
Direction is what you need: Improving Word Embedding Compression in
Large Language Models

Klaudia Bałazy†*, Mohammadreza Banaei‡*, Rémi Lebret‡, Jacek Tabor† and Karl Aberer‡

†Jagiellonian University
klaudia.balazy@doctoral.uj.edu.pl,jacek.tabor@uj.edu.pl

‡EPFL
[mohammadreza.banaei,remi.lebret,karl.aberer]@epfl.ch

Abstract

The adoption of Transformer-based models
in natural language processing (NLP) has led
to great success using a massive number of
parameters. However, due to deployment
constraints in edge devices, there has been
a rising interest in the compression of these
models to improve their inference time and
memory footprint. This paper presents a
novel loss objective to compress token em-
beddings in the Transformer-based models by
leveraging an AutoEncoder architecture. More
specifically, we emphasize the importance of
the direction of compressed embeddings with
respect to original uncompressed embeddings.
The proposed method is task-agnostic and
does not require further language model-
ing pre-training. Our method significantly
outperforms the commonly used SVD-based
matrix-factorization approach in terms of
initial language model Perplexity. Moreover,
we evaluate our proposed approach over
SQuAD v1.1 dataset and several downstream
tasks from the GLUE benchmark, where we
also outperform the baseline in most scenarios.
Our code is public.1.

1 Introduction

Pretraining deep Transformer models (Vaswani
et al., 2017) with language modeling and
fine-tuning these models over downstream tasks
have led to great success in recent years (Devlin
et al., 2018; Liu et al., 2019; Yang et al.,
2019), and even enabled researchers to design
models that outperform human baselines in the
GLUE benchmark (Wang et al., 2018). Although
these models are empirically powerful in many

∗Equal contribution
1https://github.com/

MohammadrezaBanaei/orientation_based_
embedding_compression

Figure 1: This figure presents a two-dimensional
visualization of a token embedding vector v with its
two approximations: v ′ and v ′′. Vector v ′ has a larger
Euclidean distance error than v ′′, but its direction is
more similar to the reference vector. Our experiments
show that v ′ generally provides a better approximation
of the original token compared to v ′′.

natural language understanding (NLU) tasks, they
often require a massive number of parameters,
making them hard to use for memory-constrained
applications (e.g., edge devices). Therefore, there
have been efforts to compress BERT-like models
while preserving comparable performance with the
original model.

Many of these compression methods are based
on knowledge distillation (Hinton et al., 2015) to
help the compressed model (student) to perform
close to the original model in different NLU
tasks. However, these approaches often need high
computation resources due to e.g., the necessity
of retraining the expensive language modeling on
a huge corpus (Sanh et al., 2019) or the use of
expensive augmentation techniques to make the
distillation effectively work (Jiao et al., 2019).
Moreover, compression techniques that rely on
training/fine-tuning language models are becoming
less feasible due to its ever-increasing cost for
current state-of-the-art architectures with hundreds

https://github.com/MohammadrezaBanaei/orientation_based_embedding_compression
https://github.com/MohammadrezaBanaei/orientation_based_embedding_compression
https://github.com/MohammadrezaBanaei/orientation_based_embedding_compression


of millions of parameters (He et al., 2020; Raffel
et al., 2019; Brown et al., 2020).

More recently, there have been efforts to
compress Transformer-based models for more
resource-constrained scenarios (Mao et al., 2020)
by using offline methods, such as matrix factoriza-
tion (Winata et al., 2019; Lan et al., 2019; Wang
et al., 2019), weight pruning (Li et al., 2016; Han
et al., 2015), and also weight quantization (Zhou
et al., 2016; Hubara et al., 2016).

This paper focuses on token embedding matrix
compression due to being one of the largest
matrices in BERT-based architectures. We
specifically question the effectiveness of current
low-rank matrix factorization methods in recent
literature (Lan et al., 2019; Wang et al., 2019)
by comparing them with the performance of a
linear AutoEncoder over different compression
ratios2. We define a new loss objective which
is not only dependent on the commonly used
Mean Absolute Error (MAE) or Mean Squared
Error (MSE) loss between input embeddings and
AutoEncoder reconstruction, but is also sensitive to
the noise in reconstructed embeddings "direction"
(measured by cosine distance). We present the
intuition behind the importance of embedding
vector direction in the Figure 1. In the following
sections we show that cosine distance indeed plays
a more critical role than MAE/MSE (Figure 3) as
measured by the Perplexity of the entire model in
language modeling.

