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Abstract

Learning effective language representations
from crowdsourced labels is crucial for many
real-world machine learning tasks. A chal-
lenging aspect of this problem is that the qual-
ity of crowdsourced labels suffer high intra-
and inter-observer variability. Since the high-
capacity deep neural networks can easily mem-
orize all disagreements among crowdsourced
labels, directly applying existing supervised
language representation learning algorithms
may yield suboptimal solutions. In this pa-
per, we propose TACMA, a temporal-aware
language representation learning heuristic for
crowdsourced labels with multiple annotators.
The proposed approach (1) explicitly mod-
els the intra-observer variability with atten-
tion mechanism; (2) computes and aggregates
per-sample confidence scores from multiple
workers to address the inter-observer disagree-
ments. The proposed heuristic is extremely
easy to implement in around 5 lines of code.
The proposed heuristic is evaluated on four
synthetic and four real-world data sets. The
results show that our approach outperforms
a wide range of state-of-the-art baselines in
terms of prediction accuracy and AUC. To en-
courage the reproducible results, we make our
code publicly available at https://github.com/
CrowdsourcingMining/TACMA.

1 Introduction

Crowdsourcing offers the ability to utilize the
power of human computation to generate data an-
notations that are needed to train various AI sys-
tems. For many practical supervised learning ap-
plications, it may be infeasible (or very expen-
sive) to obtain objective and reliable labels due
to many reasons such as varying skill-levels and
biases of crowdsourced workers. Instead, to im-
prove the quality of labels, we can collect subjec-
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tive and inconsistent labels from multiple heteroge-
neous crowdsourced workers. In practice, there is
a substantial amount of disagreement between the
crowdsourced workers (Nie et al., 2020), i.e., inter-
observer variability or even between a worker and
the same worker looking at the same example some
time later (Guan et al., 2018), i.e., intra-observer
variability. Hence, it is of great practical interest to
address supervised learning problems in this sce-
nario.

Meanwhile, with the recent advances of deep
neural networks (DNNs), supervised representa-
tion learning (SRL) has led to rapid improvements
in the ability of learning intrinsic nonlinear em-
beddings using DNNs that preserves the distance
between similar examples close and dissimilar ex-
amples far on the embedding space. In spite of the
significant progress for SRL applications such as
face recognition (Schroff et al., 2015), image re-
trieval (Xia et al., 2014), directly applying existing
deep language representation learning approaches
on crowdsourced labels may yield poor generaliza-
tion performance (Han et al., 2018). Because of the
high capacity, DNNs could entirely memorize the
inconsistency within crowdsourced labels sooner or
later during the modeling training process. Besides,
this phenomenon does not change with the choice
of training optimizations or network architectures
(Han et al., 2018).

A large spectrum of approaches have been suc-
cessfully developed in either estimating true labels
from crowdsourced labels, a.k.a., truth inference or
label aggregation (Dawid and Skene, 1979; White-
hill et al., 2009), learning via adversarial data gen-
eration (Wang et al., 2020a), or learning language
representations discriminatively from large-scale
consistent labeled data with complicated neural
architectures (Rodrigues and Pereira, 2018). How-
ever, learning effective neural embeddings directly
from crowdsourced labels of real-world data poses
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numerous challenges. First, crowdsourced work-
ers conduct labeling tasks sequentially, i.e., they
label samples one after another. Such sequential
labeling behavior is a process of learning, and the
expertise of the workers is not stable but gradually
changing even without feedback (Elliott and Riach,
1965). According to Miller’s Law (Miller, 1956),
humans retain what they just learned in their short-
term working memory with a limited span of 7 ±
2. Temporal factors such as fatigue (Zhang et al.,
2018) and intrinsic motivation (Kaufmann et al.,
2011) implicitly influence the crowdsourcing qual-
ity, which are different from existing well-studied
factors, such as the quality of crowdsourced work-
ers, the difficulty of data samples, the price of anno-
tation tasks, etc. In the following, such unconscious
temporal behaviors are referred to as “temporal la-
beling effects”. How to model such sample-level
temporal information for each individual worker
undoubtedly poses a hard modeling problem. Sec-
ond, a large number of real-world crowdsourced
data sets have a substantial amount of disagree-
ment among labels and a relatively small sample
size. The majority of existing SRL approaches are
discriminatively trained on large-scale consistent
labeled data to learn their complicated neural archi-
tectures, which may easily overfit the inconsistent
crowdsourced data.

