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Abstract

Smart assistants are tasked to answer various
questions regarding world knowledge. These
questions range from retrieval of simple facts
to retrieval of complex, multi-hops question
followed by various operators (i.e., filter,
argmax). Semantic parsing has emerged as
the state-of-the-art for answering these kinds
of questions by forming queries to extract in-
formation from knowledge bases (KBs). Spe-
cially, neural semantic parsers (NSPs) effec-
tively translate natural questions to logical
forms, which execute on KB and give de-
sirable answers. Yet, NSPs suffer from non-
executable logical forms for some instances
in the generated logical forms might be miss-
ing due to the incompleteness of KBs. Intu-
itively, knowing the KB structure informs NSP
with changes of the global logical forms struc-
tures with respect to changes in KB instances.
In this work, we propose a novel knowledge-
informed decoder variant of NSP. We con-
sider the conversational question answering
settings, where a natural language query, its
context and its final answers are available at
training. Experimental results show that our
method outperformed strong baselines by 1.8
F1 points overall across 10 types of questions
of the CSQA dataset. Especially for the “Log-
ical Reasoning” category, our model improves
by 7 F1 points. Furthermore, our results are
achieved with 90.3% fewer parameters, allow-
ing faster training for large-scale datasets.

1 Introduction

Knowledge base question answering (KBQA) has
emerged as an important research topic over the
past few years (Sun et al., 2018; Chakraborty
et al., 2019; Sun et al., 2019; Shen et al.,
2019) alongside with question answering over text
corpora. In KBQA, world knowledge is given
in the form of multi-relational graph databases
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(Vrandečić and Krötzsch, 2014; Lehmann et al.,
2015) with millions of entities and interrelations
between them. When a natural language ques-
tion arrives, KBQA systems analyse relevant
facts in the knowledge bases and derive the an-
swers. In the presence of knowledge bases, ques-
tion answering results are often time more inter-
pretable and modifiable. For example, the question

“Who started his career at Manchester United in
1992?” can be answered by fact triples such as
(“David Beckham”, member of sports team,

“Manchester United”). This fact can be updated as
the world knowledge changes while it might be
non-trivial to achieve the same effect on text cor-
pora. Likewise, KBQA systems face their own chal-
lenges (Chakraborty et al., 2019), especially in the
real-world, conversational settings.

In real-world settings, KBQA systems need to
perform multi-hop reasoning over chains of sup-
porting facts and carry out various operations
within the context of a conversation. For instance,
answering the follow up question “When did he win
his first championship?” might require identifying
the player previously mentioned, all of his sport
teams, the dates the sport teams won their cham-
pionships. Then, argmax and filter operators
are applied on the returned dates, yielding answers,
i.e., “1999” for “David Beckham”. Semantic pars-
ing provides a weak supervision framework to learn
to perform all these reasoning steps from just the
question answer pairs. Semantic parsers define a set
of rules (or grammar) for generating logical forms
from natural language questions. Candidate logi-
cal forms are executable queries on the knowledge
bases that yield the corresponding answers. Neural
semantic parsers (NSPs) (Liang et al., 2016; Guo
et al., 2018; Shen et al., 2019; Guo et al., 2019) em-
ploy a neural network to translate natural language
questions into logical forms. NSPs have shown
good performance on KBQA tasks (Liang et al.,
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2016; Plepi et al., 2021) and further improved with
reinforcement learning (Guo et al., 2018), multi-
task learning (Shen et al., 2019), and most recently
meta-learning (Hua et al., 2020). Most previous
works place more emphasis on modeling the rea-
soning behavior given in the questions than on in-
teractions with the KB. In this work, we propose a
KB-aware NSP variant (KISP) to fill in this gap.

One of the main challenges in learning KBQA
systems is to adapt to structural changes of the
relevant sub-knowledge base. Different reasoning
behaviors might apply to similar questions with
respect to different sub-knowledge bases. For ex-
ample, a similar question “When did Tiger Woods
win his first championship?” would require a dif-
ferent reasoning chain since he didn’t participate in
a sports team. Structural changes of the sub-KB is
a common phenomenon due to the incompleteness
nature of knowledge bases. In such cases, knowing
the attributes and relations would inform NSPs with
changes in logical forms with respect to specific
relevant KB entities. To address this problem, we
propose a NSPs with a KB-informed decoder that
utilizes local knowledge base structure encoded in
pre-trained KB embeddings. Our model collects all
relevant KB artifacts and integrates their embed-
dings into each decoding step, iteratively. We also
introduce an attention layer on a set of associated
KB random walks as an k-steps look ahead that
prevents the decoder from going into KB regions
where generated logical forms are not executable.

