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Abstract

Models based on the transformer architecture,
such as BERT, have marked a crucial step for-
ward in the field of Natural Language Pro-
cessing. Importantly, they allow the creation
of word embeddings that capture important
semantic information about words in context.
However, as single entities, these embeddings
are difficult to interpret and the models used
to create them have been described as opaque.
Binder and colleagues proposed an intuitive
embedding space where each dimension is
based on one of 65 core semantic features. Un-
fortunately, the space only exists for a small
data-set of 535 words, limiting its uses. Pre-
vious work (Utsumi, 2018, 2020; Turton et al.,
2020) has shown that Binder features can be
derived from static embeddings and success-
fully extrapolated to a large new vocabulary.
Taking the next step, this paper demonstrates
that Binder features can be derived from the
BERT embedding space. This provides two
things; (1) semantic feature values derived
from contextualised word embeddings and (2)
insights into how semantic features are repre-
sented across the different layers of the BERT
model.

1 Introduction

The last decade or so has seen a rapid progress in
the field of Natural Language Processing (NLP)
with a combination of new models and increas-
ingly powerful hardware resulting in state of the art
performances across a number of common tasks
(Wang et al., 2020). One important area of improve-
ment has been in the vector-space representation
of words, known as word embeddings. Embedding
models create word vectors within a vector space
that captures important semantic and grammati-
cal information (Boleda, 2020). Models such as
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) were popular in the 2010s,

but are static, meaning only one embedding is pro-
duced for each word. In reality words can have
multiple meanings; 7% of common English word
forms have homonyms and over 80% are polyse-
mous (Rodd et al., 2002).

Deep learning language models such as ELMO:
Embeddings from Language Models (Peters et al.,
2018) addressed this issue, using deep neural-
network language models to incorporate context
and produce contextualised embeddings. Follow-
ing this, the introduction of the transformer archi-
tecture and in particular its implementation in the
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019) model, re-
sulted in even better performing contextual embed-
dings.

Regardless of whether the embeddings men-
tioned are static or contextual, they all have the
issue that, as individual objects, they are hard to in-
terpret (Şenel et al., 2018). Whilst efforts have been
made to produce more interpretable embeddings
e.g. (Şenel et al., 2020; Panigrahi et al., 2019),
the general approach has been to interpret them in
relation to each-other. For example, the relative
distance between word embeddings can indicate
their semantic similarity (Schnabel et al., 2015).
Alternatively, dimensionality reduction techniques
can be used to visualise where the words sit within
the embedding space (Liu et al., 2017). However,
these methods may just show how the embeddings
are related, rather than why, further feeding into the
general criticism levelled at deep learning architec-
tures; that they are opaque and difficult to interpret
(Belinkov and Glass, 2019).

Binder et al. (2016) presented an alternative em-
bedding space for words, based on 65 core semantic
features, where each dimension relates to a feature.
Unfortunately, the Binder dataset only contains 535
words, severely limiting its use for large scale text
analysis. Previous research (Utsumi, 2018, 2020;
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Turton et al., 2020) has shown that the Binder fea-
ture values can be derived from static embeddings,
such as Word2Vec, and successfully extrapolated
to a large new vocabulary of words. The purpose of
this research is to demonstrate that Binder features
can be successfully derived from BERT embedding
space allowing the features to be derived from con-
textual embeddings. Along the way, this also pro-
vided the opportunity to study how different types
of semantic information are represented across the
different layers of the BERT model.

2 Related Work

2.1 Probing Transformer Models

Whilst transformer models such as BERT have led
to impressive improvements in NLP tasks, along-
side other deep learning models they have been
criticised as opaque ”black boxes” that are diffi-
cult to interpret (Castelvecchi, 2016). To address
this researchers have made efforts to better under-
stand how they work. For example, Clark et al.
(2019) were able to show that patterns of atten-
tion in BERT respond to certain syntactic relations
between words. Other work has looked at how
semantic information is represented in BERT. Re-
searchers have shown that BERT can learn to rep-
resent semantic roles (Ettinger, 2020), entity types
and semantic relations (Tenney et al., 2019). Reif
et al. (2019) demonstrated clear ‘clusters’ for differ-
ent senses of the same word, when visualising the
spatial location of their BERT embeddings. Jawa-
har et al. (2019) demonstrated that embeddings
from different layers of BERT performed better at
different tasks, with semantic information tending
to be better represented by the later layers. Whilst
these studies provide important insights into the
inner workings of transformer models, they do lit-
tle to improve interpretability of individual word
embeddings extracted from them.

