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Abstract

Selectional Preference (SP) captures the ten-
dency of a word to semantically select other
words to be in direct syntactic relation with
it, and thus informs us about syntactic word
configurations that are meaningful. Therefore
SP is a valuable resource for Natural Lan-
guage Processing (NLP) systems and for se-
manticists. Learning SP has generally been
seen as a supervised task, because it requires
a parsed corpus as a source of syntactically
related word pairs. In this paper we show
that simple distributional analysis can learn a
good amount of SP without the need for an an-
notated corpus. We extend the general word
embedding technique with directional word
context windows giving word representations
that better capture syntagmatic relations. We
test on the SP-10K dataset and demonstrate
that syntagmatic embeddings outperform the
paradigmatic embeddings. We also evaluate
supervised version of these embeddings and
show that unsupervised syntagmatic embed-
dings can be as good as supervised embed-
dings. We also make available the source code
of our implementation'.

1 Introduction

Selectional Preference (SP) (Wilks, 1975) encodes
the syntagmatic relatedness between two words.
Relations between words are either syntagmatic
or paradigmatic (de Saussure, 1916). Two words
are said to be paradigmatically related if one word
can replace the other in a sentence. Words be-
longing to a narrow semantic class, such as ‘cat’,
‘dog’ can often be substituted with each other in a
sentence. Syntagmatic relations are between syn-
tactically related co-occurring words in a sentence.
Such word relations encode both syntactic and se-
mantic aspects of words. A noun may be modified
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by an adjective, but any particular instance of a
noun tends to go more with some adjectives than
others. For example black dog is more likely than
green dog. SP deals with such semantic preferences
between syntactically related word pairs. Com-
mon SP relations include ‘adjective-noun’, ‘subject-
verb’, ‘verb-object’. SP finds use in important NLP
tasks like sense disambiguation (Resnik, 1997), se-
mantic role classification (Zapirain et al., 2013),
co-reference resolution (Hobbs, 1978; Zhang et al.,
2019c¢), etc.

A computational method to induce SP from in-
stances of syntactically related word pairs in a
parsed corpus was introduced by Resnik (1996).
In order to generalize to unseen data, this method
made use of ontological classes obtained from
WordNet (Miller, 1995). Rooth et al. (1999)
showed that the dependence on external knowl-
edge resources could be removed by learning the
classes from the corpus itself using the EM algo-
rithm. Erk (2007) showed that generalization is
also possible via co-occurrence similarity between
seen and unseen words. SP models are usually eval-
uated using the Pseudo-word Disambiguation task
(Van de Cruys, 2014) which requires the identifica-
tion of the more probable dependent word, from a
less probable (random) word, given the head word
and a syntactic relation. The dataset is generally
created from the unseen part of a parsed corpus
used for learning the model. Therefore this task
measures only how well the model fits the corpus,
which may be biased, and not how well it learns
SP as perceived by humans. Recently, Zhang et al.
(2019b) introduced SP-10K, a dataset for SP eval-
uation across 5 syntactic relations with a total of
10,000 items each with a human-annotated plau-
sibility score. SP-10K measures the correlation
between a model’s SP score for a given word pair
and the average human score. Therefore it is a
better test for SP learning.

Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-2021), pages 213-222
Bangkok, Thailand (Online), August 6, 2021. ©2021 Association for Computational Linguistics


https://github.com/renjithravindran/spvec
https://github.com/renjithravindran/spvec

The current state-of-the-art on SP-10K is re-
ported by Multiplex Word Embeddings (MWE)
(Zhang et al., 2019a). It is a negative sampling
based word embedding model, trained on relation-
specific word pairs from a parsed corpus. Com-
pared to unsupervised embedding models such as
Word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), MWE provides a substantial
boost in SP learning as it has access to syntactic re-
lations. It also improves over D-embeddings (Levy
and Goldberg, 2014a) which is a supervised em-
bedding model. However, a dependency-parsed
corpus is not readily available in many languages.
Therefore the need for an effective unsupervised SP
induction technique is palpable in the wider NLP
community.