Pre-trained KB embeddings were shown to im-
prove multi-hop KBQA where answers are enti-
ties and no operations are involved (Saxena et al.,
2020). In this paper, we demonstrate our work
on the full KBQA settings with 10 question cat-
egories with no constraints on the answers (Saha
et al., 2018). While (Saxena et al., 2020) evalu-
ates 2-hop questions (Yih et al., 2016) and 2 and
3-hop questions with limited relation types (Zhang
et al., 2018). Our model is also the first NSP variant
that utilizes pre-trained features for logical forms
generation. CARTON (Plepi et al., 2021) uses an
updated action grammar with stacked pointer net-
works. LASAGNE (Kacupaj et al., 2021) is an ex-
tension of CARTON which further includes a graph
attention network to exploit correlations between
entities, predicates. Empirical results showed that
our model improves upon the MaSP model (Shen
et al., 2019), a strong baseline for CSQA dataset,
by an absolute 1.8 F1, 1.5% accuracy two sets of
questions respectively.

Further, we find that by incorporating
knowledge-graph information we can match the
performance of much larger pre-trained encoder
models while using 90.3% fewer parameters.

2 Background

We first formally describe our task and the Neural
Semantic Parser (NSP) on which our work is based.

Knowledge Graph: Let E = {e0...eN} be a set
of given entities, and let R = {r0...rM} be a set
of relations. A knowledge graph G is a set of fact
triples in E × R × E . A triple is represented as
(h, r, t) where h, t ∈ E and r ∈ R. There is an
extensive literature on representing the knowledge
graph (Ji et al., 2020; Dai et al., 2020) that encode
its semantics and structures. In this work, we use
the pre-trained knowledge graph embeddings from
Pytorch-BigGraph (Lerer et al., 2019).

Conversational Question Answering: In con-
versational question answering (CQA), the goal
is to answer a question q within the context of the
conversation history C. The question q and the his-
tory C are usually concatenated for handling ellipsis
and coreference, forming the input X as [C; q]. At
training time, a set of answering entities A is also
given. The set A comprises entities that resolve to
the answer depending on the answer’s type. For
example, answers of “Simple Question” are a list
of entities, the answer of “Verification Question” is
Yes/No, whether the set A is empty or not.

2.1 Neural Semantic Parser

Semantic parsing approach for CQA produces the
answer set A by first generating a logical form
Y. Formally, a logical form Y is a sequence of
actions (y1, y2, ..., yn) where the arguments of
these actions can be constants (i.e., numbers, dates)
or KG instances (i.e., entities, relations, types).
The set of actions is defined by a grammar S (Shen
et al., 2019). We consider the weak-supervision
settings where the ground truth logical form Y is
not available. Instead, we generate candidates for
Y by performing BFS based on grammar S over
the knowledge graph G and keeping the candidate
logical forms that yield the answer set A (Guo
et al., 2018). Given the input X and the labeled
logical form Y, we train an encoder-decoder
neural network to generate logical forms given the
question and its conversational context.
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Encoder: The input X is formatted with BERT
style. Then, it is fed into a Transformer-based en-
coder network ENC, producing a sequence of en-
coded states H = ENC(X) = (h[CLS], h0, ...).

Decoder: The decoder is a Transformer-based
model with attention. It takes the input represen-
tation from the encoder h[CLS] and the previous
decoding state si−1 to produce the target action yi.

PrY∼S(Y | X) =
∏
yi∈S

Pr(yi | si−1,H) (1)

Pr(yi | si−1,H) = softmax(ATTN([si−1;h[CLS]],H))

Classifiers: The decoder is accompanied by a set
of classifiers that predict the arguments for the de-
coder’s actions at each decoding step. Our base
NSP (Shen et al., 2019) employs FFNNs for rela-
tions and entity types classifiers; and pointer net-
works for entities and constants mentioned in the
question. At each decoding step, these classifiers
produce an entity ei, an entity type ti, a relation ri,
and a constant ci. The logical form action at time
step i is a tuple consists of yi and its arguments
within {ei, ti, ri, ci} defined by the grammar S .