In this paper we study and develop solutions that
are applicable and can learn effective neural lan-
guage representations from crowdsourced labels in
an end-to-end manner. Our work focuses on the
refinements of a popular deep language represen-
tation learning paradigm: the deep metric learning
(DML) (Koch et al., 2015; Xu et al., 2019; Wang
et al., 2020b). We aim to develop an algorithm
to automatically learn a nonlinear language repre-
sentation of the crowdsourced data from multiple
workers using DNNs.

Briefly, the DML is a classical and widely used
approach for language representation learning that
preserves the distance between similar examples
close and dissimilar examples far on the embedding
space. The majority of existing DML techniques
restricted to just noise-free labels appropriately.
However, learning effective representation from
highly inconsistent crowdsourced data sets from
multiple workers gives rise to numerous important
questions: (1) since in practice, annotation perfor-
mance is affected and varied over time (Boksem
et al., 2005; Zhang et al., 2018), how do we capture

such temporal labeling effects in the DML learning
framework? (2) while in some cases the problem
may be alleviated by pre-processing methods, such
as filtering(Li et al., 2016), label correction(Li et al.,
2019a), truth inference (Dawid and Skene, 1979;
Raykar et al., 2010), etc., the number of remained
instances is often significantly reduced or such pre-
processing errors for many problems will be prop-
agated to the downstream representation learning
tasks. How to capture the label uncertainties from
multiple workers and at the same time prevent the
overfitting problem in an end-to-end framework?

In this work we address the above issues by
presenting a temporal-aware language representa-
tion learning heuristic for crowdsourced labels with
multiple annotators (TACMA), that

• utilizes the attention mechanism to capture the
temporal influence among sequential labeling
tasks according to each worker’s short-term
working memory.

• estimates and aggregates the annotation con-
fidence from disagreements among multiple
workers for each sample.

• supports language representation learning
with DML into an end-to-end fashion, and
is extremely easy to implement based on ex-
isting DML framework with crowdsourced
labels i.e., RLL (Xu et al., 2019), in around 5
line of codes.

2 Related Work

2.1 Truth Inference in Crowdsourcing
A large body of research has focused on infer-
ring true labels from crowdsourced labels from
multiple workers (Dawid and Skene, 1979; White-
hill et al., 2009; Li et al., 2019c; Rodrigues and
Pereira, 2018). The majority of truth inference
approaches are inspired by the classic Expectation-
Maximization learning paradigm that iterates be-
tween estimating the expertise of annotators given
true labels inferred and inferring true labels given
the expertise of annotators (Dawid and Skene,
1979; Whitehill et al., 2009; Zhang et al., 2014;
Li et al., 2019c). Some improvements include mod-
eling the difficulty of items and the expertise of
annotators jointly (Whitehill et al., 2009), applying
spectral methods to initialize worker confusion ma-
trix (Zhang et al., 2014), and modeling correlations
of workers (Li et al., 2019c), etc.
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In spite of the successful applications of the truth
inference techniques, the majority of aforemen-
tioned approaches do not consider the temporal
effects of labeling tasks of each individual worker
and they cannot seamlessly integrate into deep SRL
frameworks.

2.2 Learning from Noisy Labels
Learning with noisy labels has been an important
research topic since the beginning of machine learn-
ing (Frénay and Verleysen, 2013) and a large spec-
trum of models have been developed and success-
fully applied in improving the model prediction
performance in noisy settings from different per-
spectives such as effective label cleaning (Lee et al.,
2018), robust model architectures (Vahdat, 2017)
and loss functions (Ghosh et al., 2017), sample re-
weighting (Ren et al., 2018), and carefully designed
training procedures (Zhong et al., 2019).