2.2 Interpretable Word Embeddings

Research has also been done to produce more in-
terpretable static word embeddings e.g. (Şenel
et al., 2020; Panigrahi et al., 2019). For contextual
embeddings, Aloui et al. (2020) produced embed-
dings with semantic super-senses as dimensions,
but these are quite broad. The embedding space of
Binder et al. (2016) offers a more fine-grained rep-
resentation of semantics, but there are challenges
in applying it to contextualised word embeddings.

2.3 Binder Semantic Features

Through a meta-analysis, Binder et al. (2016) iden-
tified 65 semantic features all believed to, and some
demonstrated to, have neural correlates within the
brain. They produced a 535 word data-set scored
by participants across the 65 features. The fea-
tures ranged from concrete object properties such
as visual and auditory, to more abstract properties
such as emotional aspects. This resulted in a 65-
dimensional embedding for each word, where each
dimension relates to a specific semantic feature.

This embedding space is useful as each dimen-
sion is easily interpretable and theoretically con-
nected to a specific aspect of how people under-
stand the meaning of words and concepts. Fur-
thermore, representing words in this way makes it
easy to understand how they are similar or differ-
ent in terms of their semantic features. Figure 1
below demonstrates this by comparing the feature
scores of the words raspberry and mosquito. It
shows how the concepts differ across a range of
dimensions. Also, since these features are derived
from the psychological and neuroscience literature,
it may mirror how people differentiate these con-
cepts.

Unfortunately, the Binder dataset only exists for
535 words, which severely limits its uses. However,
previous work (Utsumi, 2018, 2020) has shown that
Binder feature values can be derived from static
word embeddings such as Word2Vec and this can
be used to extrapolate the feature space to a large

Figure 1: Binder feature values for raspberry and mosquito.
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number of new words (Turton et al., 2020). Being
able to do this using BERT embeddings would al-
low the features to be derived for words in context.
Not only would this tackle the issues of polysemy
and homonymy, but hopefully also mirror more sub-
tle differences between words when used in context.
Beyond this, the dataset also offers a powerful way
to probe the semantic representation of words in
models like BERT, by looking at: how well the
different semantic features can be predicted overall,
how the semantic representations build over the
layers of the models and whether there are distinct
patterns in how different types of semantic feature
are represented across the layers.

3 Experiment 1a: Deriving Binder

Embeddings from BERT and other

Transformer Model Embeddings

3.1 Introduction

The aim of the first experiment was to derive Binder
feature scores from the BERT embedding space.
Words in the Binder dataset are presented out of
context so the BERT embeddings were treated as
static by taking an the average embedding over
250 randomly sampled sentences for each word. A
selection of alternative transformer models were
included for comparison: RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019) and GPT-2 (Rad-
ford et al.). Numberbatch embeddings (the best
performing static embeddings from Turton et al.
(2020)) (Speer et al., 2017) were used as a baseline
comparison.

This experiment also offered the opportunity to
investigate how different semantic features are rep-
resented across the different layers of BERT.

3.2 Materials

The Binder et al. (2016) data-set was used, pro-
viding scores across the 65 features for 535 words.
For random sentences containing the Binder words,
the One Billion Word Benchmark (BWB) (Chelba
et al., 2014) was used. Author provided pre-trained
versions of each transformer model were used. As
far as possible, models of the same size were se-
lected (see Appendix Table a for further details).
Pre-trained Numberbatch embeddings were also
used (Speer et al., 2017) as a benchmark. A simple
4 hidden-layer (300,200,100,50) neural network
was used to predict semantic features from embed-
dings.

3.3 Method

The method here describes the process for the

BERTBASE model, but was the same for all

other models as well.

To produce static embeddings for each of the
Binder words, 250 sentences containing each one
were randomly sampled from the BWB dataset.
Then using the pre-trained BERTBASE model the
embeddings from all 12 layers (24 for large models)
and the embedding layer were extracted for the
target word for each of the sentences. A mean of
the target word embedding across the 250 sentences
was then taken. Additionally, for each model the
best performing sub-word approach was used (see
Table b and Figure a in Appendix for comparisons).

