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Abstract

Learning representations of entities and rela-
tions in structured knowledge bases is an ac-
tive area of research, with much emphasis
placed on choosing the appropriate geome-
try to capture the hierarchical structures ex-
ploited in, for example, ISA or HASPART rela-
tions. Box embeddings (Vilnis et al., 2018; Li
et al., 2019; Dasgupta et al., 2020), which rep-
resent concepts as n-dimensional hyperrect-
angles, are capable of embedding hierarchies
when training on a subset of the transitive clo-
sure. In Patel et al. (2020), the authors demon-
strate that only the transitive reduction is re-
quired and further extend box embeddings to
capture joint hierarchies by augmenting the
graph with new nodes. While it is possible
to represent joint hierarchies with this method,
the parameters for each hierarchy are decou-
pled, making generalization between hierar-
chies infeasible. In this work, we introduce
a learned box-to-box transformation that re-
spects the structure of each hierarchy. We
demonstrate that this not only improves the ca-
pability of modeling cross-hierarchy composi-
tional edges but is also capable of generalizing
from a subset of the transitive reduction.

1 Introduction

Representation learning for hierarchical relations is
crucial in natural language processing because of
the hierarchical nature of common knowledge, for
example, <Bird ISA Animal> (Athiwaratkun and
Wilson, 2018; Vendrov et al., 2016; Vilnis et al.,
2018; Nickel and Kiela, 2017). The ISA relation
represents meaningful hierarchical relationships
between concepts and plays an essential role in
generalization for other relations, such as the gen-
eralization of <organ PARTOF person> based on
<eye PARTOF of person>, and <organ ISA eye>.
The fundamental nature of the ISA relation means
that it is inherently involved in a large amount of

compositional reasoning involving other relations.
Modeling hierarchies is essentially the problem

of modeling a poset, or partially ordered set. The
task of inferring missing edges that requires learn-
ing a transitive relation, was introduced in Ven-
drov et al. (2016). The authors also introduce a
model based on the reverse product order on Rn,
which essentially models concepts as infinite cones.
Region-based representations have been effective
in representing hierarchical data, as containment
between regions is naturally transitive. Vilnis et al.
(2018) introduced axis-aligned hyperrectangles (or
boxes) that are provably more flexible than cones,
and demonstrated state-of-the-art performance in
multiple tasks.

Thus far, not as much effort has been put into
modeling joint hierarchies. Patel et al. (2020) pro-
posed to simultaneously model ISA and HASPART

hierarchies from Wordnet (Miller, 1995). In order
to do so, they effectively augmented the graph by
duplicating the nodes to create a single massive
hierarchy. Their model assigns two separate box
embeddings BISA and BHASPART for each node n,
where these two do not share any common param-
eter between them, and therefore misses out on a
large amount of semantic relatedness between ISA
and HASPART .

In this paper we propose a box-to-box transfor-
mation which translates and dilates box represen-
tations between hierarchies. Our proposed model
shares information between the ISA and HASPART

hierarchies via this transformation as well as cross-
hierarchy containment training objectives. We com-
pare BOX-TRANSFORM MODEL with multiple
strong baselines under different settings. We sub-
stantially outperform the prior TWO-BOX MODEL

while training with only the transitive reduction
(which is informally the minimal graph with the
same connectivity as the original hierarchy) of both
hierarchies and predicting inferred composition
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Figure 1: An example Box Embedding representation
of the ISA hierarchy where

edges. As mentioned above, our model’s shared
learned features should allow for more generaliza-
tion, and we test this by training on a subset of the
transitive reduction, where we find we are able to
outperform strong baselines. Finally, we perform a
detailed analysis of the model’s capacity to predict
compositional edges and transitive closure edges,
both from an overfitting and generalization stand-
point, identifying subsets where further improve-
ment is needed. The source code for our model and
the dataset can be found in https://github.com/

iesl/box-to-box-transform.git.

2 Related Work

Recent advances in representing one single hier-
archy mainly fall in two categories: 1) represent-
ing hierarchies in non-Euclidian space (eg. hyper-
bolic space, due to the curvature’s inductive bias to
model tree-like structures) 2) using region-based
representations instead of vectors for each node
in the hierarchy (Erk, 2009). Hyperbolic space
has been shown to be efficient in representing hier-
archical relations, but also encounters difficulties
in training (Nickel and Kiela, 2017; Ganea et al.,
2018b; Chamberlain et al., 2017).

