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Abstract

Pre-trained language models have emerged as
highly successful methods for learning good
text representations. However, the amount of
structured knowledge retained in such mod-
els, and how (if at all) it can be extracted, re-
mains an open question. In this work, we aim
at directly learning text representations which
leverage structured knowledge about entities
mentioned in the text. This can be particu-
larly beneficial for downstream tasks which
are knowledge-intensive. Our approach uti-
lizes self-attention between words in the text
and knowledge graph (KG) entities mentioned
in the text. While existing methods require
entity-linked data for pre-training, we train us-
ing a mention-span masking objective and a
candidate ranking objective – which doesn’t
require any entity-links and only assumes ac-
cess to an alias table for retrieving candidates,
enabling large-scale pre-training. We show
that the proposed model learns knowledge-
informed text representations that yield im-
provements on the downstream tasks over ex-
isting methods.

1 Introduction

Self-supervised representation learning on large
text corpora using language modeling objectives
has been shown to yield generalizable representa-
tions that improve performance for many down-
stream tasks. Examples of such approaches in-
clude BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019b), XLNET (Yang et al., 2019), GPT-2
(Radford et al., 2019), T5 (Raffel et al., 2019) etc.
However, whether such models retain structured
knowledge in their representation is still an open
question (Petroni et al., 2019; Poerner et al., 2019;
Logan et al., 2019; Roberts et al., 2020) which has
led to active research on knowledge-informed rep-
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resentations (Zhang et al., 2019; Sun et al., 2019;
Peters et al., 2019; Soares et al., 2019).

Models that learn knowledge-informed represen-
tations can be broadly classified into two categories.
The first approach augments language model pre-
training with the aim of storing structured knowl-
edge in the model parameters. This is typically
done by augmenting the pre-training task, for exam-
ple by masking entity mentions (Sun et al., 2019) or
enforcing representational similarity in sentences
containing the same entities (Soares et al., 2019).
While this makes minimal assumptions, it requires
memorizing all facts encountered during training in
the model parameters, necessitating larger models.
The second approach directly conditions the rep-
resentation on structured knowledge, for example
fusing mention token representations with the men-
tioned entity’s representation (Peters et al., 2019).

In this paper we consider the latter approach
to learning knowledge-informed representations.
Conditioning on relevant knowledge removes the
burden on the model parameters to memorize all
facts, and allows the model to encode novel facts
not seen during training. However, existing meth-
ods typically assume access to entity-linked data
for training (Zhang et al., 2019; Peters et al., 2019),
which is scarce and expensive to annotate, prevent-
ing large scale pre-training. Moreover, these meth-
ods don’t allow for bi-directional attention between
both the text and the KG when representing text.

We propose a simple approach to incorporate
structured knowledge into text representations.
This is done using self-attention (Vaswani et al.,
2017) to simultaneously attend to tokens in text
and candidate KG entities mentioned in the text, in
order to learn knowledge-informed representations
after multiple layers of self-attention. The model is
trained using a combination of a mention-masking
objective and a weakly-supervised entity selection
objective, which only requires access to an alias
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table to generate candidate entities and doesn’t as-
sume any entity-linked data for training. We show
that this objective allows the model to appropriately
attend to relevant entities without explicit supervi-
sion for the linked entity and learn representations
that perform competitively to models trained with
entity-linked data.

We make the following contributions: (1) we pro-
pose KNowledge-Informed Transformers (KNIT),
an approach to learn knowledge-informed text rep-
resentations which does not require entity-linked
data for training, (2) we train KNIT on a large cor-
pora curated from the web with Wikidata as the
knowledge graph, (3) we evaluate the approach on
multiple tasks of entity typing and entity linking
and show that it performs competitively or bet-
ter than existing methods, yielding large improve-
ments even while using < 1% of task-specific data
for fine-tuning.