3 Knowledge-Informed Decoder

In this section, we introduce a knowledge-informed
decoder that utilizes KG information to generate
logical forms. We propose a knowledge injection
layer that incorporates KG embeddings into the de-
coder state at each decoding step. To further inform
the decoder with information about the expected
structure of the KG, we propose an attention layer
on random, k-hops knowledge walks from entities
we encounter at each decoding step.

3.1 Knowledge Injection Layer(KIL)

NSP decoders only look at the encoded question
and the previous state of decoding to decide the
next action. Information of the KB instances (i.e.,
entities, types, or relations) being considered so
far could improve this decision making process.
Therefore, at the decoding step i where the action
involves a KB instance, we propose a Knowledge
Injection Layer (KIL) to propagate KB informa-
tion to the sub-sequence steps. KIL takes in the KB
classifiers predictions, incorporates their embed-
dings into the current encoding state and forwards
it to the next decoding step. Eq. 1 becomes

PrY∼S(Y | X) =
∏
yi∈S

Pr(yi | s∗i−1,H) (2)

s∗i−1 = KIL(si−1) = FNN([si−1; EMBB(vi−1)])

where vi−1 is the corresponding argument of yi−1
and vi−1 ∈ E ∪ R, i.e., vi ∈ {ei, ti, ri, ci}.

At step j where j > i, the decoder is informed
of preceding KB instances, and is able to adapt to
specific sub-KB structure. We find in cases where
there multiple entities in context, having the right
entity embedding at timestep j helps logical form
in the upcoming steps. The entity embedding car-
ries information about type of the entity, which our
model is able to use more appropriate predicates
for ambiguous mentions. We empirically show that
KIL improves the exact match accuracy of the logi-
cal form attributes (logical form without KB).

3.2 Attention on KG Walks (AKW)

Now that the decoder is aware of the previous KB
instances, it is also useful to peek at the possible
reasoning chains coming out of the current decod-
ing state. We do this to avoid reasoning paths that
lead to an non-executable region where the logical
form is invalid with respect to the KB. Therefore,
we propose an attention look-ahead layer to inspect
the upcoming KB structures before making the ac-
tion prediction. We first generate a set of random
walks on the KG from predicted entities and rela-
tions with the current decoding step. We then apply
the attention look-ahead layer on these KG walks
to obtain a representation of the expected KG struc-
tures. This representation is then fed back to the
decoder to predict the action.

PrY∼S(Y | X) =
∏
yi∈S

Pr(yi | s∗i−1,H, RANDWALK(v))

RANDWALK(v) = ATTN({EMBB(pj ∼ G(v))}j=0..k)

where v is one among entities in the question and
pj is a random walk path on the KB starting from
v, denoted as G(v). Here we use one hop random
walks from predicates found in the input, though
any type of random walk could be used.

With the two proposed layers, our NSP decoder
is now fully informed with the past and the
future KB structures. We demonstrate that our
decoder variant achieves better performance on
various question categories. Furthermore, we
show that the pre-trained KG embeddings do
a significant heavy lifting on representing KB
information within the decoder states, resulting
in less model parameters and required training data.
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Figure 1: Overall Architecture and the different sources of knowledge used in KISP.

Methods MaSP CTN KISP KISP
w\BERT � 3

# train param 155M 157M 160M

F1

Overall 81.20 81.35 82.56 83.01
Clarification 80.10 47.31 76.29 76.33
Comparative 68.19 62.0 68.15 67.83
Logical 76.40 80.80 87.41 87.14
Quantitative 77.31 80.62 77.76 77.52
Simple (Coref.) 78.33 87.09 78.78 79.66
Simple (Direct) 86.57 85.92 87.03 87.68
Simple (Ellipsis) 85.57 85.07 85.86 86.06

A
cc

.

Overall 44.73 61.28 46.22 46.22
Compart.(Count) 28.71 38.31 27.65 27.32
Quant.(Count) 50.07 57.04 50.82 50.92
Verification(Bool) 65.00 77.82 72.29 72.72

Table 1: CSQA w/ Large Models. CARTON is CTN,
KISP(KIL) is KISP�, KISP(KIL+AKW) is KISP3.