Categorization models in psychology often rep-
resent a concept as a region (Nosofsky, 1986; Smith
et al., 1988; Hampton, 1991). Vilnis and McCal-
lum (2015) and Athiwaratkun and Wilson (2018)
use Gaussian distributions to embed each word in
the corpus, the latter of which uses thresholded
divergences which amount to region representa-
tions. Vendrov et al. (2016) and Lai and Hock-
enmaier (2017) make use of the reverse product
order on Rn+, which effectively results in cone
representations. Vilnis et al. (2018) further ex-
tend this cone representation to axis-aligned hyper-

rectangles (or boxes), and demonstrate state-of-the-
art performance on modeling hierarchies. Various
training improvement methods for box embeddings
have been proposed (Li et al., 2019; Dasgupta et al.,
2020), the most recent of which, GumbelBox, use a
latent noise model where box parameters are repre-
sented via Gumbel distributions to improve on the
loss landscape by making the gradient smooth for
the geometric operations involved with box embed-
dings.

Region representations are also used for tasks
which do not require modeling hierarchy. In Vilnis
et al. (2018), the authors also model conditional
probability distributions using box embeddings.
Abboud et al. (2020) and Ren et al. (2020) take
a different approach, using boxes for their capacity
to contain many vectors to provide slack in the loss
function when modeling knowledge base triples
or representing logical queries, respectively. Ren
et al. (2020) also made use of an action on boxes
similar to ours, involving translation and dilation,
however our work differs in both the task (i.e. rep-
resenting logical queries vs. joint hierarchies) and
approach, as their model represents entities using
vectors and a loss function based on a box-to-vector
distance. The inductive bias of hyperbolic space is
also exploited to model multiple relations, Ganea
et al. (2018a) learn hyperbolic transformations for
multiple relations using Poincare embeddings, and
show model improvement in low computational
resource settings. Patel et al. (2020), which our
work is most similar to, represent joint hierarchies
using box embeddings. However, they represent
each concept with two boxes ignoring the internal
semantics of the concepts.

Modeling joint hierarchies shares some similar-
ities with knowledge base completion, however
the goals of the two settings are different. When
modeling joint hierarchies you are attempting to
learn simultaneous transitive relations, and poten-
tially learn relevant compositional edges involv-
ing these relations. For knowledge base comple-
tion, on the other hand, you may be learning many
different relations, and primarily seek to recover
edges which were removed rather than inferring
new compositional edges. Still, the models which
perform knowledge base completion can be applied
to this task, as the data can be viewed as knowl-
edge base triples with only 2 relations. There have
been multiple works that aim to build better knowl-
edge representation (Bordes et al., 2013; Trouil-

https://github.com/iesl/box-to-box-transform.git
https://github.com/iesl/box-to-box-transform.git
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Figure 2: An overview of BOX-TRANSFORM MODEL on joint ISA and HASPART hierarchies. Composition edges
are created following certain rules and it should be correctly inferred for a well-trained model. The ISA Wing box
is transformed into a HASPART Wing box representing concepts that has wings, and Bird is a subset of it. Same
follows for Appendage, and the monotonicity in the ISA space is preserved in HASPART space.

lon et al., 2016; Sun et al., 2019; Balazevic et al.,
2019b). Most relevant, (Chami et al., 2020; Balaze-
vic et al., 2019a) recently proposed KG embedding
methods which embeds entities in the Poincaré
ball model of hyperbolic space. These models are
intended to capture relational patterns present in
multi-relational graphs, with a particular emphasis
on hierarchical relations.

3 Background

3.1 Box Lattice Model

Introduced in (Vilnis et al., 2018), a box lattice
model (or box model) is a geometric embedding
which captures partial orders and lattice structure
using n-dimensional hyper-rectangles. Formally,
we define the set of boxes B in Rn as

B(Rn) = {[x1, x1]× · · · × [xd, x
d]}, (1)

where xi, xj ∈ R, and we represent all degenerate
boxes where xi > xi with ∅. A box model for a set
S is a function Box : S → B(Rn) which captures
some desirable properties of the set S. As the name
implies, the box lattice model is particularly suited
to representing partial orders and lattice structures.

Definition 1 (Poset). A partially ordered set, or
poset, is a set P along with a relation � such that,
for each a, b, c ∈ P , we have

1. a � a (reflexivity)

2. if a � b and b � a then a = b (antisymmetry)

3. if a � b and b � c then a � c (transitivity)

Definition 2 (Lattice). A lattice is a poset where
each pair of elements have a unique upper bound
called the join, denoted by ∧, and a unique lower
bound called the meet, denoted by ∨.