In Section 4, we demonstrate that our com-
pression algorithm is superior or competitive to
the Singular Value Decomposition (SVD) baseline
over several natural language understanding tasks
from GLUE (Wang et al., 2018) benchmark, as
well as the SQuAD dataset (Rajpurkar et al., 2016)
for question answering. We also compare our
performance with the SVD-based compression
over different compression ratios, and specifically
show that our model performs consistently better
in higher compression ratios.

Our contribution can be summarized as follows:

• We demonstrate the importance of direction
(measured by cosine distance) in token
embeddings compression.

• We leverage the AutoEncoder architecture to
explore various multi-objective optimization

2Number of parameters in the original embedding matrix,
over the sum of the parameters in factorized matrices.

functions.

• We outperform the SVD-based baseline
in terms of Perplexity and over various
downstream tasks.

2 Related work

The current mostly used compression methods can
be roughly categorized into four classes, namely
knowledge distillation (Hinton et al., 2015), weight
pruning (Li et al., 2016; Han et al., 2015), matrix
factorization (Lan et al., 2019; Wang et al., 2019;
Mao et al., 2020) and weight quantization (Zhou
et al., 2016; Hubara et al., 2016). This section
focuses on matrix factorization-based methods
that are currently used for token embedding
compression in the literature.

2.1 Background: Low-rank matrix
factorization

This section describes the baseline method that
we are comparing our approach with throughout
the paper. Let A be n × m embedding matrix
representing m-dimensional embedding for each
n different input tokens. The truncated version of
the matrix factorization aims to find a low-rank
approximation Ã of input matrix A (Halko et al.,
2011):

Ã = BC , (1)

where B is the size of n ×k and C is the size of
k ×m. When the inner dimension k is smaller
than mi n(n,m), then the approximation is less
expensive for storing it and performing further
computations. The objective of this approximation
is:

L2(A, Ã) = ∥∥A− Ã
∥∥

2 , (2)

where ‖·‖2 denotes the l2 operator norm. In this
paper, we use the SVD method as a low-rank matrix
factorization baseline to compare our approach.

2.2 Matrix factorization for token
embeddings compression

Lan et al. (2019) proposed to use matrix
factorization to limit the number of parameters
in the token embedding matrix, which also
separates the Transformer hidden layer dimension
from the size of vocabulary embedding. It is
especially important as token embeddings are
supposed to be context-independent, but hidden
layer representation should be a context-dependent



representation and hence needs more parameters.
Moreover, reducing the vocabulary embedding
dimension reduces the chance of overfitting, as
many of the tokens are rarely used in downstream
tasks.

There have been more recent efforts that use
matrix factorization idea to compress different
matrices in the Transformer architecture (Wang
et al., 2019; Mao et al., 2020). For instance,
Mao et al. (2020) proposed an iterative hybrid
approach that uses matrix factorization together
with weight pruning (while distilling knowledge
from a teacher model) until reaching the final
desired compression ratio. Lioutas et al. (2019)
also proposed using a non-linear AutoEncoder
model with knowledge distillation to compress
word embeddings. However, we later demonstrate
that only adding non-linearity indeed results in a
minor improvement to the resulting compressed
language model quality.

In this paper, we specifically focus on the
effectiveness of SVD for compression of the
token embedding matrix and show that Root
Mean Square Error (RMSE) is not an optimal
function to minimize the zero-shot Perplexity of
the language model, which is the main criterion
when language models are trained. We propose a
new loss objective for linear matrix factorization
using AutoEncoder to achieve a task-agnostic
compressed language model with reasonable
Perplexity without further fine-tuning the language
model. In this work, we mainly investigate the
effectiveness of SVD, and other complementary
methods such as knowledge distillation can be used
later to further boost the performance.

3 Model Description

Although SVD matrix-factorization is one of the
most popular methods for matrix compression, we
believe it is not an optimal method for compressing
token embeddings in BERT-like architectures. The
objective of SVD is to minimize the l2 norm
between the original matrix and the reconstructed
one; however, focusing on l2 norm optimization
prioritizes the reduction of larger errors, and it may
end up ignoring more minor vector differences.
It is also sensitive to the influence of outliers.
The most crucial reason for the l2 norm not
being the best choice is that it only considers the
distance between the original and reconstructed
token vector, and it does not necessarily pay

attention to the orientation difference between
them. In section 4, we demonstrate that vectors
representing language tokens are more sensitive to
noise in their direction rather than to changes in
Euclidean distance from the reference vector. We
also discuss the motivation behind it further in this
section.