In this work we show that unsupervised word
embeddings can easily be extended to get better
at learning SP. We do this by taking directional
(left/right) word context windows unlike symmet-
ric windows of Word2vec, GloVe, etc. Having
directional context windows gives two embeddings
per word, one of its left context and other of its
right context. This allows us to approximate syn-
tactic relations with directions; all relations that
happen to the left of a word are captured by the left
embedding and those that happen to the right of a
word are captured by the right embedding. Then
the cosine similarity between the right embedding
of a word and left embedding of another word indi-
cates how likely the two are to be syntagmatically
related.

In summary, our contributions are: 1) We pro-
vide a simple and effective method to capture se-
lectional preference, called syntagmatic embed-
dings 2) Demonstrate that syntagmatic embeddings
are superior to paradigmatic embeddings 3) We
also show that our unsupervised syntagmatic rep-
resentations can be as good as their supervised
counterparts, therefore showing that a good range
of SP information can be learned even without a
dependency-parsed corpus.

2 Syntagmatic Representation

Symmetric and non-directional context windows in
embedding techniques, such as GloVe, relate words
that have similar (paradigmatic) contexts. Context
words are other words that are in the immediate
vicinity of a target word. A symmetric window
considers equal number of words on the left and
right as context words. Though syntagmatically re-

lated words may have similar contexts, a symmetric
window tends to encode more of paradigmatic re-
lations. But these paradigmatic embedding spaces
do encode syntagmatic properties to a certain de-
gree. For example, we may find that the cosine
similarity between ‘coffee’ and ‘cup’ is generally
greater than ‘coffee’ and ‘car’. These embeddings
are considered unsupervised as they are learned
from a plain un-annotated corpus. Since their con-
texts are not dictated by syntactic relations they
are generally inferior, at learning SP, compared to
an embedding technique that has access to such
information (Zhang et al., 2019a). Also, there is no
direct way to extract syntagmatically related words.
The nearest neighbours of a given word will largely
be all paradigmatically related. Though it may in-
clude, given a larger context window, associated
words (‘coffee’, ‘cup’) which have a syntagmatic
nature.

2.1 Relations as Directions

Exact learning of SP requires word co-occurrence
in a sentence to be defined as a pair of syntacti-
cally related words, which is available only in a
dependency-parsed corpus. We can obtain a less
exact representation for SP by replacing syntactic
relations with directions, because in word-ordered
languages, word-order or direction plays a major
role in assigning syntactic relations. For example
in an English sentence, the adjectival modifier of a
noun is always found to its left. The nominal sub-
ject of a verb is found to its left and direct object
to its right. The technique explored here exploits
this fact to learn a substantial amount of selectional
preference without the need for a large dependency-
parsed corpus.

2.2 Unweighted Factorisation Model

Word embeddings are low-rank representations of
row/column vectors in a word co-occurrence matrix
(Levy and Goldberg, 2014b). Here, we consider
unweighted factorisation of a word co-occurrence
matrix using Truncated Singular Value Decompo-
sition (SVD) (Kalman, 1996). Let M be the co-
occurrence matrix of size v X v, where v is the
size of the vocabulary. Instead of a symmetric con-
text window, we use non-symmetric and directional
windows, directions being left and right. Let M; ;
be the number of times word ¢ co-occurred to the
left of word j within a distance of k throughout the
corpus, where k is the size of the co-occurrence
window. Consequently, M; ; becomes the number
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word

associations

car left: vintage, second-hand, oncoming, luxury, buying, toy, saloon, buy, mercedes...
right: collided, sped, exploded, maker, skidded, swerved, belonging, makers, roared...

cat left: want, wants, going, wanting, let, tend, ought, let’s, allowed, prefer, supposed, able...
right: salad, beans, soup, cakes, pork, peas, bacon, pasta, fresh, pie, biscuits...
left: wore, vivid, dull, wear, luminous, wears, dazzling, plain, dim, dressed, dyed...

blue . - -
right: scarf, stripe, livery, robe, beret, overalls, blazer, slacks, gloves...

agaressive left: increasingly, extremely, equally, become, very, highly, particularly, becoming...

right: behaviour, attitude, manner, response, towards, tactics, stance, attack, actions...