The authors note that there are natural geometric
operations which form a lattice structure on B:

Box(x) ∧ Box(y) :=
∏
i

[max(xi, yi),min(xi, yi)],

(2)

Box(x) ∨ Box(y) :=
∏
i

[min(xi, yi),max(xi, yi)],

(3)

In other words, the meet of two boxes is the small-
est containing box, and the join is the intersection,
or ∅ if the boxes are disjoint. These geometric op-
erations map very neatly to hierarchies, where the
meet of two nodes is their closest common ancestor
and the join is the closest common descendent (or ∅
if no such node exists). The ability of this model to
capture lattice structure using geometric operations
makes it a natural choice to embed hierarchies.

3.2 Probabilistic Box Model Training

In Vilnis et al. (2018), the authors also introduced a
probabilistic interpretation of box embeddings and
a learning method which was improved upon in Li
et al. (2019) and Dasgupta et al. (2020). By using a
probability measure µ on Rd (or by constraining the
space to [0, 1]d), one can calculate box volumes as
µ(Box(X)). The pullback of this measure yields a
probability measure on S, and thus the box model



280

can be imbued with valid probabilistic semantics.
In particular, since the box space B is closed under
intersection, we can calculate joint probabilities by
computing P (X,Y ) = µ(Box(X)∧Box(Y )) and
similarly compute conditional probabilities as

P (X | Y ) =
µ(Box(X) ∧ Box(Y ))

µ(Box(Y ))
. (4)

The conversion from a poset or lattice structure
to probabilistic semantics is accomplished by as-
signing conditional probabilities, namely a � b
if and only if P (b | a) = 1. We note that the
properties required of the relation � follow as a
natural consequence of the axioms for conditional
probability. Apart from providing rigor and inter-
pretability, the calibrated probabilistic semantics
also inform and facilitate the training procedure
for box embeddings, which is accomplished via
gradient descent using KL-divergence with respect
to the aforementioned probability distribution as a
loss function.

As one might expect, care must be taken to han-
dle the case when boxes are disjoint, as there is no
gradient. In Vilnis et al. (2018) the authors made
use of the lattice structure to derive a lower bound
on the probability, and Li et al. (2019) introduced
an approximation to Gaussian convolution over the
boxes which similarly handled the case of disjoint
boxes. Dasgupta et al. (2020) improves this further
by taking a random process perspective, ensem-
bling over an entire family of box models. The
endpoints of boxes are represented using Gumbel
distributions, that is

GumbelBox(X) =
∏
i

[Xi, X
i],

Xi ∼ MaxGumbel(µi, β),

Xi ∼ MinGumbel(µi, β),

(5)

where µ, β are the location and scale parame-
ters of the Gumbel distribution respectively. The
MaxGumbel distribution is given by

f(x;µ, β) =
1

β
exp(−x−µ

β − e
−x−µ

β ), (6)

and the MinGumbel distribution given by negat-
ing x an µ. The Gumbel distribution was chosen
due to it’s min/max stability, making the set of
Gumbel boxes closed under intersection, i.e. the
intersection of two Gumbel boxes is another Gum-
bel box. We denote the space of all such boxes

as G. The expected volume of a Gumbel box can
be efficiently calculated analytically, and in Das-
gupta et al. (2020) the authors use this expected
volume to calculate the conditional probabilities
mentioned in equation (4). This training method
leads to improved performance on many tasks, and
is particularly beneficial when embedding trees,
thus we will use GumbelBox in our setting.

3.3 Modeling Joint Hierarchies

Many existing methods have been proposed for
modeling a single hierarchy, however entities are
often simultaneously part of multiple hierarchies,
for example hypernymy (i.e. ISA ) and meron-
omy (i.e. HASPART ). Furthermore, useful in-
formation can be shared across inferred compo-
sitional edges between the two hierarchies. For
example, as shown in 2, based on <Bird,HASPART

,Wing> and <Dove,ISA ,Bird>, we can infer
<Dove,HASPART ,Wing>. Due to the composi-
tional nature of these relations, we can infer not
only the per-relation transitive closure edges but
also the compositional edges, i.e <Dove, HAS-
PART , Wing>.

Formally, for two hierarchical relations r1 and
r2, composition edges can be formulated follow-
ing certain rules. In figure 2, the rules are de-
signed as follows: for <Head,HASPART ,Tail>,
< x1, ISA , Head> represent the sub-class of
Head, and <Tail, ISA , x2 > is the super-class
of Tail. Composition edges can be generated as
< x1,HASPART ,x2 >, < x1,HASPART ,Tail> or
< Head ,HASPART ,x2 >. These compositional
edges are identified in Patel et al. (2020), where
it is observed that a model which effectively cap-
tures both hierarchies should correctly predict not
only over the transitive closure of each individual
relation but also on these compositional edges.