4 Experiments

Dataset and Evaluation We evaluate our ap-
proach on Complex Sequential Question Answer-
ing (CSQA) dataset. CSQA consists of 1.6M ques-
tion answer pairs spread across 200K dialogues.
Its has a 152K/16K/28K train, val, test split. More
details on the dataset and evaluation metrics used
are presented in Section A.1 of the Appendix.

4.1 Main Results
Our model1 outperforms the MaSP model by
1.8 absolute points in F1-score for entity answer

1Code: https://github.com/raghavlite/kisp

questions and 1.5 absolute points in accuracy
for the boolean/counting categories. KISP shows
significant improvements in Table 1 compared
to MaSP. In more complex question types such
‘Logical Reasoning’, ‘Verification’ which require
to reason over multiple tuples in the KG and
questions that requiring operations like counting,
our model outperforms the baseline by more than
10% points. Table 1 compares with MaSP (Shen
et al., 2019). Appendix has additional analysis. Our
model also beats CARTON (Plepi et al., 2021) in
the entity answer questions despite them using an
updated action grammar. For boolean, count type
questions, the additional action vocabulary helps
CARTON out perform our system. We will extend
KISP to use this additional action vocabulary in
the future.

4.2 Ablation Study
KG informed decoding with small models. A
significant performance gain is expected in the
smaller models by use of the knowledge graph in-
formation. We test this hypothesis by drastically
reducing the size of the KISP encoder. This small
version of KISP with only 9.7% of the baseline
parameter slightly outperforms the baseline BERT
model on overall F1-score. The gain comes from
the fact that our models receive significant signal
from KIL to make a more informed decision of
valid actions/types in the next step even without a
lot of knowledge from the encoder attention.
Low resource settings. A semantic parsing sys-
tem as described above typically requires annotated
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Methods MaSP MaSP KISP3
(Small) (BERT) (Small)

# of Parameters 15M 154.8M 15M

F1

Overall 78.91 81.20 81.52
Clarification 75.05 80.10 82.01
Comparative 66.85 68.19 69.64
Logical 69.55 76.40 84.54
Quantitative 74.29 77.31 73.9
Simple (Coref.) 76.27 78.33 77.99
Simple (Direct) 85.39 86.57 85.49
Simple (Ellipsis) 83.04 85.57 83.60

A
cc

.

Overall 38.56 44.73 42.55
Comparative(Count) 22.66 28.71 23.65
Quantitative(Count) 42.73 50.07 45.65
Verification 60.54 65.00 71.63

Table 2: Comparison of KISP3=KISP(KIL+AKW)-
Small with different sized baseline models.

golden logical forms for training. Logical form an-
notation is an resource intensive process (Berant
et al., 2013; Liang et al., 2013; Zhong et al., 2017).
It is also a difficult process to use brute force com-
putation to find these logical forms; also this pro-
cess often results in spurious logical forms Shen
et al. (2019).

This calls for models which can work with very
few training examples. Hence we evaluate the ef-
fectiveness of KISP in low resource settings where
only a fraction of data is used for training. Table
3 shows that KISP is able to outperform MaSP
in these data constrained cases. The gap between
MaSP and KISP widens in these low resource set-
tings further justifying our model.

Methods 10% Data 50% Data

F1 Acc. F1 Acc.

MaSP++ (S) 72.99 35.61 79.31 40.27
KISP � (S) 75.45 37.70 80.93 42.53

Table 3: Comparison of small KISP(KIL+AKW) and
MaSP models. KISP�=KISP(KIL+AKW)

Met.\Acc. Sket. Ent. Pred. Type Num
MaSP (S) 80.55 87.39 97.11 90.62 96.30
KISP3 (S) 82.32 95.30 98.83 90.73 100
KISP� (S) 83.33 95.37 98.83 90.66 100

MASP (B) 83.63 91.90 97.67 93.11 100
KISP3 (B) 84.47 96.25 99.40 92.25 100
KISP� (B) 85.92 95.85 99.25 92.25 100

Table 4: Fine grained metrics. KISP3=KISP(KIL),
KISP�=KISP(KIL+AKW). (S)-Small, (B)-Bert.