However, in this work, different from above ap-
proaches of robust learning from noisy labels that
assume certain percentage of labels are corrupted,
our scenario focuses on noisy labels obtained from
multiple annotators where the disagreement (cor-
ruption) proportion might be surprisingly high and
sometimes even 100%, i.e., no completely agree-
ment on every single sample from all crowd work-
ers.

2.3 Deep Metric Learning
DML approaches automatically learn nonlinear
metric spaces (Schroff et al., 2015). Many ap-
proaches have achieved promising results in many
tasks such as face recognition (Schroff et al., 2015),
person re-identification (Yi et al., 2014), and collab-
orative filtering (Hsieh et al., 2017) etc. Recently
a body of works have attempted to learn effective
embeddings from crowdsourced labels by using
DML approaches (Xu et al., 2019; Wang et al.,
2020b). For example, Xu et al. estimated crowd-
sourced label confidence and adjust the DML loss
function accordingly (Xu et al., 2019). An exhaus-
tive review of previous work is beyond the scope
of this paper. We refer to the survey of (Schroff
et al., 2015) on works of DML. Although DML ap-
proaches are able to learn effective representations,
they heavily rely on comparisons within pairs or
triplets, which is very sensitive to ambiguous ex-
amples and may be easily misled by inconsistent
crowdsourced labels.

Please note that models from the above three
categories are complementary and they can be

combined. For example, learning representation
from crowdsourced labels can be conducted in two
stages where the truth inference algorithms in Sec-
tion 2.1 is applied to get estimated labels and then
the standard DML approaches in Section 2.3 are
used to output the learned embeddings. Details are
discussed in Section 4.

3 The Proposed Approach

3.1 Notations

Without loss of generality, we consider crowdsourc-
ing scenarios that each data sample is annotated
by multiple workers. Following the crowdsourc-
ing practice and to avoid the order effect (Hogarth
and Einhorn, 1992) and cheating, each worker will
annotate the same set of samples but with shuffled
orders. Let αj be the sample order index set for the
jth worker and αji be the index of ith sample for
worker j. Let x

αj
i

and y
αj
i

be the feature vectors

and the worker’s assigned label for sample αji . Let
F(·) represent the learned language representation.
Let (·)+ and (·)− be the indicators of positive and
negative examples.

3.2 Temporal-Aware Memory Confidence

According to Miller’s Law (Miller, 1956), humans
can only hold a very limited number of objects in
their short-term working memories. When workers
conduct labeling tasks, they tend to make relative
comparisons in their memory spans and the anno-
tation quality of one sample is largely influenced
by its preceding samples. Therefore, in this work,
we focus on studying and modeling the effects of
unconscious human behaviors during the labeling
process that may implicitly influence the overall
crowdsourcing quality. We design an approach
to explicitly capture such unconscious temporal
human behaviors, i.e., temporal labeling effects.
We aim to ensure that the newly annotated sam-
ples should obtain the consistent label with similar
samples that have already been annotated recently.
Here we first define the short-term labeling memory
as follows:

Definition 1. (SHORT-TERM LABELING MEM-
ORY) A short-term labeling memory of ith sam-
ple, i.e., indexed as αji , is composed of a sequence
of the current item and k most recent historical
items that have been labeled by worker j, i.e.,
Mj

i = {< x
αj
i
, y
αj
i
>,< x

αj
i−1
, y
αj
i−1

>, · · · , <
x
αj
i−k
, y
αj
i−k

>}.
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When the new labeling task arrives, i.e., the ith

sample, we compute a weight for every element in
worker j’s short-term labeling memory Mj

i as the
dot product of their learned language representa-
tions. This weight might be viewed as an attention
over the short-term labeling memory per sample
per worker.

