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Abstract

While vector-based language representations
from pretrained language models have set a
new standard for many NLP tasks, there is
not yet a complete accounting of their inner
workings. In particular, it is not entirely clear
what aspects of sentence-level syntax are cap-
tured by these representations, nor how (if at
all) they are built along the stacked layers of
the network. In this paper, we aim to ad-
dress such questions with a general class of
interventional, input perturbation-based anal-
yses of representations from pretrained lan-
guage models. Importing from computational
and cognitive neuroscience the notion of repre-
sentational invariance, we perform a series of
probes designed to test the sensitivity of these
representations to several kinds of structure
in sentences. Each probe involves swapping
words in a sentence and comparing the rep-
resentations from perturbed sentences against
the original. We experiment with three differ-
ent perturbations: (1) random permutations of
n-grams of varying width, to test the scale at
which a representation is sensitive to word po-
sition; (2) swapping of two spans which do or
do not form a syntactic phrase, to test sensi-
tivity to global phrase structure; and (3) swap-
ping of two adjacent words which do or do
not break apart a syntactic phrase, to test sensi-
tivity to local phrase structure. Results from
these probes collectively suggest that Trans-
formers build sensitivity to larger parts of the
sentence along their layers, and that hierarchi-
cal phrase structure plays a role in this pro-
cess. More broadly, our results also indicate
that structured input perturbations widens the
scope of analyses that can be performed on
often-opaque deep learning systems, and can
serve as a complement to existing tools (such
as supervised linear probes) for interpreting
complex black-box models.!

1 Introduction

It is still unknown how distributed information
processing systems encode and exploit complex
relational structures in data, despite their ubiqui-
tous use in the modern world. The fields of deep
learning (Saxe et al., 2013; Hewitt and Manning,
2019), neuroscience (Sarafyazd and Jazayeri, 2019;
Stachenfeld et al., 2017), and cognitive science (EI-
man, 1991; Kemp and Tenenbaum, 2008; Tervo
et al., 2016) have given great attention to this ques-
tion, including a productive focus on the potential
models and their implementations of hierarchical
tasks, such as predictive maps and graphs. In this
work, we provide a generic means of identifying
input structures that deep language models use to
“chunk up” vastly complex data.

Natural (human) language provides a rich do-
main for studying how complex hierarchical struc-
tures are encoded in information processing sys-
tems. More so than other domains, human lan-
guage is unique in that its underlying hierarchy has
been extensively studied and theorized in linguis-
tics, which provides source of “ground truth” struc-
tures for stimulus data. Much prior work on charac-
terizing the types of linguistic information encoded
in computational models of language such as neural
networks has focused on supervised readout probes,
which train a classifier on top pretrained models to
predict a particular linguistic label (Belinkov and
Glass, 2017; Liu et al., 2019a; Tenney et al., 2019).
In particular, Hewitt and Manning (2019) apply
probes to discover linear subspaces that encode
tree-distances as distances in the representational
subspace, and Kim et al. (2020) show that these dis-
tances can be used even without any labeled infor-
mation to induce hierarchical structure. However,
recent work has highlighted issues with correlat-
ing supervised probe performance with the amount
of language structure encoded in such representa-

"Datasets, extracted features and code will be publicly
available upon publication.
e Correspondence

tions (Hewitt and Liang, 2019). Another popular
approach to analyzing deep models is through the
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lens of geometry (Reif et al., 2019; Gigante et al.,
2019). While geometric interpretations provide sig-
nificant insights, they present another challenge in
summarizing the structure in a quantifiable way.
More recent techniques such as replica-based mean
field manifold analysis method (Chung et al., 2018;
Cohen et al., 2019; Mamou et al., 2020) connects
representation geometry with linear classification
performance, but the method is limited to catego-
rization tasks.

In this work, we make use of an experimen-
tal framework from cognitive science and neuro-
science to probe for hierarchical structure in contex-
tual representations from pretrained Transformer
models (i.e., BERT (Devlin et al., 2018) and its
variants). A popular technique in neuroscience in-
volves measuring change in the population activity
in response to controlled, input perturbations (Mol-
lica et al., 2020; Ding et al., 2016). We apply this
approach to test the characteristic scale and the
complexity (Fig. 1) of hierarchical phrase struc-
ture encoded deep contextual representations, and
present several key findings:

1. Representations are distorted by shuffling
small n-grams in early layers, while the distor-
tion caused by shuffling large n-grams starts
to occur in later layers, implying the scale
of characteristic word length increases from
input to downstream layers.

2. Representational distortion caused by swap-
ping two constituent phrases is smaller than
when the control sequences of the same length
are swapped, indicating that the BERT repre-
sentations are sensitive to hierarchical phrase
structure.

3. Representational distortion caused by swap-
ping adjacent words across phrasal bound-
ary is larger than when the swap is within a
phrasal boundary; furthermore, the amount of
distortion increases with the syntactic distance
between the swapped words. The correlation
between distortion and tree distance increases
across the layers, suggesting that the character-
istic complexity of phrasal subtrees increases
across the layers.