Semantic feature scores were predicted by feed-
ing the extracted embeddings into a feed-forward
neural network. 10-fold validation was used across
the data-set and the final R-squared score aver-
aged across the folds. Each of the 65 features
was evaluated separately as was each of the lay-
ers. A Wilcoxon Ranks-sums test (Demšar, 2006)
was used to compare performance of the different
embedding models.

To investigate how the different semantic fea-
tures are represented across the layers, each fea-
ture’s R-squared score was re-scaled between 0-1
across the layers. A k-means clustering algorithm
was then used to group the features according to
similar patterns across the layers. The re-scaling
ensured it was the pattern of behaviour across the
layers rather than the absolute performance of each
feature that was captured in the clustering. The
membership of the clusters was compared to the
categories of the features given in Binder data-set
using the Adjusted Rand Index (Yeung and Ruzzo,
2001).

3.4 Results

Figure 2 below shows the mean R-squared scores
across all semantic features for the different lay-
ers for the large and small models. The models
showed slightly different performance across the
layers with XLNet and RoBERTa peaking earlier
than BERT. As per Table 1 row 2, BERT had
the best performing single layer for both model
sizes. Table 1 row 1 (combined) shows the perfor-
mance of the models combining the best perform-
ing layer for each semantic feature. All models
except GPT-2SMALL significantly outperformed the
Numberbatch baseline (p<0.05 for all). BERTBASE
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Figure 2: Mean R-squared scores across all semantic features for layers of (a) small and (b) large models.

MEAN R- MODEL

SQUARED NumbrBatch GPT-2 RoBERTa XL-Net BERT
Small Med. Base Large Base Large Base Large

Combined - .631 .638 .673 .692 .665 .688 .678 .692
Best Layer .646 .615 .616 .658 .674 .656 .670 .667 .679

Table 1: Best overall mean R-squared scores for the models across all 65 semantic features

also outperformed XLNetBASE (p<0.05) but not
RoBERTaBASE (p=0.17).

There was variation in how well different fea-
tures were predicted from the embeddings (some
as low as 0.3 with others over 0.8) (See Figure b in
the Appendix for full results). There was also gen-
eral consistency between the models as to which
features were well and poorly predicted with inter-
feature variance (mean=0.011) larger than inter-
model variance (mean=0.001). This indicates cer-
tain semantic features are difficult to predict regard-
less of the model.

For all models the larger version performed sig-
nificantly better than the base version (p<0.05 for
all). For the larger models there was no longer
any significant difference between the BERTLARGE,
RoBERTaLARGE and XLNetLARGE models (p>0.05
for all), but all three did outperform GPT-2MEDIUM
(p>0.05 for all).

The k-means clustering on the re-scaled
BERTBASE R-squared scores indicated an optimal
3 clusters identified using an elbow plot. Figure 3
(a) below shows the memberships of the k-means
clusters, along with their respective mean scores

Figure 3: (a) mean re-scaled R-squared scores for the three clusters with member features and (b) mean layer raw
R-squared scores for the three clusters.
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across each layer. Cluster 0 and 1 show a similar
pattern showing a peak in the later layers. Cluster 2
shows a very different pattern with the peak much
earlier in the mid-layers. Figure 3 (b) shows the
mean raw R-squared layer scores for the different
clusters. Clusters 0 2 achieve higher max scores
than cluster 1. Whilst this does suggest different
patterns of representation for the different features
in the model, the clusters do not appear to match
the categorisation of features given by Binder et al
(2016) as the adjusted rand index was 0.02.

3.5 Discussion

The main purpose of this first experiment was to
demonstrate that Binder style embeddings can suc-
cessfully be derived from the BERT (and other sim-
ilar model) embedding space. The secondary pur-
pose was to explore how the representation of the
semantic features varies across the different layers
of a BERTBASE model. The results demonstrated
that Binder features could be derived from BERT
embeddings, outperforming static Numberbatch
embeddings. This is interesting as Numberbatch
embeddings make use of additional human pro-
vided information from a concept network, whereas
BERT and the other models are purely trained on
raw text. This hints towards the power of these bidi-
rectional transformer models in capturing semantic
information from word usage alone.