To form a proper probability distribution over the
elements in Mj

i , we normalize the weights using
the softmax function. This way we model probabil-
ity s

αj
i−l

that represents the similarity between the

ith sample and the sample appears at position l in
Mj

i . In a functional form this is:

s
αj
i−l
∝ exp

(
F(x

αj
i−l

),F(x
αj
i
)
)
, l = 0, · · · , k

Then we define a memory confidence score, i.e.,
cji , to represent the probability that how likely the
sample i is positive (y

αj
i

= 1) solely considering
similar samples in the short-term labeling memory.
The memory confidence score of cji is computed as
follows:

cji = Pr(y
αj
i

= 1) ∝
k∑
l=0

1
[
y
αj
i−l

= 1
]
s
αj
i−l

Please note that our attention based temporal-
aware memory confidence scores are not limited
to binary crowdsourcing tasks and it can be easily
extended to multi-class tasks.

3.3 Multi-Worker Confidence Aggregation

For each sample i, after collecting the mem-
ory confidence scores from all workers, we con-
duct the mean pooling as our aggregation op-
eration, and the final aggregated multi-worker
confidence is computed as follows: ci =
MeanPooling(c1i , c

2
i , · · · , cmi ), where m is the

number of workers.

3.4 Representation Learning Framework

We use DML as our representation learning frame-
work. Specifically, following the suggestion of
(Xu et al., 2019), instead of using pair and triplet
comparisons, we use group, a.k.a., n-tuplet, as our
comparison unit. A group is made up of two posi-
tive and n negative examples. Similar to (Xu et al.,
2019), we choose to learn our model parameters by
maximizing the conditional likelihood of retrieving

the positive example x+
j given the positive example

x+
i from a given group.
Importantly, we do not assume that we know the

ground truth label of items in the training set and
the validation set. During the training stage of the
representation learning framework, after obtaining
the aggregated multi-worker confidence ci of an
item with methods introduced in Section 3.3, its
label is estimated by arg max ci.

Given a collection of groups, we optimize the
DML model parameters by maximizing the sum
of log conditional likelihood of finding a positive
example x+

j given the paired positive example x+
i

within every group g, which will push items of the
same class close and items of different classes far
in the embedding space. Furthermore, we incorpo-
rate the aggregated temporal-aware multi-worker
confidence scores from Section 3.3 into the loss
function to capture the inconsistency of crowd-
sourced labels. The loss function is defined as
L(Ω) = −

∑
log p(x+

j |x
+
i ),

p(x+
j |x

+
i ) =

exp
(
η · cj · rij

)∑
x∗∈g,x∗ 6=x+

i
exp

(
η · c∗ · ri∗

)
where Ω is the parameter set of the DNN. ri∗ rep-
resents the cosine similarity score between the rep-
resentations of x+

i and x∗ in the embedding space.
η is a smoothing hyper parameter in the softmax
function, which is set empirically on a held-out
data set in our experiment. Since L(Ω) is differ-
entiable with respect to Ω, we use gradient based
optimization approach to train the DNN.

x−
k

x+
i

… … …

rij

Aggregated Temporal-aware 
Confidence Layer

x+
j

(x−
k )

x−1 (x−1 )

(x+
j )

(x+
i )

ri1

rik

Representation 
Layer

softmax

p(x+
j |x+

i )

Figure 1: The model structure. Groups made up of
two positive and n negative examples are fed into the
neural network to obtain their language representations.
The cosine similarity scores, i.e., ri∗, are calculated
between the representations of x+

i and x∗ in the embed-
ding space. Finally, the goal of training is to maximize
the conditional likelihood p(x+

j |x
+
i ), which incorpo-

rates temporal-aware memory confidence scores cji .
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4 Experiments

Experiments are conducted on both real-world and
synthetic data sets. The internal cross validation ap-
proach is used to select hyper parameters when op-
timizing models’ predictive performances. Means
as well as standard deviations of both accuracy and
AUC scores are reported, to comprehensively eval-
uate the performance of our proposed method, i.e.
TACMA.

4.1 Real-World Data Sets
Experiments are first conducted on 4 real-world
data sets and the corresponding descriptive statis-
tics can be found in Table 1.

• Emotion: A vocal emotional speech data
set with binary labels indicating whether the
voice fragment is exciting or not.

• Concluding: A linguistic data set where each
item is labeled on whether it is a conclusion
of a lesson.