4. Early layers pay more attention between syn-
tactically closer adjacent pairs and deeper lay-
ers pay more attention between syntactically
distant adjacent pairs. The attention paid in

each layer can explain some of the emergent
sensitivity to phrasal structure across layers.

Our work demonstrates that interventional tools
such as controlled input perturbations can be useful
for analyzing deep networks, adding to the growing,
interdisciplinary body of work which profitably
adapt experimental techniques from cognitive neu-
roscience and psycholinguistics to analyze compu-
tational models of language (Futrell et al., 2018;
Wilcox et al., 2019; Futrell et al., 2019; Ettinger,
2020).

2 Methods

Eliciting changes in behavioral and neural re-
sponses through controlled input perturbations is a
common experimental technique in cognitive neu-
roscience and psycholinguistics (Tsao and Living-
stone, 2008; Mollica et al., 2020). Inspired by
these approaches, we perturb input sentences and
measure the discrepancy between the resulting, per-
turbed representation against the original. While
conceptually simple, this approach allows for a tar-
geted analysis of internal representations obtained
from different layers of deep models, and can sug-
gest partial mechanisms by which such models are
able to encode linguistic structure. We note that
sentence perturbations have been primarily utilized
in NLP for representation learning (Hill et al., 2016;
Artetxe et al., 2018; Lample et al., 2018), data aug-
mentation (Wang et al., 2018; Andreas, 2020), and
testing for model robustness (e.g., against adver-
sarial examples) (Jia and Liang, 2017; Belinkov
and Bisk, 2018). A methodological contribution
of our work is to show that input perturbations can
complement existing tools and widens the scope
of questions that could be asked of representations
learned by deep networks.

2.1 Sentence perturbations

In this work we consider three different types of
sentence perturbations designed to probe for differ-
ent phenomena.

n-gram shuffling In the n-gram shuffling experi-
ments, we randomly shuffle the words of a sentence
in units of n-grams, with n varying from 1 (i.e., in-
dividual words) to 7 (see Fig. 2a for an example).
While the number of words which change absolute
position is similar for different n, larger n will bet-
ter preserve the local context (i.e., relative position)
of more words. Thus, we reason that n-gram swaps
affect the representations selective to the context
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Figure 1: Do Transformers build complexity along their layers? (a) The representation of a word is a function of its context, and
this cartoon illustrates an hypothesis that deeper representations use larger contexts. (b) An example parse tree, illustrating our
notion of phrase complexity. (¢) Cartoon of the distortion metric, where vectors are the z-scored feature vectors z, and color map

vectors to words.

with size n or higher within the sentence, and that
lower n will result in greater distortion in sentence
representations.

Phrase swaps The n-gram shuffling experiments
probe for sensitivity of representations to local con-
text without taking into account syntactic structure.
In the phrase swap experiments, we perturb a sen-
tence by swapping two randomly chosen spans. We
explore two ways of swapping spans. In the first
setting, the spans are chosen such that they are
valid phrases according to its parse tree.> In the
second setting, the spans are chosen that they are
invalid phrases. Importantly, in the second, control
setting, we fix the length of the spans such that the
lengths of spans that are chosen to be swapped are
the same as in the first setting (see Fig. 3a for an
example). We hypothesize that swapping invalid
phrases will result in more distortion than swap-
ping valid phrases, since invalid swaps will result
in greater denigration of syntactic structure.

Adjacent word swaps In the adjacent word
swapping experiments, we swap two adjacent
words in a sentence. We again experiment with two
settings — in the first setting, the swapped words
stay within the phrase boundary (i.e., the two words
share the same parent), while in the second setting,
the swapped words cross phrase boundaries. We
also perform a more fine-grained analysis where

3We use constituency parse trees from the English Penn
Treebank (Marcus et al., 1994).

we condition the swaps based on the “syntactic
distance” between the swapped words, where syn-
tactic distance is defined as the distance between
the two words in the parse tree (see Fig. 6¢). Since
a phrase corresponds to a subtree of the parse tree,
this distance also quantifies the number of nested
phrase boundaries between two adjacent words.
Here, we expect the amount of distortion to be pos-
itively correlated with the syntactic distance of the
words that are swapped.