4 Methods

4.1 Box-to-Box Transformation

As mentioned previously, our goal is to not only
capture intra-relation transitivity, but also require
the model to capture cross-hierarchy compositional
edges; that is, for a set S with two partial orders�1,
�2, we want a model capable of learning (a �1

b) ∧ (b �2 c) =⇒ a �2 c and (a �2 b) ∧ (b �1

c) =⇒ a �2 c . Furthermore, we hope to do
so without including these compositional edges
in our training data, with the expectation that the
embedding parameters capture relevant structure
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which allows us to recover them.
As shown in Dasgupta et al. (2020), Gumbel

boxes are able to model hierarchies, we would like
to benefit from this capability, particularly for mod-
eling the ISA hierarchy, and thus we seek to learn
a function f1 : S → G, where

a �1 b ⇐⇒
E[µ(f1(a) ∩ f1(b))]

E[µ(f1(a))]
= 1. (7)

For a given Gumbel box,

f(x) =
d∏
i=1

[Xi, X
i],

Xi ∼ MaxGumbel(µi, β),

Xi ∼ MinGumbel(µi + ∆i, β). (8)

where the free parameters are µi and ∆i. To si-
multaneously model a second relation, we train a
function ϕ : G → G such that

a �2 b ⇐⇒
E[µ(ϕ(f1(a)) ∩ f1(b))]

E[µ(ϕ(f1(a)))]
= 1. (9)

For notational simplicity, we abbreviate f2 = ϕ ◦
f1.

We choose the transformationϕ to operate on the
“min” coordinate of a Gumbel box and the “side-
lengths”, that is, we transform a given Gumbel box

f(x) =

d∏
i=1

[Xi, X
i],

Xi ∼ MaxGumbel(µi, β),

Xi ∼ MinGumbel(µi + ∆i, β). (10)

to

ϕ (GumbelBox(X)) =

d∏
i=1

[Yi, Y
i], (11)

where

Yi ∼ MaxGumbel(θiµi + bi, β)

Y i ∼ MinGumbel(θiµi+bi+softplus(θi∆i+b
i), β)

and the θi, θi, bi, bi are learned parameters. This
effectively translates and dilates the location param-
eters of the Gumbel distributions which represent
the “corners” of a given Gumbel box. We call this
model the BOX-TRANSFORM MODEL .

The softplus function is used here as a way to
ensure the max coordinate remains larger than the

min, and it also provides a simple overflow protec-
tion for the expected box volume, as might happen
with side-lengths larger than one in high dimen-
sions. While mathematically simple, this transfor-
mation allows for parameter sharing between the
embedding of a concept with respect to �1 and
with respect to �2. Importantly, the transformation
is capable of capturing both a global translation
and dilation as well as a scaled transformation of
the existing learned representation, allowing the
absolute position in space (which, for previous box
embedding models, was irrelevant) to potentially
capture relevant features of the entities.

Remark 1. The lack of a transformation on f1(b)
is not an oversight. Using figure 2 as an example,
if we consider the Bird box as representative of “all
things which are birds”, and the HASPART Wing
box as the representative of “all thing which have
wings”, then encouraging containment of the Bird
box inside the HASPART Wing box is quite natural.
This conceptual motivation is precisely captured by
the lack of a transformation on f1(b). This also co-
incides with the probabilistic semantics discussed
in section 3.2, and is also the method employed by
(Patel et al., 2020), where this cross-hierarchy con-
tainment objective is soley responsible for any flow
of information between hierarchies in the TWO-
BOX MODEL .

4.2 Connection to Two-Box Model

There are two main differences between our model
and the model introduced in Patel et al. (2020), the
TWO-BOX MODEL . First, the TWO-BOX MODEL

preceded the Gumbel box model, and instead uses
the Soft box model from (Li et al., 2019). To ensure
that the benefits from our model are not conflated
with the improvements from using Gumbel boxes
we also train a TWO-BOX MODEL from (Patel
et al., 2020) which makes use of Gumbel boxes.

Second, both models use different boxes to
represent different relations, however, TWO-BOX

MODEL allows both boxes to have free parameters,
relying on containment between boxes represent-
ing different relations to pass information. Under
the framework we have currently presented, this
would be equivalent to learning two functions, f1
and f2, both of which have separate parameters
for the min and side length of the boxes for each
entity. While such a model has significant repre-
sentational capacity, we would expect that it would
suffer greatly from a lack of generalization. We
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evaluate this hypothesis by creating a second test,
discussed in section 5.4, which removes edges from
the transitive reduction of the training data.