• Commending: A linguistic data set of ASR
transcripts from real-world classroom record-
ings. Each item is labeled on whether it’s a
commending instruction from the instructors.

• Question: A vocal speech data set where each
item is labeled on whether it is an interrogative
sentence.

Acoustic features of the Emotion data set are ex-
tracted using OpenSmile1 with the computational
paralinguistic challenge’s (COMPARE-2013) fea-
ture set (Schuller et al., 2013). Sentence embedding
features are extracted with a Chinese RoBERTa
pretrained model 2. Again we emphasize that the
ground truth labels of items in the training and vali-
dation set are not observed. In order to evaluate the
performance of each model objectively, the labels
of items in test sets are labeled by experts and they
have reached an agreement on the labels of items.

Inter-observer variability of each data set is mea-
sured with Fleiss-kappa score (Fleiss, 1971). Intra-
observer variability, i.e., the level of consistency of
an annotator when labeling items from the same
class, is hard to directly measure without ground
truth labels. We will explore the effect of intra-
observer variability using temporal-aware memory
confidence in Section 4.8.

1https://www.audeering.com/opensmile/
2https://github.com/ymcui/Chinese-BERT-wwm

4.2 Synthetic Data Sets

In real-world scenarios, annotators are not guaran-
teed to be serious about their annotating work, and
one may assign random labels in order to get paid
quickly. Methods designed for crowdsourcing sce-
narios should be able to get rid of the influence of
these noisy annotations. Hence we build synthetic
data sets to evaluate the robustness to irresponsi-
ble annotators of each method. Starting from the
original Question data set, we gradually add 2, 4,
6 and 8 simulated irresponsible annotators. They
make random judgments regardless of the features
of items. Hence in the worst case, 8 out of 13 work-
ers are making random judgments, resulting in an
extreme low kappa of 0.02. Experiments conducted
on these synthetic data sets are helpful to examine
the robustness of methods.

4.3 Baselines

We carefully selected several groups of baselines
as follows:

Group 1: Truth Inference. A wide range of
label aggregation methods are chosen as our base-
lines. Some widely-used methods according to
the survey (Zheng et al., 2017) are included, i.e.,
EM (Dawid and Skene, 1979), Spectral-EM(Zhang
et al., 2014), GLAD (Whitehill et al., 2009), IBCC
(Kim and Ghahramani, 2012), VI-BP (Qiang et al.,
2012), VI-MF (Qiang et al., 2012), KOS (Karger
et al., 2011), ZenCrowd (Demartini et al., 2012),
LFC (Raykar et al., 2010), PM (Li et al., 2014), and
the implementation of these algorithms can mostly
be found in the website3. Meanwhile some more
recent works are also included: EBCC (Li et al.,
2019c), BWA (Li et al., 2019b).

Group 2: Representation Learning. Our pro-
posed method is compared with representation
learning methods via deep metric learning, in-
cluding Triplet with semi-hard example mining
(Schroff et al., 2015), i.e., Triple, and Triplet net-
works with Center Loss (He et al., 2018), i.e., Cen-
ter. Recent works of learning effective embeddings
from crowdsourced labels using DML approaches
are also important baselines: RLL-MLE (Xu et al.,
2019), RLL-Bayesian (Xu et al., 2019), RECLE
(Wang et al., 2020b).

Group 3: Learning from Noisy Data. Group
3 contains methods of learning with noisy labels:
LC (Arazo et al., 2019) use a two-component beta
mixture model to perform unsupervised noise mod-

3https://zhydhkcws.github.io/crowd_truth_inference/index.html
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Table 1: Data sets statistics.Data sets statistics. It should be noted that the class ratio of each training set is estimated
by majority voting since the ground truth labels are not observed. The labels of items in each test set are annotated
by experts and they have reached an agreement on the label of each item.