2.2 Contextual representations from
Transformers

For our sentence representation, we focus on the
Transformer-family of models pretrained on large-
scale language datasets (BERT and its variants).
Given an input word embedding matrix X € R7*4
for a sentence of length 7', the Transformer applies
self attention over the previous layer’s representa-
tion to produce a new representation,

X = fil ... . Hyg)), Hyy=ApX1 Vi,

) NT
A, ; = softmax <(Xl—1Qlﬂ\)/(%l—1Kz,z) ) , N

where f; is an MLP layer, H is the number of
heads, dy = % is the head embedding dimension,
and Q; 4, K;;, Vi, € R4k gre respectively the
learned query, key, and value projection matrices
at layer [ for head i. The MLP layer consists of
a residual layer followed by layer normalization
and a nonlinearity. The 0O-th layer representation
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X is obtained by adding the position embeddings
and the segment embeddings to the input token em-
beddings X, and passing it through normalization
layer.*

In this paper, we conduct our distortion analysis
mainly on the intermediate Transformer represen-
tations X; = [x;1,...,X,7), where x;; € R?
is the contextualized representation for word ¢ at
layer [.° We analyze the trend in distortion as a
function of layer depth [ for the different perturba-
tions. We also explore the different attention heads
H;, € RT*dn and the associated attention matrix
A RTXT to inspect whether certain attention
heads specialize at encoding syntactic information.

2.3 Distortion metric

Our input manipulations allow us to specify the
distortion at the input level, and we wish to measure
the corresponding distortion in the representation
space (Fig. 1). Due to the attention mechanism, a
single vector in an intermediate layer is a function
of the representations of (potentially all) the other
tokens in the sentence. Therefore, the information
about a particular word might be distributed among
the many feature vectors of a sentence, and we wish
to consider all feature vectors together as a single
sentence-level representation.

We thus represent each sentence as a matrix and
use the distance induced by matrix 2-norm. Specif-
ically, let P € {0,1}7*7 be the binary matrix
representation of a permutation that perturbs the
input sentence, i.e., X = PX. Further let X; and
X be the corresponding sentence representations
for the [-th layer for the perturbed and original sen-
tences. To ignore uniform shifting and scaling, we
also z-score each feature dimension of each layer
(by subtracting the mean and dividing by the stan-
dard deviation where these statistics are obtained
from the full Penn Treebank corpus) to give Z; and
Z;. Our distortion metric for layer [ is then defined
as ||Z; — P~'Z;||/v/Td, where || - || is the matrix
2-norm (i.e., Frobenius norm).® Importantly, we in-

“However, the exact specification for the MLP and X
may vary across different pretrained models.

SBERT uses BPE tokenization (Sennrich et al., 2015),
which means that some words are split into multiple tokens.
Since we wish to evaluate representations at word-level, if a
word is split into multiple tokens, its word representation is
computed as the average of all its token representations.

There are many possible ways of measuring distortion,
induced by different norms. We observed the results to be
qualitatively similar for different measures, and hence we
focus on the Frobenius norm in our main results. We show the
results from additional distortion metrics in the A.2

vert the permutation of the perturbed representation
to preserve the original ordering, which allows us
to measure the distortion due to structural change,
rather than distortion due to simple differences in
surface form. We divide by \/ﬁ to make the met-
ric comparable between sentences (with different
T') and networks (with different d).

Intuitively, our metric is the scaled Euclidean
distance between the z-scored, flattened sentence
representations, z; € R7?. Because each dimen-
sion is independently centered and standardized,
the maximally unstructured distribution of z; is an
isotropic T'd-dimensional Gaussian. The expected
distance between two such vectors is approximately
v2Td. Therefore, we can interpret a distortion
value approaching v/2 as comparable to if we had
randomly redrawn the perturbed representation.

3 Experimental Setup

We apply our perturbation-based analysis on sen-
tences from the English Penn Treebank (Marcus
et al., 1994), where we average the distortion met-
ric across randomly chosen sentences. We analyze
the distortion, as measured by length-normalized
Frobenius norm between the perturbed and orig-
inal representations, as a function of layer depth.
Layers that experience large distortion when the
syntactic structure is disrupted from the perturba-
tion can be interpreted as being more sensitive to
hierarchical syntactic structure.

As we found the trend to be largely similar
across the different models, in the following sec-
tion, we primarily discuss results from BERT
(bert-base—cased). We replicate key re-
sults with other pretrained and randomly-initialized
Transformer-based models as well (see A.1).

4 Results

4.1 Sensitivity to perturbation size increases
along BERT layers

When we shuffle in units of larger n-grams, it only
introduces distortions in the deeper BERT layers
compared to smaller n-gram shuffles. The n-gram
sized shuffles break contexts larger than n, while
preserving contexts of size n or smaller. Interest-
ingly, smaller n-gram shuffles diverge from the
original sentence in the early layers (Fig. 2b, top
curve), implying that only in early layers are repre-
sentations built from short-range contexts. Larger
n-gram shuffles remain minimally distorted for
‘longer’ (Fig. 2b, bottom curve), implying that long-
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Figure 2: Swapping n-grams and phrases. (a) Examples of
basic n-gram shuffles, where colors indicate the units of shuf-
fling. (b) Distortion metric computed at each layer, condi-
tioned on n-gram size. Error bars hereafter represent stan-
dard error across 400 examples. (¢) An example parse tree,
with phrase boundaries shown as grey brackets, and two low-
order phrases marked; and examples of a phrasal and control
swap, with colors corresponding to the phrases marked above.
(d) Distortion, computed at each layer, using either the full
sentence, the subsentence of unswapped words, or the sub-
sentence of swapped words, conditioned on swap type. (e)
Full-sentence distortion for VP and NP phrase swaps. (f) Par-
tial linear regression coefficients (see A.4) for pre-trained and
untrained BERT models after controlling for swap size.

range contexts play a larger role deeper layer repre-
sentations.