In order to mitigate the problem of focusing
only on the largest errors between two vectors, we
propose replacing the l2 norm objective with the
l1 norm raised to the power of α:

Lα1 (A, Ã) = ∥∥A− Ã
∥∥α

1 , (3)

where A denotes the original embedding matrix,
Ã denotes the reconstructed embedding matrix,
and ‖·‖1 denotes the l1 operator norm. Due to
the flexibility in our defined loss objective, by
decreasing the α parameter, we can control how
much we want to focus on smaller error differences.
We may set the α parameter to be a constant value,
or linearly decrease it during the training. We
denote linearly decreasing strategy for α as:

[t1, t2], (4)

where t1 is a starting value of α and t2 is the
target value to be reached at the end. The intuition
behind using a decreasing α is to sequentially make
the reconstruction harder for the model during
training (as when the α becomes smaller, small
reconstruction errors will also be magnified).

Since we believe that enforcing direction simi-
larity between the original and the reconstructed
embedding vectors is crucial for better language
model performance, we introduce the second loss
objective component, namely, cosine distance.
Cosine distance can be interpreted as a measure
of the difference in orientation of two vectors.
This measure has been widely used in NLP for
finding similar words (Mikolov et al., 2013),
document clustering (Muflikhah and Baharudin,
2009), detecting plagiarism (Foltỳnek et al., 2019),
and many more. The goal of introducing cosine
distance loss as a part of our objective is to enforce
direction similarity of each pair of vectors from the
original and reconstructed matrix.

Taking into consideration all points above,
we propose to replace the l2 norm objective
with a new multi-objective function consisting of
l1 norm (raised to the power of α, where α is
a hyper-parameter that can be changed during



Figure 2: Overview of our AutoEncoder (ours) approach for BERT-like embedding matrix compression.

training) and cosine distance:

Φα,β(A, Ã) = Lα1 (A, Ã)+β∗C D(A, Ã), (5)

where A denotes the original embedding matrix,
Ã denotes the reconstructed embedding matrix, and
C D(A, Ã) represents the mean cosine distance of
all embedding vector pairs. It is worth noting that it
is the combination of these two functions that gives
a powerful tool which allows both to optimize the
distance and direction of the reconstructed vectors
to the reference. Focusing only on one of these
functions may lead to suboptimal results. For
comparison, we also define another multi-objective
function which is the combination of l2 norm with
cosine distance loss:

Ψβ(A, Ã) = L2(A, Ã)+β∗C D(A, Ã). (6)

In addition to the new loss function, we propose
leveraging Auto-Encoder architecture for Φα,β and
Ψβ loss optimization (Equation 5 and 6). We use
a simple AutoEncoder consisting of a one-layer
Encoder/Decoder without any activation function
in order to have a fair comparison with the SVD
baseline. Using Auto-Encoder enables efficient

multi-objective optimization, but it also allows to
select the appropriate level of model complexity
when needed. At the end of the Auto-Encoder
training, we extract an approximation of the
original matrix, as shown in Figure 2. We substitute
the original embedding matrix with a new module
consisting of latent representation of vocabulary
tokens along with the Decoder module.

4 Results

In this section, we evaluate our approach, which
is based on using AutoEncoder model with a
multi-objective loss function that incorporates
cosine distance with l1 or l2 norm (Equation 5
and Equation 6) on the task of BERT-like token
embedding matrix compression. We compare our
results versus the commonly used randomized SVD
method (Halko et al., 2011) to perform low-rank
matrix factorization. We have implemented our
token embeddings compression with the PyTorch
backend (Paszke et al., 2019) and as an extension
of Huggingface’s Transformers library (Wolf
et al., 2019), enabling researchers to apply our
compression method in most of the existing
Transformer architectures. It is worth noting that



0 10 25 50 75 150 400 750
650

700

800

900

1,000

1,100

1,200

1,300

1,400
1,500

Cosine distance coefficient (β).

Pe
rp

le
xi

ty
Perplexity (compression ratio=2.5)

SVD
Ψβ

Φ1,β
Φ[1.0,0.6],β
Φ[2.0,0.6],β

0 10 25 50 75 150 400 750

1,800

2,000

3,000

4,000

5,000

6,000

Cosine distance coefficient (β).