The poor performance of GPT-2 is not surpris-
ing due to its uni-directional attention architec-
ture. GPT-2 has shown success when using very
large models (up to 1.5B parameters, compared
to BERTLARGE’s 340M). These results highlight
the power of the bidirectional architecture used by
BERT, XLNet and RoBERTa

Perhaps most interesting results from this exper-
iment are in relation to how the different semantic
features are represented across the layers of BERT.
In line with the findings of Jawahar et al. (2019),
semantic features tended to be better represented by
the later layers. However, a small subset of features
were better represented by the middle layers. Clus-
tering the features according to these behaviours
did not match the Binder categories. However, the
Binder categories are not the only way to group
the features and there still are some similarities
between the features in the different clusters. For
example, Cluster 3 appears to capture a number of
features (Human, Face, Speech, Body) relating to
people and Cluster 2 captures 6 of the 7 features

relating to audition.
Variation in how well different features were

predicted by the models is more difficult to ex-
plain conclusively. On one hand, it may be that
certain features are better represented by the trans-
former models than others. However, there is also
variation in the underlying distributions of the dif-
ferent Binder features, with some more equally
distributed across the score range than others. For
certain features with very unbalanced distributions,
this may have had a detrimental effect on their fi-
nal R-squared score (see Appendix Figure f for
residual plot examples).

Further improvements in predictive power may
be possible by fine-tuning the transformer models
directly on the Binder feature prediction task. For
the purposes of this paper extracted embeddings
rather than fine-tuning were used as (1) there were
concerns over the small dataset size and (2) to keep
the models as close as possible to their pre-trained
state when comparing them.

4 Experiment 1b: Towards

Contextualised Binder Features

4.1 Introduction

Experiment 1a demonstrated that Binder seman-
tic features can be predicted from the BERT (and
other model) embedding space, outperforming the
best performing static embeddings (Numberbatch).
However, the real power of the transformer archi-
tecture and its self-attention mechanism, is being
able to represent a contextualised form of words
(Reif et al., 2019). By treating the embeddings
as “static” as in Experiment 1a, the embeddings
were limited to an average of the word over many
contexts. This may have added noise to the em-
beddings and consequently reduced performance
by including word-senses not matching the sense
suggested by the Binder features. Instead, hand
selecting sentences that match the word-sense in-
ferred from the Binder feature scores should help
reduce this noise and improve performance.

4.2 Material

Same materials as Experiment 1a.

4.3 Method

For each word in the Binder data-set, ten sentences
were hand-picked from the 250 randomly selected
BWB sentences used in Experiment 1a. Sentences
were picked by matching them to the word-sense
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MEAN R- MODEL

SQUARED BASELINE GPT-2 RoBERTa XL-Net BERT
Base Large Small Med. Base Large Base Large Base Large

Combined .678 .692 .656 .670 .736 .755 .707 .730 .725 .741
Best Layer .667 .679 .638 .643 .723 .741 .697 .714 .718 .729

Table 2: Mean R-squared scores for the models using selected sentences vs BERT baseline from Experiment 1a
(randomly selected sentences)

inferred from the Binder feature scores. Following
this, the exact same method as Experiment 1a was
used, this time using the average embedding across
the ten hand-selected sentences.

4.4 Results

Table 2 above gives the mean R-squared scores for
the models. BERT scores from Experiment 1a are
used as a baseline. (Individual feature results can
be found in Figure c of the Appendix). Except
from GPT-2, all embeddings from Experiment 1b
outperformed the baseline from Experiment 1a.

4.5 Discussion

Using hand selected rather than purely randomly
selected sentences improved the performance as ex-
pected. This was likely due to removing noise from
unrelated uses of the word in the averaged embed-
ding. Importantly, this shows to some degree that
context can be captured in the derived semantic fea-
tures as using more appropriate contexts improved
performance. However, since the Binder data-set
lacks explicit context for its words this experiment
still falls short of a true ground-truth test of deriving
contextualised semantic features from transformer
word embeddings. To investigate how well seman-
tic features can be predicted for words in specific
contexts, it is necessary to look at other data-sets.

5 Experiment 2: Predicting

Contextualised Features

5.1 Introduction

Together Experiments 1a and 1b demonstrate that
semantic features ratings can be derived from trans-
former embeddings and that introducing some de-

gree of context improves the performance. But the
Binder data-set unfortunately lacks explicit context
for its words.