Effects of phrasal boundaries Since BERT
seems to build larger contexts along its layers, we
now ask whether those contexts are structures of
some grammatical significance. A basic and im-
portant syntactic feature is the constituent phrase,
which BERT has previously been shown to repre-
sented in some fashion (Goldberg, 2019; Kim et al.,
2020). We applied two targeted probes of phrase
structure in the BERT representation, and found
that phrasal boundaries are indeed influential.

If we swap just two n-grams, the BERT repre-
sentations are less affected when phrases are kept
intact. We show this by swapping only two n-
grams per sentence and comparing the distortion
when those n-grams are phrases to when they cross
phrase boundaries (Fig. 3a), where we control for
the length of n-grams that are swapped in both
settings. There is less distortion when respect-
ing phrase boundaries, which is evident among
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Figure 3: Syntactic distance affects representational distortion.
(a) An example of adjacent swaps which do and do not cross
a phrase boundary, with low-order phrases colored. Phrase
boundaries are drawn in red. (b) Distortion in each layer, but
conditioned on the tree distance. (¢) For each head (column)
of each layer (row), the (Spearman) rank correlation between
distortion and tree distance of the swapped words. Colors are
such that red is positive, blue negative. (d) Rank correlations
between distortion (of the full representation) in the trained
and untrained BERT models. (e) Histogram of PMI values,
for pairs in the same phrase and not. (f) Similar to b, but
averaging all out-of-phrase swaps, and separating pairs above
(‘high’) or below (‘low’) the median PMI.

all feature vectors, including those in the position
of words which did not get swapped (Fig. 2d). The
global contextual information, distributed across
the sentence, is affected by the phrase boundary.
To see if the role of a phrase impacts its salience,
we distinguish between verb phrases (VP) and noun
phrase (NP) swaps. Swapping VP results in more
distortion than swapping NP (Fig. 2e). Since VP
are in general larger than NP, this effect could in
principle be due simply to the number of words
being swapped. Yet that is not the case: Using a
partial linear regression (see details in A.4), we
can estimate the difference between the VP and NP
distortions conditional on any smooth function of
the swap size, and doing this reveals that there is
still a strong difference in the intermediate layers
(Fig. 2f).
4.2 Sensitivity depends on syntactic distance
of the perturbation

Having seen that representations are sensitive to
phrase boundaries, we next explore whether that
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sensitivity is proportional to the number of phrase
boundaries that are broken, which is a quantity
related to the phrase hierarchy. Instead of swapping
entire phrases, we swap two adjacent words and
analyze the distortion based on how far apart the
two words are in the constituency tree (Fig. 3a)’.
This analysis varies the distance in the deeper tree
structure while keeping the distance in surface form
constant (since we always swap adjacent words).

If the hierarchical representations are indeed be-
ing gradually built up along the layers of these pre-
trained models, we expect distortion to be greater
for word swaps that are further apart in tree dis-
tance. We indeed find that there is a larger dis-
tortion when swapping syntactically distant words
(Fig. 3b). This distortion grows from earlier to later
BERT layers. Furthermore, when looking at the
per-head representations of each layer, we see that
in deeper layers there are more heads showing a
positive rank correlation between distortion and
tree distance (Fig. 3¢). In addition to a sensitivity
to phrase boundaries, deeper BERT layers develop
a sensitivity to the number of boundaries that are
broken.

Controlling for co-occurrence Since words in
the same phrase may tend to occur together more
often, co-occurrence is a potential confound when
assessing the effects of adjacent word swaps. Co-
occurrence is a simple statistic which does not re-
quire any notion of grammar to compute — indeed
it is used to train many non-contextual word em-
beddings (e.g., word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014)). So it is natural
to ask whether BERT’s resilience to syntactically
closer swaps goes beyond simple co-occurrence
statistics. For simplicity, let us focus on whether a
swap occurs within a phrase (tree distance = 2) or
not.

As an estimate of co-occurrence, we used the
pointwise mutual information (PMI). Specifically,
for two words w and v, the PMI is log %,
which is estimated from the empirical probabili-
ties. We confirm that adjacent words in the same
phrase do indeed have a second mode at high PMI
(Fig. 3e). Dividing the swaps into those whose
words have high PMI (above the marginal median)
and low PMI (below it), we can see visually that the
difference between within-phrase swaps and out-
of-phrase swaps persists in both groups (Fig. 3f).