Impact of KIL and AKW To further under-
stand how each classifier on the decoder is ben-

efited from the knowledge graph, we look at the
accuracies of these classifiers on the evaluation set.
Table 4 displays accuracies of the five classifiers
from Eq. 1 around logical form generation of dif-
ferent models.

KISP does as better job at predicting the over-
all skeleton of the logical form - (all the various
non ei, ti, ri, ci) actions. We observe attending to
knowledge graph improves the logical form skele-
ton up to 2.3 points. As shown in Example 3 and 4
of the Appendix, the count, filter actions within
the logical form are better predicted by KISP. KIL
provides entity-embedding for the entity of interest
at current timestep this helps the model pick the
right predicates in the following steps in ambigu-
ous cases. Cases requiring reasoning benefit from
seeing random walks around entities in context -
provided by AKW. These lead to better overall
sketch accuracy.

KISP is also better at pointing to correct entity
accuracy. Pointing to the right entity can has cas-
cading effects on logical form prediction As shown
by numbers in Table 4. KISP does a better job
with entity pointer improving by almost 4 points.
We attribute this to the KIL sytem of KISP which
provides the KG embedding for entity of interest
at given time step this helps the decoder’s entity
pointer mechanism.

Entity Linking Errors We follow Sheang
(2019) in using a joint mention, type classifier fol-
lowed by an inverse index entity linker on the in-
put using the encoder representations. The entity
pointer classifier described earlier sections looks at
these entities in a sentence and points to one among
them. We found that a large amount of errors had
arisen from this inverse index. Recent work, (Kacu-
paj et al., 2021) also points this and uses a better
entity linker. Improving this module should signifi-
cantly add to final performance and hence is a very
interesting direction for future work.

5 Conclusion

We introduced a neural semantic parsing decoder
that uses additional knowledge graph information
for Conversational QA. Results show that KISP can
significantly boost performance in complex multi-
hop question types like logical reasoning questions.
Our method can help improve over strong baseline
methods like MaSP. Finally we presented a smaller
version of our model that is approx 10x smaller
without any performance degradation compared to
a system that doesn’t use KG informed decoding.
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data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

Wen-tau Yih, Matthew Richardson, Christopher Meek,
Ming-Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 201–206.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

https://doi.org/10.26615/issn.2603-2821.2019_013
https://doi.org/10.26615/issn.2603-2821.2019_013
https://doi.org/10.26615/issn.2603-2821.2019_013
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489


237

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103.

A Appendices

A.1 Dataset and Evaluation
We evaluate our approach on Complex Sequential
Question Answering (CSQA) dataset. CSQA con-
sists of 1.6M question answer pairs spread across
200K dialogues. Its has a 152K/16K/28K train, val,
test split. The dataset’s knowledge graph is built
on wikidata (Vrandečić and Krötzsch, 2014) and
represented with triples. The KB consists of 21.2M
triplets over 12.8M entities, 3054 distinct entity
types, and 567 distinct predicates. There are 10
different question categories split into two groups.
Answers to the first group of questions are a list
of entities. Question categories of this group are
evaluated by the macro F1 score between predicted
entities and golden entities. Answers to question
categories in the second group are either counts or
boolean. This group is evaluated by accuracy. Over-
all scores for each group are the weighted averaged
metrics of all the categories in the group. We refer
the reader to Saha et al. (2018) for a more detailed
understanding of different categories of questions.
Following sections contain training/eval specifics.

A.2 Training details & Evaluation Metrics
We followed Shen et al (2019) to search for logical
forms and create the training data. Exact hyperpa-
rameters used in the experiments are mentioned
below. We followed Saha et al. (2018) for evalu-
ation metrics. Macro Precision and Macro Recall
were used when the answer was a list of entities.
For questions with answer type boolean/number,
we use accuracy.

A.3 Training time Analysis
Training times of different models are in Table.5

Model Training Time (hrs)
MaSP++ 6
KISP(SKI) 7.5
KISP(SKI+AKW) 8
MASP++ (BERT) 27.4
KISP(SKI) BERT 29.5
KISP(SKI + AKW) BERT 32
KISP(SKI + AKW) small 4.5
MASP++ small 3

Table 5: Running times of different models

There are some known in-efficiencies in the code,
some from design and others conceptual. We in-

Figure 2: Example1 logical form
KISP(SKI+AKW)BERT

tend to improve training time in future work by
incorporating more e2e methods that will reduce
GPU2CPU & CPU2GPU communication and also
through some design changes in the short term.