Pe
rp

le
xi

ty

Perplexity (5.0 compression ratio)

SVD
Ψβ

Φ1,β
Φ[1.0,0.6],β
Φ[2.0,0.6],β

0 10 25 50 75 150 400 750

4,500

5,000

6,000

7,000

8,000

9,000

10,000

12,000

14,000

Cosine distance coefficient (β).

Pe
rp

le
xi

ty

Perplexity (10.0 compression ratio)

SVD
Ψβ

Φ1,β
Φ[1.0,0.6],β
Φ[2.0,0.6],β

Figure 3: The impact of the β coefficient on Perplexity metric (lower is better) in the linear AutoEncoder loss
functions: Φα,β (Equation 5) and Ψβ (Equation 6). In all configurations we select a final model based on the
best Perplexity achieved during training. The term [t1, t2] indicates linearly decreasing α parameter (Equation 4).
Setting β = 0 represents not including cosine distance component in the loss function. We may observe that not
including cosine distance in the loss function as well as making it a too dominant component (very big β) is not
optimal for achieving good Perplexity. We also present the best Perplexity achieved by the baseline SVD method
for three compression ratios: 2.5, 5.0, 10.0. Our approach significantly outperforms the baseline in the studied
scenarios.

the offline training of our compression method on
BERT-base (Devlin et al., 2018) token embedding
matrix takes only few minutes on a single GPU
device.

4.1 Experiments

In this paper, we perform our experiments over
BERT-base model, but the general idea can be
applied to the vocabulary embeddings of any
other similar transformer-based architecture. The
BERT-Base token embedding matrix consists
of more than 23 Million parameters which is
around 21% of all parameters in the model.

We evaluate the quality of our final compressed
embeddings on the masked (Devlin et al., 2018)
language modeling task (using WikiText-103
test dataset), GLUE benchmark (Wang et al.,
2018) downstream tasks and SQuAD v1.1 dataset
(Rajpurkar et al., 2016). We also analyze results
on other metrics, namely RMSE, MAE and Cosine
Distance.

In Figure 3, we compare the Perplexity score
achieved by SVD3 method versus the results

3For SVD training, we select an iteration that minimizes
Perplexity over our language modeling dataset.



achieved by a linear AutoEncoder model with
different loss configurations, when compressing
BERT token embeddings. We specifically examine
the importance of cosine distance coefficient (β)
in our studied loss functions over three different
compression ratios: 2.5, 5, 10. The loss
objective Φt ,β (Equation 5) denotes constant
(during the entire training) α parameter (equals
to t ) and Φ[t1,t2],β denotes linearly decreasing α pa-
rameter (from t1 to t2). We present results
when α = 0, which represents combination of
l1 norm with cosine distance, and also when α

linearly decreases from 1.0 or from 2.0 to 0.6
([1.0,0.6] and [2.0,0.6] respectively). These values
have been selected experimentally.

Table 1 presents more metrics to compare SVD
method with our AutoEncoder-based approach.
We show the results of the model with the
best performing objective function (in terms
of Perplexity) for a given compression ratio.
Additionally, we examine the effect of adding
non-linear activation function to this selected
AutoEncoder model, where it can be seen that the
improvements due to addition of non-linearity is
marginal.

We further validate the quality of our com-
pressed token embeddings by inserting it into
the BERT-base architecture and fine-tuning the
model on different downstream tasks from the
GLUE benchmark (Wang et al., 2018) and on
the SQuAD v1.1 (Rajpurkar et al., 2016) dataset.
Table 2 presents an extensive comparison between
our best (in terms of perplexity) linear AE and
the SVD baseline on eight different downstream
tasks and over different compression ratios. More
specifically, we can see that our proposed method
is superior or competitive to the SVD baseline and
performs relatively better (compared to baseline)
on higher compression ratios. The original BERT
(without compression) performance is also added
for a better comparison of studied scenarios.

Figure 4 presents learning curves for three
selected NLU downstream tasks: SST-2 (Socher
et al., 2013), MRPC (Dolan and Brockett, 2005)
and SQuAD 1.1 (Rajpurkar et al., 2016). We
show results for the compression ratio of 10,
as we observed more significant gain for higher
compression ratios.