"Note that for adjacent words, the number of broken phrase
boundaries equals the tree distance minus two.

When quantitatively accounting for the effect of
PMI with a partial linear regression (see A.4), there
remains a significant correlation between the break-
ing of a phrase and the subsequent distortion. This
indicates that the greater distortion for word swaps
which cross phrase boundaries is not simply due to
surface co-occurrence statistics.

Relation to linguistic information Do our input
perturbations, and the resulting the distortions, re-
flect changes in the encoding of important linguis-
tic information? One way to address this ques-
tion, which is popular in computational neuro-
science (DiCarlo and Cox, 2007) and more recently
BERTology (Liu et al., 2019a; Tenney et al., 2019),
is to see how well a linear classifier trained on a lin-
guistic task generalizes from the (representations
of the) unperturbed sentences to the perturbed ones.
With supervised probes, we can see how much
the representations change with respect to the sub-
spaces that encode specific linguistic information.

Specifically, we relate representational distortion
to three common linguistic tasks of increasing com-
plexity: part of speech (POS) classification; grand-
parent tag (GP) classification (Tenney et al., 2019);
and a parse tree distance reconstruction (Hewitt
and Manning, 2019)8. The probe trained on each of
these tasks is a generalized linear model, mapping
a datapoint x (i.e. representations from different
layers) to a conditional distribution of the labels,
p(y|607x) (see A.5 for model details). Thus a ready
measure of the effect of each type of swap, for a
single sentence, is log p(y|07x;) — log p(y|67X;),
where X; is same datum as x; in the perturbed rep-
resentation’. Averaging this quantity over all dat-
apoints gives a measure of content-specific distor-
tion within a representation, which we will call
“inference impairment”.

Based on the three linguistic tasks, the distortion
we measure from the adjacent word swaps is more
strongly related to more complex information. The
inverted L shape of Fig. 4a suggests that increas-
ing distortion is only weakly related to impairment
of POS inference, which is perhaps unsurprising
given that POS tags can be readily predicted from

8While the original paper predicted dependency tree dis-
tance, in this paper we instead predict the constituency tree
distance.

°POS- and GP-tag prediction outputs a sequence of la-
bels for each sentence, while the distance probe outputs the
constituency tree distance between each pair of words. Then
log p(y|67x;) is simply the log probability of an individual
label.
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local context. A deeper syntactic probe, the GP
classifier (4b), does show a consistent positive rela-
tionship, but only for swaps which break a phrase
boundary (i.e. distance >2). Meanwhile, impair-
ment of the distance probe (4¢), which reconstructs
the full parse tree, has a consistently positive rela-
tionship with distortion, whose slope is proportion-
ate to the tree distance of the swap. Thus, when
specifically perturbing the phrasal boundary, the
representational distortion is related to relatively
more complex linguistic information.

4.3 Sensitivity to perturbations is mediated
by changes in attention

In the transformer architecture, contexts are built
with the attention mechanism. Recall that atten-
tion is a mechanism for allowing input vectors to
interact when forming the output, and the ultimate
output for a given token is a convex combination
of the features of all tokens (Eq. 1). It has been
shown qualitatively that, within a layer, BERT allo-
cates attention preferentially to words in the same
phrase (Kim et al., 2020), so if our perturbations af-
fect inference of phrase structure then the changes
in attentions could explain our results. Note that it
is not guaranteed to do so: the BERT features in a
given layer are a function of the attentions and the
“values” (each token’s feature vector), and both are
affected by our perturbations. Therefore our last
set of experiments asks whether attention alone can
explain the sensitivity to syntactic distance.

To quantify the change in attention weights
across the whole sentence, we compute the dis-
tance between each token’s attention weights in the
perturbed and unperturbed sentences, and average
across all tokens. For token i, its vector of atten-
tion weights in response to the unperturbed sen-
tence is a’, and for the perturbed one @’ (such that

j aé- = 1). Since each set of attention weights
are non-negative and sum to 1 due to softmax, we
use the relative entropy'? as a distance measure.
This results in the total change in attention being:

ARy aj
Aa = TZZajlog =

i=1 j=1 J

which is non-negative and respects the structure
of the weights. We confirmed that other measures
(like the cosine similarity) produce results that are
qualitatively similar.

First, we observe that the changes in the atten-
tion depend on the layer hierarchy when adjacent
word swaps break the phrase boundary. Like the
distortion, attention changes little or not at all in
the early layers, and progressively more in the final
layers (Fig. 5b). Furthermore, these changes are
also positively correlated with syntactic distance
in most cases, which suggests that representation’s
sensitivities to syntactic tree distance may primarily
be due to changes in attention.

To see whether the changes in attention can in
fact explain representational sensitivity to syntactic
distance, we turned to the same partial linear re-
gression model as before (A.4) to compute the the
correlation between the representation’s distortion
and the tree distance between the swapped adjacent
words, after controlling for changes in attention
(Aa). The correlations substantially reduced in the
controlled case (Fig. 5c), which suggests that at-
tention weights contribute to the representational
sensitivity to syntactic tree distance; but the cor-
relations are not eliminated, which suggests that
distortions from the previous layer also contribute.