5 Experiments

5.1 Dataset
We demonstrate the efficacy of BOX-TRANSFORM

MODEL by using the joint hierarchy that has been
created by Patel et al. (2020) from WordNet (Miller,
1995). In this dataset, hypernymy (ISA ) and
meronymy (HASPART ) are two hierarchical re-
lations of WordNet over noun sysnets, which are
82, 114 in total. Individually, the hypernymy part
of the hierarchy contains 82, 114 nodes (i.e., all the
synsets) with 84, 363 edges in its transitive reduc-
tion and the meronymy portion has 11, 235 synsets
(out of 82, 114 synsets) with 9, 678 edges in its
transitive reduction.

Joint Hierarchy In order to evaluate the perfor-
mance on the joint hierarchy, Patel et al. (2020) cre-
ated composition edges using the inter-relational
semantics between hypernymy and meronymy. In
particular they use the following composition rules:

ISA ◦ ISA · · · ISA︸ ︷︷ ︸
0 or 1 or 2 times

◦ HASPART ◦ ISA ◦ ISA · · · ISA︸ ︷︷ ︸
0 or 1 or 2 times

= HASPART .
(12)

To illustrate from Figure 2, <Dove ISA
Bird> ∧ <Bird HASPART Wing> ∧ <Wing
ISA Appendage> implies that <birds HASPART

appendage>. In total, 189, 613 composition edges
are generated by the method described above for
evaluation of the model on the joint hierarchy task.
For each test/validation edge, a fixed set of negative
samples of size 10 was generated by corrupting the
head and tail 5 times each. The overall statistics
for the dataset is provided in Table 1.

We have also created a second training dataset
which further removes part of the transitive reduc-
tion to evaluate the models on their generalization
capability (refer to Section 5.4 & 5.5). The dataset
used for those section has different statistics and
they are reported in the respective sections.

5.2 Baseline Models and Training Details
We compare BOX-TRANSFORM MODEL against
geometric embedding methods as well as knowl-
edge base completion methods. We give a brief
description for each baseline below.

1. TWO-BOX MODEL : As mentioned in 4.2,
Patel et al. (2020) extends the idea of Box em-
beddings (Vilnis et al., 2018; Li et al., 2019) to

model joint hierarchies by defining two boxes
per node, one for each relation.

2. Order Embeddings: (Vendrov et al., 2016)
treats each concept as axis parallel cones in
positive orthant. We considered two different
cone parameters for each entity following the
TWO-BOX MODEL (Patel et al., 2020).

3. Poincaré Embeddings: (Nickel and Kiela,
2017) & Hyperbolic Entailment Cones
(Ganea et al., 2018b): Tree-structured data
are best captured in hyperbolic space (Cham-
berlain et al., 2017). Thus in Nickel and Kiela
(2017), the authors learn embedding on n-
dimensional Poincaré ball. For similar rea-
sons, Ganea et al. (2018b) uses the hyper-
bolic space however they extend the hyper-
bolic point embeddings to entailment cones.
Again, for these models, two separate parame-
ters are considered for each entity.

4. TransE and RotatE (Bordes et al., 2013; Sun
et al., 2019): This task can be posed as knowl-
edge base completion for a KB with only
two relations. Thus we evaluate TransE and
RotatE which are simple yet effective meth-
ods for knowledge base embeddings, which
achieve state-of-the-art for many knowledge
base embedding tasks. Unlike the TWO-BOX

MODEL (Patel et al., 2020) or the other base-
lines, these methods have shared representa-
tion for each entity, and thus they are expected
to generalise better on missing edges.

5. Hyperbolic KG Embeddings (Balazevic
et al., 2019a; Chami et al., 2020): We also
compared our method against recently pro-
posed KG embedding methods based on
hyperbolic embeddings to model hierarchi-
cal structures present in KGs. The Multi-
Relational Poincaré model (MuRP) (Balaze-
vic et al., 2019a) learns relation-specific trans-
forms of the entities that are embedded in
hyperbolic space. The RoTH (Chami et al.,
2020) parameterize the relation specific trans-
formations as hyperbolic rotation, where as
the AttH (Chami et al., 2020) combines hyper-
bolic reflection and rotation using attention.
More training details are in Appendix A.2.
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Table 1: Details of the hypernymy, meronymy hierarchies and the composition edges.