Data Sets Emotion Commending Question Concluding Syn-2 Syn-4 Syn-6 Syn-8

# of annotators 5 7 5 5 7 9 11 13
# of train samples 3067 1200 3140 1208 3140 3140 3140 3140
# of validation samples 766 299 785 302 785 785 785 785
# of test samples 800 1300 2000 648 2000 2000 2000 2000
kappa 0.84 0.69 0.82 0.37 0.35 0.2 0.12 0.08
train class ratio (majority voting) 0.42 0.50 0.63 0.42 0.63 0.63 0.63 0.63

eling, and DivideMix (Li et al., 2019a) leverages
semi-supervised learning techniques. CrowdLayer
(Rodrigues and Pereira, 2018) is an end-to-end ap-
proach learning a DNN from noisy labels with a
crowd layer.

Group 4: Combining Group 1 with Groups
2 & 3. Some methods of Group 2 & 3, i.e.
Triple, Center, LC, DivideMix, are not specifi-
cally designed for crowdsourcing scenarios. Al-
though majority-voting labels are served as a de-
fault choice, these models should be trained with
labels inferred by methods of Group 1 as stronger
baselines, since methods of Group 1 are likely to
provide more accurate inferred labels than majority
voting. These methods are therefore trained with
labels inferred by EBCC, which achieves the best
performances of Group 1 in all data sets.

4.4 Setup and Implementation Details

Experimental codes are implemented
in Tensorflow 1.8 available at https:
//github.com/CrowdsourcingMining/TACMA.
Experiments are conducted on a server with a
GTX 1080 Ti GPU. We set the tuplet size n to 5
for all the experiments, as suggested in (Xu et al.,
2019). The representation learning network has
a simple structure, i.e., 2 fully-connected layers
with a drop-out rate of 0.2, a learning rate of 1e-3,
and hyper-parameters including sizes of each layer
and scale of `2 regularization searched via grid
searching with cross validation. The network
weights are initialized with a normal distribution
initializer and updated with Adadelta optimizer
(Zeiler, 2012). For all the representation learning
methods, the downstream classifier is set to be
a logistic regression classifier with `2 penalty
containing the only hyper-parameter C as penalty
strength ranging from 1e-2 to 1e4.

4.5 Performance Comparison

We compare performance of TACMA with existing
methods on 4 real-world data sets and the results
are summarized in Table 2. TACMA outperforms
all the 4 groups of baselines, and here are some
observations:

• The advantage of TACMA over truth inference
methods gets bigger on the Concluding data
set than other data sets. The Concluding data
set has a low kappa score of 0.37, indicat-
ing that there are more disagreements among
workers, which makes it hard to inference cor-
rect labels regardless of items’ features. By
contrast, TACMA makes full use of represen-
tations of items to gain more information re-
sulting in the best performance.

• Although labels inferred by EBCC boost the
performances of representation learning mod-
els, e.g., Triple+EBCC, they still perform infe-
rior to TACMA, a possible explanation is that
these two-stage methods give equal weight
to each item and ignores temporal labeling ef-
fects. TACMA is able to discover potential con-
flicts in the short-term working memory, by
applying the attention mechanism and gives
low weights to the conflicting judgments.

• TACMA shares the same representation net-
work structures with other methods of repre-
sentation learning with crowdsourced labels
i.e., RLL-MLE, RLL-bayesian and RECLE.
The learned representations are compared in
Figure 2 by feeding the raw features into rep-
resentation network and performing dimen-
sion reduction into 2-dimensional space with
t-SNE method (Van and Hinton, 2008). In the
raw feature space, items of different classes
are interleaved with each other. By contrast,
learned representations of TACMA are more

https://github.com/CrowdsourcingMining/TACMA
https://github.com/CrowdsourcingMining/TACMA
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Table 2: Prediction accuracy and AUC scores on 4 real-world data sets. The experiments are repeated 5 times and
the means and standard deviations are reported.