10Also called the KL divergence.
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Figure 5: Attention changes explain part of the sensitivity
to tree distance. (a) An example of the attention matrices
for all heads in a single layer (layer 8), given the above sen-
tence as input. Phrases in the sentence are drawn as blocks
in the matrix. (b) The change in attention between the un-
perturbed and perturbed attention weights, averaged over all
out-of-phrase swaps. Columns are sorted independently by
their value. (¢) The head/layer-wise rank correlations (+95%
confidence intervals) between distortion and tree distance after
controlling for changes in attention, plotted against the uncon-
trolled rank correlations. Being below the diagonal indicates
that the relationship between distortion and tree distance is
partially explained by Aa.

5 Discussion and Conclusion

In this paper, we used the representational sensi-
tivity to controlled input perturbation as a probe
of hierarchical phrasal structure in deep linguistic
representations. The logic of our probe is the rep-
resentations which respect phrase structure should
less sensitive to perturbations which preserve the
phrasal unit, and more sensitive to those which dis-
rupt a phrase. We hope that our results demonstrate
the versatility and utility of perturbation-based ap-
proaches to studying deep language models.

We showed that BERT and its variants build rep-
resentations which are sensitive to the phrasal unit,
as demonstrated by greater invariance to pertur-
bations preserving phrasal boundaries compared
to control perturbations which break the phrasal
boundaries (Fig. 2-5). We also find that while the
representational sensitivity to broken phrase bound-
aries grows across layers, this increase in sensitivity
is more prominent when the breakage occurs be-
tween two words that are syntactically distant (i.e.,
when the broken phrase is more complex). Using
the same methods to show that changes in atten-
tion provide a partial explanation for perturbation-
induced distortions.

While our distortion metric is a task-agnostic
measure of change in the neural population activity,

this may or may not reflect changes in the encod-
ing of specific linguistic information. To relate our
metric with specific kinds of information, we mea-
sured the change in the performance of supervised
linear probes trained on top of the representation
(Fig. 4). The probe sensitivity measure also bears
a suggestive resemblance to the saliency map anal-
ysis (Simonyan et al., 2014) in machine learning,
which is used to highlight the most output-sensitive
regions within the input. To draw an analogy with
that work, one way of characterizing our results is
that phrasal boundaries are regions of high saliency
in hidden representations and that, in deep layers,
complex phrase boundaries are more salient than
simple phrase boundaries. Further exploring the
use of supervised probes and our input perturba-
tions as a tool for layerwise probing of syntactic
saliency is a promising direction for future work.

Finally, several studies (Sinha et al., 2021; Gupta
etal., 2021; Pham et al., 2020), have recently found
that masked language models pretrained or fine-
tuned on sentences that break natural word order
(e.g. via n-gram shuffling) still perform quite well
across various tasks, even on supervised probes
of syntactic phenomena. It would be interesting
to apply our perturbative analyses on such models
to see if they exhibit less sensitivity to the experi-
mental vs. control setups (e.g. n-gram vs. phrase
swaps). This may indicate that such models do
not capture representational correlates of phrase
structure in their representations despite their good
performance on supervised probing tasks. In such
a case, what tasks would actually require the “lin-
guistic knowledge” that we are probing for? In
similar vein, applying our perturbative analyses on
models that explicitly incorporate syntax into their
representations (Sundararaman et al., 2019; Wang
et al.; Zanzotto et al., 2020; Kuncoro et al., 2020)
might provide further insights.

Our method and results suggest many interest-
ing future directions. We hope that this work will
motivate: (1) a formal theory of efficient hierarchi-
cal data representations in distributed features; (2)
a search for the causal connection between atten-
tion structure, the representational geometry, and
the model performance; (3) potential applications
in network pruning studies; (4) an extension of
the current work as a hypothesis generator in neu-
roscience to understand how neural populations
implement tasks with an underlying compositional
structure.
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A Appendix

Here we go into further detail on our methods and
data to aid in reproducibility.

A.1 Model details

Here we give the details for all models considered
in this paper. The majority of results are from
BERT, but we also tested other variants.!!

* BERT (Devlin et al., 2018)
bert-base-cased. 12-layer, 768-hidden,
12-heads, 110M parameters.

* RoBERTa (Liu et  al, 2019b)
roberta-base. 12-layer, 768-hidden,
12-heads, 125M parameters.

¢ ALBERT (Lan et al., 2019)
albert-base-vl. 12 repeating lay-
ers, 128 embedding, 768-hidden, 12-heads,
11M parameters.

e DistilBERT (Sanh et al., 2019)
distilbert-uncased. 6-layer, 768-
hidden, 12-heads, 66M parameters. The

model distilled from the BERT model
bert-base-uncased checkpoint.