Transitive
Reduction

Transitive
Closure

Validation
(pos/neg)

Test
(pos/neg)

Hypernym 84,363 661,127 28,838/ 288,380 28,838/ 288,380
Meronym 9,678 30,333 5,164/ 51,640 5,164/ 51,640
Composite Edge - - 94,807/ 948,070 94,806/ 948,070

Table 2: Test F1 scores(%)of various methods
for predicting the Composition edges.

Methods F1 score

Poincaré Embeddings 43.8
Hyperbolic Entailment Cones 44.0
TransE 57.0
RotatE 51.0
Order Embeddings 68.5
MuRP 21.4
AttH 51.3
RotE 51.5
RotH 55.8
TWO-BOX MODEL (Patel et al., 2020) 68.1
TWO-BOX MODEL (with GumbelBox) 73.7
BOX-TRANSFORM MODEL 82.2

Table 3: Test F1 scores(%) of various methods for gener-
alization capability.

Methods F1 score

Poincaré Embeddings 33.5
Hyperbolic Entailment Cones 36.0
TransE 57.0
RotatE 55.0
Order Embeddings 54.5
MuRP 20.1
AttH 27.0
RotE 48.8
RotH 46.7
TWO-BOX MODEL (with GumbelBox) 58.9
BOX-TRANSFORM MODEL 63.9

5.3 Composition Edges from Transitive
Reduction

In order to demonstrate the ability of the model to
capture partially ordered (tree-like) data most em-
bedding methods (Ganea et al., 2018b; Nickel and
Kiela, 2017; Patel et al., 2020) train their model on
the transitive reduction and predict on the transitive
closure. For an evaluation on modeling the joint
hierarchy, therefore, it is natural to train the mod-
els only on the transitive reduction of hypernymy
and meronymy and evaluate on the composition
edges, as done in Patel et al. (2020). We report the
F1 score (with 1:10 negatives) for those edges in
table 2. The threshold used for the classification
is determined by maximizing the F1 score on the
validation set.

From Table 2, we observe that BOX-
TRANSFORM MODEL outperforms the other
baselines by a significant margin. As mentioned
in Patel et al. (2020) and so do we observe that in
the next section 5.4 that the Poincaré embeddings
and Hyperbolic entailment cones do face difficulty
in learning when presented only with transitive
reduction edges. However, the hyperbolic KG
method Atth RoTH are able to learn the composite
edges to a certain extent. The performance gain of
RotH over its euclidean counterpart RotE can be

attributed to its inductive bias towards modeling
hierarchies. The performance of Box embedding
method as proposed by Patel et al. (2020) performs
at par order embedding method. However using
GumbelBox formulation (Dasgupta et al., 2020),
we observe significant performance boost as
GumbelBox improves the local identifiability
of the parameter space. Still, the capability
of the BOX-TRANSFORM MODEL to benefit
from shared cross-hierarchy features allows it
to substantially outperform even this improved
version of the TWO-BOX MODEL . This is likely
due to the fact that the inductive bias provided
by the transformation is more in line with the
data; the model can benefit from the containments
learned as a result of the ISA relation, and learn
a HASPART transformation which potentially
preserves these containments.

5.4 Learning from Incomplete Transitive
Reduction

In Patel et al. (2020), and also in our previous ex-
periment, we already observe that box embedding
methods are highly capable of to recovering the
transitive closure (in our case, composition edges)
given the transitive reduction only. In this experi-
ment, we train with even less of the transitive re-
duction, moving some of these edges to the test
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Table 4: Single hierarchy F1 score (%) analysis on ISA and HASPART . The overall dataset is the combination of
overfitting, generalization and extended generalization

Type Overall
TC(X)

Overfitting
TC(X1)

Generalization
X-X1

Extended
Generalization

TC(X) - TC(X1)
-(X-X1)

TransE
ISA

52.9 52.1 66.5 46.0
Two Box Model 47.8 58.9 19.9 22.9

BOX-TRANSFORM MODEL 57.3 60.0 65.9 44.4

TransE
HASPART

59.9 63.0 56.1 48.3
Two Box Model 51.6 54.8 40.8 37.8

BOX-TRANSFORM MODEL 58.8 64.2 33.4 25.4

Table 5: Joint hierarchy F1 score (%) analysis. The overall data is the combination of overfitting and generalization.

