 | STS16 | STSb | SICK-R | AVG
GloVe AVG | 5224 | 4991 [4336 |5591 [47.67 [46.00 5502 |50.02
InferSent | 4842 | 6737 |6141 |72.87 |66.12 |64.33 6295 |6335
USE 6342 | 6750 |64.16 |76.99 |73.23 |74.60 |76.67 |70.94
BERT-AVG | 3087 |59.89 |47.73 |6029 |63.73 [47.29 5822 |52.57
BERT-CLS | 21.54 | 32.11 21.28 |37.89 |44.24 |[20.29|4242 31.40
SBERT 7097 | 7653 |73.19 [79.09 |7430 [76.98 |7291 |74.85
Ours 72.51 |77.05 | 74.06 |80.90 |7620 |78.50|7358 |76.11
Table 1: Results on STS12-16, STSb and SICK-R.

Spearman rank correlation p between the cosine simi-
larity of sentence representations and the gold labels is
calculated. p x 100 is reported

The results are given in Table 1, and show that
our model outperforms SBERT on all 7 tasks,
obtaining the highest average score, and demon-
strating the benefits of including explicit syntax
structure during supervision. Both SBERT and



our model perform worse than USE on SICK-R.
However, as observed by Reimers and Gurevych
(2019), USE is trained on various datasets includ-
ing question-answering pairs, NLI, online forums
and news, which appears to be particularly suitable
to the data of SICK-R. Both BERT-AVG and BERT-
CLS perform poorly which reflects their weakness
as general-purpose sentence encoders.

4.3 Evaluation - Transfer Tasks

While the best results for BERT-like models is
achieved with problem-specific fine-tuning, an eval-
uation on transfer tasks provides a way to test
the encoder’s generalisation ability and represen-
tation quality. Following Reimers and Gurevych
(2019), we use SentEval with logistic regression
to test different encoders on 8 classification tasks:
sentiment analysis, MR (Pang and Lee, 2005);
CR (Hu and Liu, 2004); SST-5/SST-2 (Socher
et al., 2013); question-type, TREC (Li and Roth,
2002); subjectivity-objectivity, SUBJ (Pang and
Lee, 2004); phrase-level opinion polarity, MPQA
(Wiebe et al., 2005); and paraphrase detection,
MRPC (Dolan et al., 2004). These datasets are
provided by SentEval.

As shown in Table 2, the proposed model out-
performs previous encoders in general though the
difference between SBERT and our model is rel-
atively small. Our model performs significantly
worse than USE on TREC, which may be due to the
fact that USE is pre-trained on question-answering
data, which appears to be beneficial to the TREC
question-type classification task. Unlike previous
poor performance on STS datasets, BERT-CLS and
BERT-AVG produce good results on classification
tasks. This shows that the relevant information is
encoded in BERT-CLS and BERT-AVG, they just
lack the ability to produce similarity-comparable
sentence embeddings. Both SBERT and our model
perform worse than BERT-AVG and BERT-CLS
on SUBJ task, which suggests that, while gaining
on sentiment analysis tasks, fine-tuning on NLI
datasets leads to information loss on recognising
the subjectivity of a sentence.

Extraction Difficulty As we have seen, the dif-
ference between SBERT and our model in our pre-
vious transfer comparison is small. Our hypothesis
is that, since we concatenate the outputs of BERT
and RGCN, the representations produced by our
model are more complex, and that simple logistic
regression lacks the ability to extract useful infor-
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GloVe AVG | BERT-AVG | BERT-CLS | InferSent USE SBERT Ours

MPQA | 87.6420.11 | 87.84+0.08 | 88.17+0.05  90.32+0.12 | 86.52+0.09 | 89.81+0.06 | 89.75+0.12

SST-5 | 44.35+0.11 | 47.33+0.22 | 48.03+0.45 [ 44.93+1.14 | 47.67+0.06 | 48.57+0.53 [ 49.19+1.01

SST-2 | 80.02+0.24 | 85.69+0.09 | 87.21£0.17 [ 84.15+0.33 | 85.78+0.11| 87.8+0.28 |87.99+0.28

SUBJ | 91.26+0.11 | 95.29+0.05 | 95.48+0.1 | 92.47+0.1 |93.85£0.16(94.03+0.12(93.81x0.16

TREC | 80.36+2.13 | 90.24+0.8 [91.36+0.83|87.94+0.56|92.36+0.32| 86.4+0.83 | 87.8+0.68

MRPC | 72.79+0.21 | 73.43£0.77 | 71.68+0.48 | 75.33£0.37 | 71.2+0.61 |74.68+0.75 | 74.9+0.74

MR | 77.26+0.19 | 81.38+0.08 [ 82.12+0.15 [ 81.71+0.23 | 79.48+0.1 | 82.77+0.22]82.59+0.13

CR 78.9+0.1 | 87.12£0.31 [87.33+0.23 | 86.34+0.52 | 86.03+0.23 | 88.99+0.16 | 89.02+0.13

AVG 76.57 81.04 81.42 80.40 80.36 81.63 81.88

Table 2: Results on SentEval evaluation with logistic
regression. For MR, CR, MPQA and SUBJ, we use 10-
fold cross validation and report accuracy on test-fold.
For remaining tasks, results are reported on test set. We
run 5 times with random seeds and report mean with
standard deviation.

SBERT Ours

MPQA | 89.98+0.16 | 90.11+0.13
SST-5 | 49.1+0.56 50.5+0.3

SST-2 | 88.51+0.71 | 88.39+0.39
SUBJ | 94.1+0.12 | 94.05+0.17
TREC | 86.96+0.32 | 88.4+0.58
MRPC | 74.79+1.28 | 75.01+0.85
MR 82.7+0.16 | 82.56+0.14
CR 88.89+0.24 | 88.94+0.26

AVG 81.88 82.25

Table 3: Results on SentEval evaluation with MLP.
Cells marked as bold only when the mean minus std
is no worse than the mean plus std of the other model

mation from such complex embeddings. To assess
this, we replace the logistic regression with a sin-
gle hidden layer MLP (128 hidden units) which is
widely used as a probing classifier. We focus on
the comparison between our model and SBERT,
re-running these two models with 5 random seeds,
and report accuracy in the same fashion, except
we adopt a more strict bold strategy to mark the
difference (as explained in the caption).

As shown in Table 3, for some tasks, e.g. MR
and CR, both models show stable performance
cross different classifiers, and their performance re-
mains similar when this more powerful extractor is
used. However, for SST-5 (5-way sentiment classi-
fication) and TREC (6-way question-type classifica-
tion), we see that clear improvements are obtained
by our model, suggesting that the additional syn-
tax supervision that we bring in through RGCNs
is beneficial for fine-grained classification tasks.
A similar pattern of results was found when we
experimented with a 2 hidden layer MLP.



5 Conclusion

In this work, we show that SBERT can be improved
by explicitly incorporating structural information.
By using RGCNs to incorporate syntactic struc-
ture into supervision, our model is able to produce
structure-aware, general-purpose sentence embed-
dings that achieve improved results on both unsu-
pervised similarity comparison and transfer clas-
sification tasks, when compared against previous
sentence encoders. By extending probing classi-
fiers, we further show that our syntax-informed
supervision method is particularly beneficial for
fine-grained tasks such as SST-5 and TREC.
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