* XLNet (Yang et al.,
x1lnet-base-cased. 12-layer,
hidden, 12-heads, 110M parameters.

2019)
768-

Note that the hidden size is 768 across all the mod-
els. For each pre-trained model, input text is tok-
enized using its default tokenizer and features are
extracted at token level.

"'We use the implementation from https://github.
com/huggingface/transformers.
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Figure 6: Replicating the adjacent word swapping experiments
using different transformer architectures. Lines are the mean
Frobenius distance, and the shading is £1 standard error of
the mean.

A.2 Additional metrics

In addition to the scaled Frobenius distance, we
also considered other ways of measuring distortion
in the representation. We will briefly report results
for two other metrics, and describe them here.

CCA Canonical correlations analysis
(CCA) (Raghu et al.,, 2017) measures the
similarity of two sets of variables using many sam-
ples from each. Given two sets of random variables
x = (x1,22,..,xy) and y = (Y1,Y2, s Ym)>
CCA finds linear weights a € R” and b € R™
which maximise cov(a - x,b - y). In our context,
we treat the representation of the original sentence
as x, and the representation of the perturbed
sentence as y, and the resulting correlation as a
similarity measure.

Since CCA requires many samples, we use the
set of all word-level representations across all per-
turbed sentences. For example, to construct the
samples of x from S perturbed sentences, we get
use [X1|Xs|...|Xs], where each X; € R768x7:,
Unless specified otherwise, S = 400. For good
estimates, CCA requires many samples (on the or-
der of at least the number of dimensions), and we
facilitate this by first reducing the dimension of the
matrices using PCA. Using 400 components pre-
serves ~ 90% of the variance. Thus, while CCA
gives a good principled measure of representational
similarity, its hunger for samples makes it unsuit-
able as a per-sentence metric.

We also measured distortion using Projec-
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Figure 7: Results from the pretrained BERT model using
alternative distortion metrics, on the n-gram shuffling and
phrase swap experiments.

tion Weighted Canonical Correlation Analysis
(PWCCA), an improved version of CCA to esti-
mate the true correlation between tensors (Morcos
etal., 2018).12

As reported in Figure 7, we did not find any
qualitative differences between PWCCA and CCA
in our experiments.

Cosine A similarity measure defined on individ-
ual sentences is the cosine between the sentence-
level representations. By sentence-level represen-
tation, we mean the concatenation of the word-
level vectors into a single vector s € RNT
(where N is the dimension of each feature vec-
tor). Treating each dimension of the vector as

a sample, we can then define the following met-
original _swapped
i 15

ric: corr (s ) This is equivalent
to computing the cosine of the vectors after sub-
tracting the (scalar) mean across dimensions, hence

we will refer to it as ‘cosine’.

A.3 Additional details on the dataset

In this section, we describe additional details of the
manipulations done on the datasets.

n-gram shuffling For a given a sentence, we
split it into sequential non-overlapping n-gram’s
from left to right; if the length of the sentence is not
a multiple of n, the remaining words form an ad-
ditional m-gram, m < n. The list of the n-gram’s
is randomly shuffled. Note that the 1-gram case
is equivalent to a random shuffling of the words.

"ZFor both CCA and PWCCA, we use the implementation
from https://github.com/google/svcca.

In our analysis, we consider n-grams, with n vary-
ing from 1 (i.e., individual words) to 7 and all the
sentences have at least 10 words.

We provide here an example of n-gram shuffling.

* Original: The market ’s pessimism reflects the
gloomy outlook in Detroit

* 1-gram : market pessimism Detroit

The gloomy reflects outlook

e 2-gram : ’s pessimism in Detroit
gloomy outlook

* 3-gram : The market ’s gloomy outlook in

* 4-gram : in Detroit The market ’s pessimism

* 5-gram : the gloomy outlook in Detroit The
market ’s pessimism reflects

* 6-gram : outlook in Detroit The market ’s
pessimism reflects the gloomy

* 7-gram : in Detroit The market ’s pessimism
reflects the gloomy outlook

Phrase swaps Using constituency trees from the
Penn Treebank(Marcus et al., 1994), we define
phrases as constituents which don’t contain any
others within them. (See Fig. 2¢c or Fig. 3a in the
main text.) Phrase swaps thus consist of swapping
one phrase with another, and leaving other words
intact.

To provide an appropriate control perturbation,
we swap two disjoint n-grams, which are the same
size as true phrases but cross phrase boundaries.

Adjacent word swaps To better isolate the ef-
fect of broken phrase boundaries, we used adja-
cent word swaps. Adjacent words were chosen
randomly, and one swap was performed per sen-
tence.