Overall
COMP(X, Y)

Overfitting
COMP(X1, Y1)

Generalization
COMP(X, Y) - COMP(X1, Y1)

TransE 58.8 70.1 68.6
Two Box Model 62.5 72.7 63.6

BOX-TRANSFORM MODEL 69.6 86.1 70.0

set. Now, reconstruction of the closure and the
composition edges require models to generalize
over the missing parts of the graph. We train on
9175 meronymy edges and 80372 hypernymy edges
and test/validate on an aggregated pool of 251783
edges. Please refer to the Appendix A.1 for details
on dataset creation and statistics.
From Table 3, we observe that BOX-TRANSFORM

MODEL outperforms all the baseline methods by
a large extent. Although the two box model is per-
forming worse than BOX-TRANSFORM MODEL ,
it is able to beat other baselines. Out of the two
Knowledge base completion methods TransE per-
forms the best and achieves comparative perfor-
mance to two box model. Although the hyperbolic
KG embeddings were able to perform well on the
composite edges, their generalization performance
is relatively lower than other KG embedding meth-
ods. We also observe that the RotE model that was
under performing in composite edges, outperforms
RotH by some margin in this generalization setting.
We select the top three best performing methods
for further analysis for each type of edges in the
graph.

5.5 Performance analysis on different splits

Training on a subset of the transitive reduction
showed that our model could generalize to com-
position edges even with the absence of essential
edges to make such prediction. We further perform

evaluation analysis using the same training data
with the best-performed model selected by max-
imizing the f1 score on composition edges. We
evaluate the model performance on the transitive
closure for each hierarchy (ISA and HASPART ),
and the composition edges on the joint hierarchy.

For each single hierarchy, some edges are re-
moved from the transitive reductionX to create the
incomplete transitive reduction training data X1.
Evaluating the transitive closure of X directly eval-
uates the model’s performance on each hierarchy,
denoted as TC(X). This can be further divided into
three categories: dataset that evaluates model abil-
ity to capture transitive closure of X1, TC(X1),
dataset that evaluates model generalization ability
on missing edges X −X1, and dataset that eval-
uates model’s extended generalization ability on
TC(X)− TC(X1).

Composition edges from the joint hierarchy can
be analyzed the same way. COMP(X,Y ) repre-
sent all the composition edges in the full wordnet
dataset, composed by ISA transitive reduction X
and HASPART transitive reduction Y . It can be fur-
ther divided into two categories: data that evaluate
model overfitting ability to capture COMP(X1, Y1)
where X1 and Y1 is the corresponding training ISA
and HASPART data in section 5.4, and data that
evaluate model generalization ability on learning
logical operations COMP(X,Y )− COMP(X1, Y1).
The detailed statistics on each of these splits are
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provided in Appendix A.4. The evaluation dataset
is created by randomly creating negative examples
with the pos: neg ratio 1:10. We select the top
3 best models from section 5.4, then choose the
threshold that maximized the F1 score for the val-
idation data of each split and report the test F1.
As shown in table 4 and table 5, our model per-
forms the best overall across different dataset splits.
BOX-TRANSFORM MODEL performs much better
on the full transitive closure of ISA , and all the
composition edges. In general, BOX-TRANSFORM

MODEL performs much better on transitive closure
and composition edges by a large margin in all
overfitting settings. TransE does better on predict-
ing removed edges from the transitive reduction
(which serves more as an analysis of the model’s
capability, as it is not a typical evaluation for par-
tial order completion), however we note that our
model does surprisingly well on the ISA missing
edges, which we attribute to the shared semantics
between the hierarchy made possible by this box-
to-box transformation.

6 Conclusion

We proposed a box-to-box transformation that fa-
cilitates sharing of learned features across hierar-
chies when modeling joint hierarchies. We demon-
strate the BOX-TRANSFORM MODEL is capable of
achieving state-of-the-art performance compared
with other strong baseline models when predicting
compositional edges across a joint hierarchy. Fur-
thermore, the model also outperforms other models
when modeling the transitive closure of each rela-
tion independently. In the future, we aim to extend
the current model from two relations to multiple re-
lations in order to obtain more generalization from
hierarchical ISA edges.
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A Appendix

A.1 Dataset creation steps from Section 5.4

In order to remove edges from the transitive re-
ductions, we iterate through the transitive reduc-
tion edges of meronymy. With 0.5 probability we
choose the edge for further processing. For each
chosen HASPART edge, we select an outgoing ISA
edge and pair them. We drop the ISA edge from the
pair with 0.9 probability (the ratio of HASPART to
ISA transitive reduction) and drop the HASPART
edge in case the ISA is not dropped already. This
procedure ensures that all the edge removals hap-
pen around the composition edges, thus, the results
reflect the models true capacity to generalize well
for this joint hierarchy task. We evaluate the model
on the composition edges, the removed reduction
edges, and the closure edges with 251783 in num-
bers which we split into two parts for validation
and test. In Table 3, we report the F1 score on
this aggregated evaluation data with 1:10 fixed true
negatives.