4.2 Discussion

The experiments presented in Figure 3 confirm
our claim that the l2 norm alone is not an optimal
measure for evaluating the quality of reconstructed
token embeddings in a Transformer-based archi-
tecture. We observe that adding cosine distance
objective function correlates positively with a
better Perplexity metric (Figure 3) and also with
higher performance on downstream tasks (Table 2).
Figure 3 demonstrates that the best results are
achieved when the cosine distance coefficient
β is a dominant component of the loss function.
However, if the β factor becomes too large,
the quality of the solution decreases. Hence,
we conclude that taking into account both the
commonly used L1/L2 distance and focusing on
the direction of the token vectors are indispensable.
We show that combining the l2 or l1 norm
with the cosine distance into one multi-objective
loss function and optimizing it by AutoEncoder
model outperforms the baseline SVD Perplexity
for all tested compression ratios (Figure 3).
Our experiments show that depending on the
compression ratio l2 or l1 norm may be a better
choice. However, they are conclusive that adding
cosine distance is the key factor.

Moreover, our approach outperforms SVD in
terms of accuracy for most GLUE benchmark
downstream tasks and on SQuAD v1.1 (Table 2).
We also observe that for higher compression ratios,
our approach outperforms the SVD approach
more significantly. More importantly, Figure 4
demonstrates that using our linear AutoEncoder
compressed module in the BERT model generally
converges faster than SVD-based compressed
module, which is especially important in few-shot
learning scenarios.

Looking at the results presented in Table 1, we
may also reflect on the importance of preserving
the token vector orientation and its effect on
Perplexity. More specifically, the mean cosine
distance measures for SVD and our approach are
pretty close, but its effect on Perplexity metric
is significant. Our approach indeed provides a
compressed submodule with a much better (lower)
Perplexity.

We also show that only adding a non-linear
activation function to the studied AutoEncoder
model has a little effect on improving Perplexity.
Table 1 presents the effect of modifying the
original linear AutoEncoder architecture by adding



CR (#Params) Architecture Objective RMSE Cosine Distance MAE Perplexity

2.5 (~9.38M) SVD l2 0.02233 0.10300 0.01734 1130
Linear AE (+ ELU) Φ[2.0,0.6],75 0.02427 (0.02431) 0.1024 (0.1028) 0.01896 (0.01902) 669.8 (664.0)

5.0 (~4.69M) SVD l2 0.02848 0.17490 0.02216 5035
Linear AE (+ ELU) Ψ400 0.03101 (0.03061) 0.17390 (0.17410) 0.02433 (0.02401) 1776 (1730)

10.0 (~2.34M) SVD l2 0.03215 0.23050 0.02506 13501
Linear AE (+ ELU) Φ1,400 0.03680 (0.03707) 0.22900 (0.22910) 0.02909 (0.02934) 4478 (4387)

Table 1: Additional metrics for comparing the performance of SVD baseline and the best performing linear
AutoEncoder model (we select the configuration that minimizes Perplexity, as presented in Figure 3) for different
compression ratios (CR). For each AutoEncoder model, we also present (in parentheses) the results after adding
non-linearity. Bold values indicate best results between SVD and linear AutoEncoder in each compression ratio.

CR Architecture SST-2
(Acc)

MRPC
(F1/Acc)

STS-B
(Pearson/Spearman

correlation)

QQP
(Acc/F1)

MNLI
(Acc)

QNLI
(Acc)

RTE
(Acc)

SQuAD v1.1
(F1/EM)

- Original BERT 91.74 88.12/83.58 88.71/88.55 90.67/87.43 84.04 90.96 65.34 81.97/73.42

2.5 SVD 89.22 82.37/75.25 86.27/85.72 89.88/86.39 82.83 89.46 62.92 80.75/72.34
Linear AE 90.83 86.64/80.88 87.35/86.88 90.04/86.72 83.13 89.16 62.58 81.29/72.85

5.0 SVD 87.04 83.95/77.70 84.88/84.2 89.79/86.45 81.39 87.33 59.21 80.37/71.67
Linear AE 88.07 86.67/81.37 85.9/85.43 89.2/85.66 81.11 87.53 64.26 80.53/72.00

10.0 SVD 82.0 83.95/72.55 80.93/80.67 87.6/83.57 76.59 83.51 54.51 74.15/65.0
Linear AE 84.29 84.06/77.7 84.7/84.16 88.32/84.38 79.26 86.09 58.48 75.70/66.75

Table 2: Performance comparison of the best SVD and the best linear AutoEncoder objective configuration on
several NLU tasks from GLUE benchmark (Wang et al., 2018) and for SQuAD v1.1 in different compression
ratios (CR).