2 Related Works

BERT (Devlin et al., 2019) proposed a pre-
training approach, called masked language mod-
eling (MLM), which requires randomly replacing
words in a sentence with a special [MASK] to-
ken and predicting the original masked tokens.
RoBERTa (Liu et al., 2019b) trained a more robust
BERT model on larger data. While MLM has been
shown to learn general purpose representations, the
amount of factual knowledge stored in such models
is limited (Petroni et al., 2019; Poerner et al., 2019).
Sun et al. (2019) propose a mention-masking objec-
tive which masks mentions of entities in a sentence,
as opposed to random words, as a way of incorpo-
rating entity information into such models. Zhang
et al. (2019) use entity-linked data and infuse rep-
resentations of the linked entity in the final layer
of the model to the representations of the corre-
sponding entity mention. KnowBERT (Peters et al.,
2019) learn an integrated entity linker that infuses
entity representations into the word embedding in-
put for the model and also relies on entity-linked
data for training. K-Bert (Liu et al., 2019a) uses
linked triples about entities in a sentence to inject
knowledge. KGLM (Logan et al., 2019) proposed
a fact-aware language model that selects and copies
facts from KG for generation. Recently, Févry et al.
(2020) introduced Entity-as-Experts (EAE), which
is a masked language model coupled with an entity
memory network. EAE learns to predict the entity
spans, retrieves relevant entity memories and inte-

grate them back to the Transformer layers. They
also assume entity-linked data for training.

3 Knowledge-Informed Transformers
(KNIT)

In this section, we describe the KNIT model as well
as its training procedure. KNIT makes use of the
mention-masking objective for training and condi-
tions the encoder on both text as well as mentioned
entities but does not assume any entity-linked data
for training. Figure 1 shows the overall model.

3.1 Text and Entity Encoder
The input consists of a sentence along with candi-
date entities for the sentence. We first run a named
entity extraction model on the sentence to extract
mentions and then generate candidate entities based
on cross-wikis (Ganea and Hofmann, 2017). We
use a Wikipedia alias table for generating candi-
dates, taken from Raiman and Raiman (2018). The
start and end of mentions are demarcated using spe-
cial tokens 〈m〉 and 〈/m〉. Given the text sequence
{x1, . . . , xn} and the set of associated candidate
entities for the sequence {e1, . . . , em}, we first em-
bed the words and entities as vector embeddings.
For entities, we use KG pre-trained embeddings
(Lerer et al., 2019) and add a projection layer to
upscale the entity embedding to the word embed-
ding size. We will use Transformer self-attention
(Vaswani et al., 2017) to encode both the text and
the entities. Since self-attention has no notion of
position in the sequence, it is common to concate-
nate a position embedding (Devlin et al., 2019) to
the word embeddings. We follow this approach
for the word embeddings. However, since the en-
tities in the candidate set need to be encoded in
a position-independent manner, we don’t add any
position embeddings to them. This entire sequence,
position-dependent word embeddings and position-
independent candidates, is passed through multiple
layers of self-attention. The end result is contextual-
ized token embeddings conditioned on the entities,
{x̃1, . . . , x̃n}, as well as candidate entity embed-
dings conditioned on the text {ẽ1, . . . , ẽm}.

3.2 Training
Mention-masking While the approach de-
scribed above has the potential to learn knowledge-
conditioned text representations, it needs a
correct pre-training objective to learn to use the
extra information from the entities. Since large
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Figure 1: KNIT model with masked mention prediction and candidate ranking

Random Tokens Mention Tokens

RoBERTa 58.8 23.1
+ MM 61.6 25.7

KNIT 65.1 81.3

Table 1: Accuracy on predicting random tokens and
entity mention tokens. While RoBERTa is highly accu-
rate at predicting random words, it suffers when pre-
dicting mention tokens even when it is trained on a
mention-masking (MM) objective.

Transformer models (Devlin et al., 2019) have a
lot of parameters, they can be highly accurate at
predicting random word tokens and thus directly
using a MLM objective for training will not work
as the model can ignore the entity embeddings.
However, we find that, due to lack of factual
knowledge, these models are not very good at
predicting tokens of entity mentions. Table 1
shows this for RoBERTa (Liu et al., 2019b) model.
Thus, mention-masking – predicting tokens of
masked entity mentions, provides a better objective
to learn to use the candidate entities and learn
knowledge-informed representations. Note that
in Table 1, even when RoBERTa is trained with
mention-masking (+MM) it is unable to provide
a high accuracy on predicting mention tokens.
Thus including entity embeddings should provide
enough context for the model to make correct
predictions by using the entities, as reflected by
the KNIT score in Table 1.