A.4 Logical form Analysis
We identify examples to show performance
improvement in KISP models, in predicting the
correct answer and logical form. As shown in
Table 6 below, KISP models for these examples do
a better job at sketch, entity, num, type, predicate
classification compared to MaSP. The coloured
images in Figure 2- 6 show the differences between
MaSP and KISP models. For each example we
show the golden logical form tree(also predicted
by one of the KISP models), MaSP’s logical form
and the mistakes made by the baseline in color red.

Example1

• Utterance

Q: Which works of art stars Jiřı́ Růžička as
actor and originated in Germany ?

A: Three Nuts for Cinderella
Q: Who was that work of art composed by ?
A: Karel Svoboda

• Logical form

@ Gold
find({Three Nuts for Cinderella}, Com-
poser)

Example2

• Utterance

Q: What is the job of Joe Falcon ?
A: musician
Q: What can be considered as category for

Joe Falcon ?
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Example Curr Question type Predicted logical form = Gold logical form and Predicted answer = Gold answer
MaSP KISP(SKI) KISP(SKI+AKW) KISP(SKI+AKW): BERT

Example1 Simple Question (Coreferenced) Yes Yes Yes Yes
Example2 Simple Question (Direct) No Yes Yes Yes
Example3 Quantitative Reasoning (Count) (All) No Yes Yes Yes
Example4 Quantitative Reasoning (Count) (All) No No Yes Yes
Example5 Logical Reasoning (All) No No No Yes

Table 6: Examples are based on the predicted logical form and answers in comparison to their gold counterpart

A: Cajun music

• Logical form

@ Gold
find({Joe Falcon}, genre)

@ MaSP
find({Joe Falcon}, Occupation)

Example3

• Utterance

Q: How many administrative territories have
atleast 4 administrative territories or
french administrative divisions as their
capital?

A: 1
Q: How many cities are associated to Alba-

nia as the capital?
A: 1

• Logical form

@ Gold
count({find({Albania}, capital)})

@ MaSP
count({filter(city,{union({find({Albania
},capital)},{Albania})})})

Example4

• Utterance

Q: Is France the native country of Charles
Boyer ?

A: YES
Q: How many works of art stars Charles

Boyer as actor ?
A: 68

• Logical form

@ Gold
count(filter(work of art,{find({Charles
Boyer}, cast member )}))

@ MaSP
count({union({filter(work of
art,{find({France},country of ori-
gin)})},{find({Charles Boyer},cast
member)})})

@ KISP(SKI)
count({diff (argmax({filter(work of
art, {Charles Boyer})},cast mem-
ber),{filter(work of art,{Charles
Boyer})})})

Example5

• Utterance

Q: What is that person a member of ?
A: Tunisia national football team
Q: Which recurring events did Tunisia na-

tional football team and Alberto Garcı́a
Aspe participate in ?

A: 2002 FIFA World Cup, 1998 FIFA World
Cup

• Logical form

@ Gold
inter({find({Tunisia national football
team}, participant)},{find({Alberto
Garcı́a Aspe}, participant)})

@ MaSP
inter(find({Alberto Garcı́a Aspe},
participant), find({Alberto Garcı́a Aspe},
participant))

@ KISP(SKI)
filter(recurring
event,{union({find({Tunisia national
football team}, participant)},{Alberto
Garcı́a })

@ KISP(SKI+AKW)
inter({find({Tunisia national football
team }, participant)},{find({Tunisia
national football team }, participant)})
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Figure 3: Example2 logical form KISP(SKI) vs MaSP

Example2 (Figure 3) and Example5 (Figure 6)
show improvement in logical form entity and
predicate instantiation compared to MaSP. We
notice improvement in logical form skeleton for
KISP(SKI+AKW)BERT model in Example4 (Fig-
ure 5). Example 3 (Figure 4) is a case where MaSP
gets the right answer despite the incorrect logical
form.

Figure 4: Example3 logical form KISP(SKI+AKW) vs MaSP
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Figure 5: Example4 logical form KISP(SKI+AKW) vs MaSP

Figure 6: Example5 logical form KISP(SKI+AKW)BERT vs MaSP