An alternative data-set (Van Dantzig et al., 2011)
of contextualised semantic features for words in
context pairs can be used. In each context pair a
property word e.g. abrasive is paired an object
word e.g. lava and participants scored the prop-
erty word across five semantic features in a similar
way to the Binder dataset. In each case, the ob-
ject should influence the meaning of the property
word, in turn influencing its feature scores. Each
property is paired with two different objects giving
two word-pairs for each property and with differ-
ent semantic feature scores for each one (see Table
3). By feeding the property-object pairs into the
transformer models, the extracted embedding for
the property word should capture its specific fea-
ture values influenced by its context object word.
Since each property word is paired with two dif-
ferent objects, a static version of its embedding
can be created by taking the mean of its embed-
dings across both of its context pairs. If the models
successfully capture the specific feature values of
the property words in the individual contexts, the
individual contextual embeddings should outper-
form the static property embeddings in predicting
semantic feature scores.

Due to its poor performance GPT-2 was dropped
and only the better performing LARGE versions of
BERT, XLNet and RoBERTa were used.

5.2 Materials

The Van Dantzig et al. (2011) data-set consists of
774 property-object pairs. Each word pair con-

FEATURE

PROPERTY OBJECT Visual Auditory Haptic Gustatory Olfactory
Abrasive Lava 3.83 1.27 2.37 0.07 0.46
Abrasive Sandpaper 3.37 2.35 4.81 0.26 0.09

Table 3: Feature scores for Property word Abrasive with its two different Object word pairs.
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FEATURE PROPERTY-MEAN CONTEXTUALISED

BERT XL-Net RoBERTa BERT XL-Net RoBERTa
Visual 0.532 0.448 0.456 0.652 0.583 0.633
Auditory 0.722 0.668 0.680 0.793 0.733 0.772
Haptic 0.556 0.512 0.505 0.660 0.616 0.634
Gustatory 0.611 0.531 0.591 0.800 0.704 0.813

Olfactory 0.610 0.587 0.597 0.740 0.736 0.731
MEAN 0.607 0.549 0.556 0.729 0.674 0.717

Table 4: Mean R-squared scores for the five features for mean and contextualised embeddings from the three
different models, compared to a Numberbatch baseline.

sists of a property and object word, and has a rat-
ing across five semantic features: Visual, Audi-
tory, Haptic, Gustatory and Olfactory. The ratings
are between 0-5 for each. The same pre-trained
BERTLARGE, XL-NetLARGE and ROBERTALARGE
models from Experiment 1a and b were used and
the pre-trained Numberbatch embeddings.

5.3 Method

The property-object word pairs were fed into the
transformer models as the input sequences and the
embedding for the property word was extracted.
Embeddings from all 24 layers and the embedding
layer were extracted. The different layer embed-
dings were then fed into a simple 4 hidden-layer
(300, 200, 100, 50) neural network for training pre-
diction with each of the five semantic features used
separately as the target variable.

For the Property-mean condition, for each prop-
erty word, the extracted embeddings across both of
its object context pairs were averaged. For the con-

textualised condition, the extracted property em-
beddings were left unique for each object context
pair.

Like Experiment 1, the data-set was split into
ten-folds with 90% of the data for training and the
reaming 10% for evaluation. The mean r-squared
scores across the ten-folds was calculated for each
of the five semantic features.

5.4 Results

Table 4 shows the R-squared scores for the best
performing layer from each model. (See Appendix
Figure d for per layer results). The contextualised
transformer embeddings outperform both the mean
transformer embeddings. Overall, the BERT model
performed best.

5.5 Discussion

The purpose of experiment 2 was demonstrate the
ability to derive contextual semantic features from
transformer embeddings. As predicted, the contex-
tual transformer embeddings performed better than
the ”static” ones. This suggests that, for each con-
text pair, the model representations of the property
words were able to capture the specific semantic
features as influenced by the object it was paired
with. Taking the mean across both object pairs was
detrimental for performance as the embedding was
no longer unique to the context pair.

Whilst this experiment demonstrates it is possi-
ble to derive contextualised semantic features from
transformer embeddings, it only involves a small
number of features for words in short word-pair
contexts. Ideally, we would be able to predict the
full 65 semantic features in the Binder embedding
space for words contextualised in longer, more nat-
ural sequences.