Commending Emotion Question Concluding

ACC AUC ACC AUC ACC AUC ACC AUC

EM 0.794±0.019 0.871±0.008 0.883±0.012 0.967±0.005 0.877±0.010 0.941±0.005 0.681±0.004 0.720±0.015
Spectral-EM 0.794±0.017 0.870±0.007 0.886±0.010 0.964±0.003 0.876±0.009 0.941±0.004 0.681±0.004 0.720±0.013
GLAD 0.794±0.017 0.870±0.007 0.886±0.010 0.964±0.003 0.878±0.009 0.942±0.004 0.689±0.009 0.742±0.014
IBCC 0.794±0.017 0.870±0.007 0.889±0.004 0.964±0.004 0.876±0.009 0.941±0.004 0.681±0.004 0.720±0.013
VI-BP 0.794±0.017 0.870±0.007 0.892±0.012 0.968±0.005 0.877±0.008 0.941±0.004 0.681±0.004 0.720±0.013
VI-MF 0.799±0.013 0.874±0.003 0.786±0.000 0.898±0.000 0.876±0.009 0.941±0.004 0.685±0.003 0.725±0.009
KOS 0.799±0.013 0.874±0.003 0.786±0.000 0.898±0.000 0.878±0.009 0.942±0.004 0.694±0.005 0.747±0.010
ZenCrowd 0.794±0.019 0.871±0.008 0.895±0.011 0.971±0.004 0.877±0.010 0.941±0.005 0.689±0.010 0.742±0.016
LFC 0.794±0.019 0.871±0.008 0.883±0.009 0.967±0.004 0.877±0.010 0.941±0.005 0.681±0.004 0.720±0.015
PM 0.799±0.014 0.867±0.008 0.887±0.010 0.966±0.003 0.874±0.010 0.940±0.004 0.677±0.009 0.730±0.013
EBCC 0.812±0.006 0.874±0.003 0.895±0.012 0.970±0.005 0.878±0.007 0.941±0.008 0.694±0.003 0.748±0.006
BWA 0.794±0.020 0.867±0.008 0.888±0.005 0.965±0.004 0.875±0.009 0.939±0.004 0.689±0.007 0.741±0.013

Triple 0.793±0.012 0.871±0.006 0.804±0.005 0.876±0.002 0.888±0.002 0.941±0.001 0.725±0.014 0.821±0.008
Center 0.806±0.002 0.859±0.001 0.701±0.007 0.780±0.007 0.840±0.006 0.905±0.008 0.705±0.015 0.797±0.007
RLL-MLE 0.800±0.008 0.866±0.001 0.854±0.016 0.961±0.008 0.853±0.013 0.919±0.006 0.735±0.004 0.828±0.009
RLL-Bayesian 0.816±0.000 0.861±0.001 0.877±0.006 0.954±0.004 0.877±0.004 0.932±0.003 0.725±0.001 0.839±0.001
RECLE 0.812±0.002 0.858±0.000 0.746±0.001 0.836±0.001 0.880±0.024 0.934±0.012 0.729±0.003 0.838±0.005

LC 0.560±0.085 0.700±0.028 0.611±0.046 0.715±0.007 0.715±0.018 0.720±0.007 0.701±0.018 0.790±0.011
DivideMix 0.515±0.016 0.733±0.014 0.535±0.000 0.730±0.000 0.734±0.009 0.720±0.014 0.654±0.025 0.710±0.007
CrowdLayer 0.802±0.008 0.878±0.007 0.757±0.008 0.798±0.009 0.852±0.003 0.920±0.002 0.676±0.014 0.722±0.011

LC+EBCC 0.581±0.070 0.687±0.029 0.825±0.024 0.845±0.019 0.758±0.010 0.830±0.012 0.705±0.018 0.784±0.004
DivideMix+EBCC 0.515±0.018 0.730±0.014 0.726±0.039 0.832±0.028 0.760±0.012 0.833±0.014 0.659±0.006 0.720±0.005
Triple+EBCC 0.814±0.004 0.872±0.000 0.893±0.003 0.968±0.004 0.890±0.001 0.938±0.003 0.737±0.003 0.825±0.007
Center+EBCC 0.814±0.004 0.866±0.003 0.826±0.016 0.884±0.018 0.844±0.005 0.909±0.005 0.742±0.006 0.848±0.003

TACMA 0.831±0.002 0.882±0.004 0.904±0.002 0.973±0.001 0.899±0.005 0.945±0.003 0.765±0.006 0.855±0.010

separated than the other methods, reducing the
difficulty of downstream classification tasks.