0 1 2 3
60

70

80

Epochs

A
cc

ur
ac

y

SST-2

SV D
AE

0 2 4

70

75

Epochs

A
cc

ur
ac

y

MRPC

SV D
AE

0 1 2 3

40

60

80

Epochs

F1

SQuAD v1.1

SV D
AE

Figure 4: Comparing the learning curves of the best SVD baseline and the best-selected configuration of the
AutoEncoder model for SST-2 (Socher et al., 2013), MRPC (Dolan and Brockett, 2005), and SQuAD v1.1
(Rajpurkar et al., 2016) during fine-tuning for compression ratio=10.0 .

ELU (Clevert et al., 2015) as this activation
shows a better impact on Perplexity than other
activations in our experiments. It can be seen
that the improvements in Perplexity due to
the addition of non-linearities are marginal (as
previously observed by Lioutas et al. (2019) in
a distillation-based approach for token embeddings
compression). Hence, we focused only on the

linear AutoEncoder in all our downstream tasks
experiments.

5 Conclusion

In this work, we propose a simple linear AutoEn-
coder model with a multi-objective loss function
for BERT-like token embeddings compression.
We emphasize the importance of the direction



component (measured by the cosine distance
between the original and the reconstructed token
embeddings) in the compression objective function.
We challenge the commonly used SVD-based
matrix-factorization method and show that our
approach achieves significantly better zero-shot
language model Perplexity. Moreover, we show
that BERT-like models with our compressed token
embeddings submodule converge much faster and
outperform the SVD baseline on SQuAD v1.1 and
on GLUE benchmark tasks in most scenarios.

6 Acknowledgements

This research was partially funded by the Priority
Research Area Digiworld under the program
Excellence Initiative – Research University at the
Jagiellonian University in Kraków.

References
Tom B Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2015. Fast and accurate deep network
learning by exponential linear units (elus). arXiv
preprint arXiv:1511.07289.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training
of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Tomáš Foltỳnek, Norman Meuschke, and Bela Gipp.
2019. Academic plagiarism detection: a systematic
literature review. ACM Computing Surveys (CSUR),
52(6):1–42.

Nathan Halko, Per-Gunnar Martinsson, and Joel A
Tropp. 2011. Finding structure with random-
ness: Probabilistic algorithms for constructing
approximate matrix decompositions. SIAM review,
53(2):217–288.

Song Han, Jeff Pool, John Tran, and William J Dally.
2015. Learning both weights and connections
for efficient neural networks. arXiv preprint
arXiv:1506.02626.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio. 2016. Binarized
neural networks. In Proceedings of the 30th
International Conference on Neural Information
Processing Systems, pages 4114–4122.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. arXiv preprint arXiv:1909.10351.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised
learning of language representations. arXiv preprint
arXiv:1909.11942.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. 2016. Pruning filters for effi-
cient convnets. arXiv preprint arXiv:1608.08710.

Vasileios Lioutas, Ahmad Rashid, Krtin Kumar,
Md Akmal Haidar, and Mehdi Rezagholizadeh.
2019. Distilled embedding: non-linear embedding
factorization using knowledge distillation. arXiv
preprint arXiv:1910.06720.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen
Zhang, Yang Wang, Yaming Yang, Quanlu Zhang,
Yunhai Tong, and Jing Bai. 2020. Ladabert:
Lightweight adaptation of bert through hybrid model
compression. arXiv preprint arXiv:2004.04124.

Tomas Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Lailil Muflikhah and Baharum Baharudin. 2009.
Document clustering using concept space and cosine
similarity measurement. In 2009 International Con-
ference on Computer Technology and Development,
volume 1, pages 58–62. IEEE.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative
style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the
limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683.



Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019.
Structured pruning of large language models. arXiv
preprint arXiv:1910.04732.

Genta Indra Winata, Andrea Madotto, Jamin Shin,
Elham J Barezi, and Pascale Fung. 2019. On
the effectiveness of low-rank matrix factorization
for lstm model compression. arXiv preprint
arXiv:1908.09982.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv
preprint arXiv:1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime
Carbonell, Ruslan Salakhutdinov, and Quoc V
Le. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. arXiv
preprint arXiv:1906.08237.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou,
He Wen, and Yuheng Zou. 2016. Dorefa-net:
Training low bitwidth convolutional neural networks
with low bitwidth gradients. arXiv preprint
arXiv:1606.06160.