Candidate Ranking To further enable the model
to use the correct entities for a mention, we use a
weak entity linking objective that forces the model
to rank one of the entities, from the candidate set

of a mention, higher than all other entities for the
sentence. Consider the i-th mention in a sentence
with (mi1,mi2) as the start and end indices of the
mention in the sentence, and a candidate set of
entities Ci for this mention. We create a men-
tion representation m̃i by concatenating x̃mi1 and
x̃mi2 . Now, given the representations, we score
all entities for the mention i: sij = W [m̃i; ẽj ],
where W is a learnable weight matrix. To en-
force the model to select one entity from the men-
tion’s candidates, we find the highest scoring entity,
êi = argmaxj∈Ci sij , and use that as a target in a
cross-entropy loss:

Lcr = cross entropy(softmax(sij), Iêi) (1)

where the softmax is over all entities (not just for
mention i) in the sentence and Iêi is a one-hot
vector with 1 for the entity êi and 0 everywhere
else. This objective enforces the model to rank
one candidate higher than others candidates for
the same mention as well as candidates of other
entities. Similar objective has been explored for
dealing with noise in entity typing models (Xu and
Barbosa, 2018; Abhishek et al., 2017). The over-
all objective is a combination of bert-style MLM,
mention-masking (MM) and candidate ranking:

Lmlm + αLmm + βLcr (2)

4 Experiments

Implementation details are in Supplementary. Code
of our models is available here1.

1Source Code: https://github.com/dungtn/KNIT
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Models evaluated: (1) RoBERTa (Liu et al.,
2019b): the model uses the MLM objective for
pre-training; (2) RoBERTa + MM: this model uses
the mention-masking objective (Sun et al., 2019)
in addition to the MLM objective; (3) KNIT: this
is the proposed model which uses MLM, mention-
masking and candidate ranking for pre-training.
We use RoBERTa-base architecture for all mod-
els due to lack of computation resources. We
compare our method with existing state-of-the-
art in knowledge-informed representations: Ernie
(Zhang et al., 2019), KnowBERT (Peters et al.,
2019) and RELIC (Ling et al., 2020).

OpenEntity Precision Recall F1
RoBERTa 76.91 73.84 75.34
RoBERTa+MM 74.67 74.63 74.65
Ernie 78.40 72.90 75.56
KnowBert 78.60 73.70 76.10
KNIT 76.48 75.76 76.10

FIGER Precision Recall F1

RoBERTa 66.89 88.12 76.05
Ernie 57.19 76.51 73.39
KNIT 68.09 88.12 76.80

Table 2: Micro-averaged scores on entity typing tasks.

OpenEnt (4%) FIGER (0.5%) FIGER (0.05%)

Roberta 56.98± 4.71 69.69± 0.38 65.59± 1.65

+MM 60.16± 2.44 69.43± 0.62 65.96± 1.38

KNIT 63.97± 1.59 71.37± 0.14 67.40± 0.41

Table 3: F1 score on entity typing when using only a
fraction of the task-specific training data (0.05%−4%).

4.1 Results on Entity Typing
Entity typing is the task of identifying the semantic
type of a given mention. We evaluate on two Entity
typing datasets - OpenEntity (Choi et al., 2018) and
FIGER (Ling et al., 2015). OpenEntity is a crowd-
sourced dataset comprising 9 general types and
121 fine-grained types. We follow (Zhang et al.,
2019) and evaluate on the nine general entity types.
FIGER is a distant supervised dataset comprising
over 2M examples and 113 entity types. Experi-
mental results are shown in Table 2. KNIT outper-
forms RoBERTa(Liu et al., 2019b), Ernie(Zhang
et al., 2019), and RoBERTa+MM(Sun et al., 2019)
while being comparable to KnowBert (Peters et al.,
2019). Note that KNIT performs comparably to the

No Fine-tuning
Wiki Alias Table 68.78
Our Top Candidate 70.66
RELIC 81.90
KNIT 82.71
KNIT +Wikilinks 90.32

Fine-tune (10% data)
KNIT 92.04

Fine-tune (Full data)
RELIC 94.90
Févry et al. (2020) 96.70
Raiman and Raiman (2018) 94.88
Radhakrishnan et al. (2018) 93.00
Le and Titov (2018) 93.07
Ganea and Hofmann (2017) 92.22
KNIT 92.87

Table 4: Entity linking accuracy under various fine-
tuning scenarios.

state-of-the-art without utilizing any entity-linked
data for pre-training, unlike (Peters et al., 2019).