6 Experiment 3: Evaluation of

Contextualised Binder Embeddings

6.1 Introduction

Experiment 1a and b demonstrated that Binder fea-
tures can be derived from various transformer em-
bedding spaces and that some effects of context
can be picked up, whilst Experiment 2 demon-
strated that the embeddings can be used to derive
contextualised semantic features, but for a very
limited number of features and only in word-pair
sequences. The lingering issue is the lack of a
data-set of the full 65 Binder semantic features for
words context which would provide a ground-truth
test for deriving contextualised semantic features
from transformer embeddings.

To address this, this experiment used the word-
sense disambiguation (WSD) task as an indirect
evaluation of derived semantic features for words
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METRIC Raw BERTLARGE Experiment 2 BERT Binder 1a BERT Binder 1b

Accuracy 0.68 0.60 0.67 0.67
F1-Score 0.71 0.66 0.70 0.71

Table 5: Accuracy & F1 score of raw BERT & BERT-derived Binder embeddings on the validation set.

in context. WSD is an open problem in NLP where
the task is to determine which sense of word is be-
ing used in a sequence (Navigli, 2009). Models that
perform well on this task are able to separate the
different semantic meanings of a word, depending
on the context it is used in. By evaluating how well
derived Binder embeddings perform at this task, it
should indicate how good the embeddings are at
representing the contextualised semantic features
of the words. In this experiment the Binder em-
beddings are compared to raw BERT embeddings
which have shown reasonable performance in the
task (Pilehvar and Camacho-Collados, 2019).

For comparison, the different approaches for de-
riving Binder embeddings from Experiments 1a
and 1b were used as well as the much smaller Van
Dantzig feature set from Experiment 2.

6.2 Materials

The Word in Context (WiC) WSD data-set (Pile-
hvar and Camacho-Collados, 2019) was used. It
consists of sentence pairs each containing the same
target word and a binary classification (True/False)
of whether the target word has the same word-sense
or not between them. The data-set is already di-
vided into a training (5429) and separate validation
(639) set.

The same BERTLARGE model and trained neural
networks from Experiment 1a, 1b and 2 were used
to predict semantic feature values.

6.3 Method

Using the pre-trained BERTLARGE model, word
embeddings from all 24 layers + the embedding

layer were extracted for the target word in each
of the sentences of the WiC dataset. Using the
neural networks trained in Experiment 1a and 1b
the Binder features were predicted using the opti-
mal BERTLARGE layer for each of the 65 features
and for the smaller Van Dantzig feature set from
Experiment 2.

For each sentence pair, the cosine similarity was
calculated between the embeddings for the target
words, either using the raw BERTLARGE embed-
dings or the derived Binder or Van Dantzig embed-
dings. For evaluation a logistic regression model
was used with the cosine similarity scores as input.
The model was trained on the train set and evalu-
ated on the validation set using accuracy and F1
Score.

6.4 Results

Table 5 shows the performance of the best per-
forming layer (21) raw BERTLARGE embeddings,
Binder and Van Dantzig embeddings on the WiC
dev set (see Appendix Figure e for all layer per-
formances). Overall the Binder embeddings per-
formed comparatively to the raw BERTLARGE em-
beddings. The five feature Van Dantzig embed-
dings (from Exp. 2) performed worst.

6.5 Discussion

The purpose of this final experiment was to evaluate
contextualised Binder embeddings. In the absence
of a ground-truth data-set for contextualised Binder
features, the WSD task was used as an indirect mea-
sure. The contextualised Binder embeddings per-
formed comparatively to raw BERT embeddings

Figure 4: Example of predicted semantic features for the word building in two different context sentences
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Figure 5: Example of predicted semantic features for the word catch in two different context sentences

which have been shown to capture contextualised
semantics (Reif et al., 2019; Pilehvar and Camacho-
Collados, 2019). This suggests that the Binder em-
beddings also capture contextualised semantic fea-
tures to some extent. The improved performance
of the approach in experiment 1b did not meaning-
fully contribute to improved performance in this
downstream task. But, the Binder embeddings did
outperform the smaller Van Dantzig feature-set em-
beddings from Experiment 2, suggesting that the
larger Binder feature set is a more complete seman-
tic representation of words.