4.6 Robustness to Irresponsible Workers
We select some representatives from Groups 1-4
and draw the curves of accuracy on synthetic data
sets containing different number of irresponsible
workers in Figure 3. We can find that:

• Truth inference methods such as EBCC stay
stable facing different numbers of irresponsi-
ble workers. On the other hand, the accuracy
of other methods decreases when increasing
the number of irresponsible workers. This re-
sult may be explained by the fact that for meth-
ods including RLL-Bayesian, Triple, learn-
ing effective representations of items heavily
relies on correct labels, and hence becomes
harder as the labels become more noisy.

• TACMA maintains the highest accuracy of all
the methods. Unlike the two-stage method i.e.,
Triplet + EBCC, which gives equal weight
to each item and ignores temporal labeling
effects, TACMA is able to discover potential
conflicts in the short-term working memory
using the attention mechanism, and give low
training weights to the conflicting judgments.

4.7 Effect of Working Memory Sizes

We set the working memory size ranging from
3 to 11 to find the optimized length and at the
same time explore its influence on performance,
shown in Figure 4. The accuracy of our proposed
method goes up at the beginning with the increas-
ing working memory size, and the standard devia-
tions gradually become smaller at the same time. It
is reasonable because potential inconsistent judg-
ments among similar items cannot be found with-
out observing enough historical annotations. As
the working memory size continues extending, the
accuracy scores become relatively stable, indicat-
ing that there is sufficient evidence to estimate the
time-aware confidence of the current annotation.

4.8 Relations between Temporal-aware
Memory Confidence and Worker’s
Expertise

In this part we further explore the relations between
worker’s expertise and temporal-aware memory
confidence. To evaluate a worker’s expertise, a
Logistic Regression classifier is trained with labels
annotated by this same person, and the accuracy
on the corresponding test set is recorded. On the
other hand, the temporal-aware confidence of all
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(a) Raw Embedding (b) RLL-MLE (c) RLL-Bayesian (d) RECLE (e) TACMA

Figure 2: Visualization of learned representations on the test set of Question data. The raw features of items are
fed into the representation network to obtain the semantic representations, and dimension reduction using t-SNE
method is performed for visualization.

Figure 3: Accuracy curves on synthetic data sets con-
taining different number of irresponsible annotators who
make random decisions.

Figure 4: The effect of different working memory sizes
on prediction accuracy on real-world data sets.

the judgments made by this worker is averaged.
We perform standardization on both accuracy

scores and the averaged temporal-aware confidence
scores within the corresponding data set, and put
the standardized values of all the 62 workers from
4 real-world data sets and 4 synthetic data sets
together in Figure 5, to reveal the universal rela-
tion between temporal-aware confidence and the
worker’s expertise. We can find a wide range of
intra-observer variability among different work-
ers, estimated by their temporal-aware confidence
scores. A strong positive correlation is found be-
tween averaged confidence and prediction accuracy
(pearson r = 0.844). Specifically, synthetic irre-
sponsible annotators, colored in blue, are automati-
cally clustered in the lower left corner, indicating
that the poor performances of the classifiers trained
with their labels derive from huge inner inconsis-
tencies in their judgments.

Figure 5: The relations between standardized temporal-
aware memory confidence and standardized prediction
accuracy of annotators in both real and synthetic data
sets. Most of the irresponsible annotators appear in the
lower left corner, indicating that there are internal con-
flicts in their judgments (low confidence), and therefore
LR models trained with these labels perform worse than
average.
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5 Conclusion

We presented TACMA, an end-to-end framework
for language representation learning from crowd-
sourced labels. Comparing with traditional SRL
approaches, the advantages of our framework are:
(1) it is able to consider temporal labeling effects
within sequences of sample-level labeling tasks for
each worker; (2) it automatically computes and ag-
gregates sample-level confidence scores from multi-
ple workers which makes the training process more
effective. Experimental results on both synthetic
and real-world data sets demonstrates that our ap-
proach outperforms other state-of-the-art baselines
in terms of accuracy and AUC scores.
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