To further evaluate the effectiveness of KNIT,
we consider the scenario where only a fraction of
the data is used for task-specific fine-tuning. For
this, we sample equal number of examples per type
to create the fine-tuning data. The models are fine-
tuned using the sampled data but are evaluated on
the entire test set. Table.3 shows that KNIT signif-
icantly outperforms RoBERTa(Liu et al., 2019b)
and RoBERTa+MM in the data constrained cases.

4.2 Results on Entity Linking
We demonstrate that our pre-trained model can cap-
ture entity linking information. For this, we use
the AIDA-CoNLL (Hoffart et al., 2011) dataset and
evaluate the linking performance of the model with-
out any dataset-specific fine-tuning. We also com-
pare with a model that used wikipedia hyperlinks
for supervision during pre-training (KNIT +Wik-
ilinks). As shown in Table 4, KNIT improves upon
the candidate ranking by 12.05% and 19.66% when
partial entity linking supervision from Wiki linked-
text data is available. Even without Wiki-linked
data, it outperforms the best pre-trained model that
considers mention context (RELIC) by 0.81%. To
further explore the entity linking capacity of our
model, we fine-tune the model and show that our
model has competitive performance, even when us-
ing only 10% of the training data. When trained on
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the entire dataset, we find RELIC performs better,
potentially due to the use of entity-linked data in
its pre-training.

5 Conclusion

We propose a simple approach to learn knowledge-
informed text representations using self-attention
between text and mentioned entities. Our approach
does not rely on any entity-linked data for training,
enabling large-scale pre-training. We show that
the method learns better representations than com-
peting approaches and also learns entity-linking
without explicit linking supervision. In the future,
it will be interesting to explore how such meth-
ods can be used to condition the text encoder on
structured KG facts about entities.
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A Appendices

A.1 Implementation Details(Pretraining)
To train KNIT, we collect 16M sentences from
Wikipedia. We also collect 28M sentences from
news articles and tag them using the DiffBot Entity
Linker 2. We further reduce the size of the entity
vocabulary to 595K and remove examples that have
no entity mentions. We limit each context sentence
to 512 tokens and no more than 5 mentions per
sentence with at least 2 and at most 10 candidate
entities per mention span.

We use pre-trained entity embeddings with di-
mension d = 200 from (Lerer et al., 2019) and
keep them fixed during the course of KNIT train-
ing. We use Adam optimizer with learning rate
1e−4, polynomial decay scheduler with warm-up,
and clip norm 10. We also tune hyper-parameters
in Equation (2) and choose α = 1 and β = 10. The
code will be made available on github3.

A.2 Implementation Details(Entity Typing)
All results in Tables 2-3 are obtained by tuning
a few hyperparameters - batch size, learning rate,
dropout, attention dropout. Batch size was tuned in

2www.diffbot.com
3Code will be opensourced

https://doi.org/10.18653/v1/N18-1167
https://doi.org/10.18653/v1/N18-1167
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Dataset Train Validation Test

OpenEntity 1998 1,998 1,998
Figer 2,000,000 10,000 563
OpenEnt(4%) 82 1,998 1,998
Figer(0.5%) 11,300 10,000 563
Figer(0.05%) 1,130 10,000 563
AIDA-CoNLL 17,830 4,623 4,292

Table 5: Number of examples in Train, Validation and
Test split of different datasets

range (16-64). Learning rate was tuned in (0.00001-
0.0005). All dropouts were tuned sparsely in the
range (0.1-0.3). During finetuning, we restrict the
max number of candidates per mention to 10. Un-
like pretraining, the entity embeddings were also
finetuned during entity typing experiments and the
best performing validation set checkpoint was used
to generate test set results

Sample dataset creation for experiments of Ta-
ble 3 were done using random seeds. Three differ-
ent sample datasets were collected for each of Ope-
nEnt(4%), Figer(0.5%) and Figer(0.05%). Each
sample would comprise an equal number of exam-
ples per entity type but randomised across the three
runs. Numbers reported in Table 3 correspond to
mean and standard deviation values of the perfor-
mance of the three sample dataset trained models
on the test set.

A.2.1 Datasets
The sizes of sample and original datasets are shown
in Table 5.