A.4 Partial linear regression

In order to control for uninteresting explanations of
our results, we often make use of a simple method
for regressing out confounds. Generally, we want
to assess the linear relationship between X and Y,
when accounting for the (potentially non-linear)
effect of another variable Z. In our experiments,
X is always the swap-induced distortion and Y
is the swap type, like integer-valued tree distance
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or binary-valued in/out phrase. We wish to allow
E[Y|Z] and E[X|Z] to be any smooth function of
Z, which is achieved by the least-squares solution
to the following partially linear model:

YNﬁxX'f‘ﬁz'f(Z)

where f(z) is a vector of several (we use 10) basis
functions (we used cubic splines with knots at 10
quantiles) of Z. Both regressions have the same op-
timal (3, but the one on the left is computationally
simpler (Hansen, 2000). The standard confidence
intervals on (3, apply.

Intuitively, the (3, obtained by the partially lin-
ear regression above is related to the conditional
correlation of X and Y given Z: p(X,Y|Z). Like
an unconditonal correlation, it will be zero if X
and Y are conditionally independent given Z, but
not necessarily vice versa (both X and Y must be
Gaussian for the other direction to be true). To
compute conditional rank correlations (which as-
sess a monotonic relationship between X and Y),
we rank-transform X and Y (this changes the con-
fidence interval calculations).

We apply this method to swap size in Fig. 2
and attentions in Fig. 5. In these supplemental
materials, we will also report the results when X is
the binary in/out phrase variable, and Z is PMI. The
full p-values and coefficients of the uncontrolled
and controlled regressions can be found in Table 1,
where we observe that past layer 2, the p-value on
phrase boundary is very significant (p < 10~12).

A.5 Supervised probes

In this section, we describe the experiments based
on the three linguistic tasks: parts of Speech (POS);
grandparent tags (GP); and constituency tree dis-
tance.

The POS and GP classifiers were multinomial
logistic regressions trained to classify each word’s
POS tag (e.g. ‘NNP’, ‘VB’) and the tag of its
grandparent in the constituency tree, respectively.
If a word has no grandparent, its label is the root
token ‘S’. The probes were optimized with standard
stochastic gradient descent, 50 sentences from the
PTB per mini-batch. 10 epochs, at 10~3 learning
rate, were sufficient to reach convergence.

The distance probe is a linear map B applied to
each word-vector w in the sentence, and trained
such that, for all word pairs ¢, j, TreeDist(i, j)
matches |B(w; — w;)||3 as closely as possible.
Unlike the classifiers, there is freedom in the out-

put dimension of B; we used 100, although perfor-
mance and results are empirically the same for any
choice greater than ~ 64. Our probes are different
from (Hewitt and Manning, 2019) in two ways: (1)
we use constituency trees, instead of dependency
trees, and (2) instead of an L1 loss function, we use
the Poisson (negative) log-likelihood as the loss
function. That is, if \; ; = || B(w; — w;)||3, and
y;,; = TreeDist (4, j)

—lij = yijlogAij — Aijj —logyi ;!

Otherwise, the probes are trained exactly as in (He-
witt and Manning, 2019). Specifically, we used
standard SGD with 20 sentences from the PTB in
each mini-batch, for 40 epochs.

Evaluation A linear model is fit to maximize
p(y|0(x)), with p a probability function (multino-
mial for classifiers, Poisson for distance), and x
coming from the unperturbed transformer repre-
sentation. We evaluate the model on X, which
are the representations of the data when generated
from a perturbed sentence. We take the average of
log p(y|0(x;)) — log p(y|0(X;)) over all the data i
in all sentences. For example, all words for the clas-
sifiers, and all pairs of words for the distance probe.
Concretely, we are just measuring the difference
in validation loss of the same probe on the x data
and the x data. But because the loss is an appropri-
ate probability function, we can interpret the same
quantity as a difference in log-likelihood between
the distribution conditioned on the regular repre-
sentation and that conditioned on the perturbed
representation. Distortion is similarly computed us-
ing the full sentence, providing a number for each
swap in each sentence.
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Without PMI With PMI

Layer Coeff.x1072  p-value Coeff. x1072 p-value
Emb. —0.21 5.6 x 107° —0.11 9.4 x 1072
1 —0.11 3.4 x 1072 —0.05 4.2 x 1071
2 —0.74 < 10716 —0.53 2.12 x 1078
3 —1.6 < 10716 -1.3 2.2 x 10716
4 —2.0 < 10716 —14 4.4 x 10716
5 —2.1 < 10716 —1.5 8.8 x 10716
6 —2.4 < 10716 -1.7 < 10716
7 —2.6 < 10716 —1.7 1.6 x 10715
8 —34 < 10716 -2.3 < 10716
9 -3.8 < 10716 —2.7 < 10716
10 —4.1 < 10716 -3.0 < 10716
11 —-3.8 < 10716 -2.8 < 10716
12 —4.2 < 10716 -3.1 < 10716

Table 1: Coefficients and p-values of the regular (‘without PMI’) and controlled (‘with PMI’) regressions of distortion against
phrase boundary.
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