Importantly, the nature of the Binder feature
space makes interpreting the embeddings easier.
Figure 4 below illustrates how the meaning of the
word building differs in the two different context
sentences from the WiC data-set.

However, Binder features predicted from trans-
former embeddings did not always match what
would be expected. Figure 5 illustrates this, where
the representation of catch in the second sentence
appears closer to the physical act of catching rather
than the intended meaning of to catch fire. Qual-
itative evaluation of the embeddings like this is
powerful for understanding their quality, but comes
at the cost of being time consuming.

7 Conclusion

The overarching aim of this work was to demon-
strate that Binder style semantic feature embed-
dings can be derived from the BERT embedding
space in the same way that previous research (Ut-
sumi, 2018, 2020; Turton et al., 2020) has shown
for static embeddings. It also offered the opportu-
nity to probe how semantic information is repre-
sented across the different layers of BERT. Treating
the embeddings as static, Experiment 1a supported
this aim with BERT and other transformer embed-
dings outperforming the best performing static em-
beddings model Numberbatch. The results also

supported the findings of Jawahar et al. (2019) that
semantic information tends to be represented in the
later layers of BERT. Hand-picking sentences in
Experiment 1b lead to better performance indicat-
ing that some degree of context is represented in
the derived semantic features.

Experiment 2 provided further evidence of the
ability of transformer models to derive contextu-
alised semantic features but was limited by the
small set of features and the short word-pair con-
text sequences.

Finally, the ability of Binder embeddings to per-
form comparatively to raw BERT embeddings in
Experiment 3 suggests that they do capture, to some
degree, contextualised semantic features when de-
rived from transformer embeddings.

In conclusion, within the limitations of the
Binder dataset, this paper suggests that it is possi-
ble to derive contextualised semantic features from
contextualised word embeddings as a proof of con-
cept. However, without a ground-truth test, it is not
able to demonstrate this conclusively. To do this
would likely require the production of a Binder fea-
ture set for words explicitly in context, and this may
be a necessary next step if the Binder feature set
is considered useful for further use. Furthermore,
as the Binder dataset focuses on general use words,
for researchers wishing to derive semantic features
useful for specific domains, they likely would need
to construct datasets of domain-specific features
for a domain-specific vocabulary.

Beyond the direct findings of this paper, we also
hope that this work highlights the usefulness of us-
ing existing psychological research data to improve
the understanding and interpretability of what can
otherwise be somewhat opaque deep learning mod-
els.
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Appendix

MODEL

BERT GPT-2 XLNet RoBERTA

Base Large Small Medium Base Large Base Large

Parameters 110M 340M 117M 345M 110M 340M 125M 355M

Layers 12 24 12 24 12 24 12 24

Attention Heads 12 16 12 16 12 16 12 16

Hidden state size 768 1024 768 1024 768 1024 768 1024

Table a. Selected properties of the different transformer models used (large models shaded).

R-sq.

MODEL

BERTBASE GPT-2SMALL XLNetBASE RoBERTaBASE

First Last Mean First Last Mean First Last Mean First Last Mean

Comb. .668 .678 .677 .548 .630 .611 .655 .660 .665 .660 .670 .673

Best .657 .671 .667 .520 .615 .591 .645 .652 .657 .647 .652 .658

Table b.   Mean R-squared across all Binder features for different subword embedding approaches

(first subword, last subword or mean across all subwords). Comb. = combined best layer per feature.

Best = best single layer overall.

Figure a. performance of different subword embeddings across the 12 layers for (a) BERTBASE (b)

RoBERTABASE (c) XLNetBASE and (d) GPT-2SMALL

(a) (b)

(c) (d)
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Figure b. All feature R-squared scores for the Numberbatch baseline and (a) small models (b) large

models, with Binder et al (2016) categories indicated.

(a) (b)
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Figure c. All feature R-squared scores for the (a) small and (b) large models for selected sentences of

Experiment 1b.

(a) (b)
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Figure d. Model per-layer mean R-squared scores for Experiment 2 using (a) individual word-pair

property embedding and (b) mean across word-pairs property embedding.

Figure e. Raw BERTLARGE Accuracy and F1 scores on WiC dataset

Figure f.  Residual plots for features (a) Attention and (b) Dark

(a) (b)

(b)(a)

R-squared = 0.67 R-squared = 0.38

normal
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