A.2 Training Details

In our experiments, we have kept the number of pa-
rameters same across all the methods. We use 5 di-
mensional box embeddings for the Two Box Model
(Patel et al., 2020). Since box embeddings are spec-
ified using min and side length in the same dimen-
sion. Thus we compare with 10 dimensional order
embeddings, Poincaré embeddings, and hyperbolic
entailment cones. However, since the above men-
tioned methods has two different number of pa-
rameters for each node, we use 20 dimensional
vectors for RotatE, TransE to account for that. Our
BOX-TRANSFORM MODEL uses 10 dimension box
embeddings for similar reason.

Hyperparameter range: We use Bayesian hy-
permeter optimizer with Hyperband algorithm
for all the methods using the web interface
(Biewald, 2020). The hyperparameter ranges are
Gumbelβ ∈ [0.001, 3], Softplus temperature for
box volume T ∈ [1, 30], lr ∈ [0.0005, 1], batch
size ∈ {8096, 2048, 1024, 512}, number of nega-
tive samples ∈ [2, 30] for all the methods. For max
margin trainging we searched for the margin ∈
[1, 50].

The best hyperparameters for our method and a
few competitive baselines are provided in appropri-
ate config files along with the source code. We will
make the code public after the anonymity period.

In order to remove edges from the transitive re-
ductions, we iterate through the transitive reduc-
tion edges of meronymy. With 0.5 probability we
choose the edge for further processing. For each
chosen HASPART edge, we select an outgoing ISA
edge and pair them. We drop the ISA edge from
the pair with 0.9 probability (the ratio of HASPART

to ISA transitive reduction) and drop the HASPART

edge in case the ISA is not dropped already.
This procedure ensures that all the edge removals

happen around the composition edges, thus, the re-
sults reflect the models true capacity to generalize
well for this joint hierarchy task. We evaluate the
model on the composition edges, the removed re-
duction edges, and the closure edges with 251783
in numbers which we split into two parts for vali-
dation and test. In Table 3, we report the F1 score
on this aggregated evaluation data with 1:10 fixed
true negatives.

A.3 Visualization
We plot 2-dimensional box embeddings to inspect
the quality of our proposed BOX-TRANSFORM

MODEL . Please refer to Figure 3. Here, we use the
box embedding parameters of the best performing
model from experiment 5.3 (Table 2). Note that,
the model is 10 dimensional. However, for a per-
fectly trained model for the hierarchical tree-like
data, we should observe more numbers of full con-
tainments, i.e., containment along each dimension.
Thus, we pick two dimensions randomly out of the
10-d to visualize the box embeddings.

In the example in Figure 3 (next page),
the facts that <Car,HASPART ,CarDoor> and
<CarDoor,ISA ,Door> would enable us to infer
that <Car,HASPART , Door>. This is a particular
example of the compositional edges. We observe
from the Figure 3 that the HASPART transforma-
tion of the ”Car Door” and ”Door” successfully en-
closes the ISA transformation of the ”Car”, thus our
model is able infer that composition edge . All the
other composite edges such as <Sedan,HASPART ,
CarDoor >, <Sedan,HASPART , Door> etc. can
be similarly inferred from the visualization.

A.4 Details of the splits from Section 5.5
We report the performance of our method on dif-
ferent splits which are qualitatively different from
each other. The detailed statistics of these splits
can be found in Table 6 & 7.
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(a) Example of Joint Hierarchy extracted
from the WordNet dataset.

(b) We plot the transformed ISA box for ”Sedan” & ”Car” and
transformed HASPART box for ”Door”, ”Car Door”, ”Movable Barrier”
on the same space. The transformations do preserve the containment and
provide an consistent assignment of box embedddings for the example

on left.

Figure 3: 2-dimensional visualization of proposed Box embedding model.

Table 6: Dataset statistics for different parts of individ-
ual ISA and PARTOF hierarchy.

Hierarchy TC(X) TC(X1) X-X1
TC(X) - TC(X1)

- (X-X1)

IsA 61,667 51,195 3,991 6,481
HasPart 30,335 26,388 503 3,444

Table 7: Dataset statistics for different composition
edges in Joint Hierarchy.

Hierarchy Comp(X, Y) COMP(X1, Y1)
COMP(X, Y1)

- COMP(X1, Y1)

Joint Hierarchy 189,613 146,867 42,746