Table 1: Examples of word associations from syntagmatic embeddings.

of times word 7 co-occurred to the right of word
j. Thus the row ¢ of matrix M gives the represen-
tation of word ¢ using its left context words. And
column 5 gives the representations of word j using
its right context words. These two representations
are different because our co-occurrence matrix is
not symmetric. However, raw co-occurrence repre-
sentation is very high-dimensional, highly sparse
and noisy. A major component of word embedding
techniques is dimensionality reduction, by approxi-
mating the original co-occurrence matrix with its
low-rank representation M. Dimensionality reduc-
tion is found to reduce noise in the data matrix
by eliminating the low principle components of
the data, thus increasing generalisation. We use
Truncated SVD ? to obtain rank d approximation.
Equation 1 gives the factorisation of the matrix M.

M ~M=USVT (1)

Where, vad, S’dxd, vad are the factor matrices
(singular vectors and singular values) obtained in
SVD as, M = USVT, but truncated to keep only
the top d principle components. U and V gives
the left context and right context representations of
words respectively, in terms of the leading d singu-
lar vectors. The singular values S gives the relative
weightage of corresponding singular vectors, which
may be used to scale the singular vectors appro-
priately. Our word representations are obtained by
scaling the singular vectors by an exponential factor
of their singular values. Thus, the final left embed-
ding is given as L = U SP and the right embedding
is R = SPVT. Caron (2001) showed that the expo-
nential weighting factor p allows for a softer rank
selection such that p > 0 gives more weightage to
the leading components and p < 0 gives weightage

2randomized_svd from scikit-learn
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to the lower components, allowing the fine tuning
of embeddings for different tasks. The number of
components (dimension), exponential weighting
factor, and co-occurrence window size are three im-
portant parameters that influence the performance
of these embeddings. Our experiments include yet
another parameter, the term-weight. So far we have
assumed that M contains raw co-occurrence values,
or the frequency count of two words to co-occur
in the corpus. Various term-weighting schemes
can be applied to transform the raw frequencies.
We experiment with log, PMI (Point-wise Mutual
Information) and PPMI (Positive Point-wise Mu-
tual Information) term-weights along with the raw
frequency counts.

2.3 Weighted Factorisation Model

A factorisation model like the one presented in
the previous section gives equal weightage to
all errors in the low-rank approximation process.
It has been shown that weighting errors from
each co-occurrence term, by a function of their
co-occurrence frequency yields better word em-
beddings (Levy and Goldberg, 2014b). Neu-
ral embedding techniques such as Word2vec do
such weighting implicitly (Levy and Goldberg,
2014b), whereas techniques that makes use of co-
occurrence matrix, such as GloVe, do this explic-
itly. For evaluating the performance of weighted
factorisation on selectional preference, we mini-
mally modify the GloVe model to get syntagmatic
embeddings.

v,V
L = Z f(Mi’j)(uLiij + bz + bj — lOg MZ'J')Q
i,j=1,1

2

Equation 2 gives the loss function IL for approxi-
mating the log co-occurrence with the dot product



of the left embedding (u,,) and the right embed-
ding (vy). M here is the co-occurrence matrix
and b;, b; are bias terms. With symmetric context,
the final embeddings in the GloVe model are ei-
ther just the left embeddings or the sum of left and
right embeddings. But with asymmetric context,
left and right embeddings are used distinctly. The
weighting function (f) is given by equation 3.

1, otherwise

flz) = {(m/xmm)zl, if £ < Tymaa 3)

Tmaz 18 generally taken as 100. GloVe’s weighting
function mainly reduces the influence of rarely co-
occurring words which tend to be noisy.

2.4 Syntagmatic Association

.(—
Let I; be the left embedding of word 7 , i.e. it"
row of L, and 7’7 be the right embedding of word j,

i.e the j* column of R. Since 7“7 reflects the right
F

context of word j and [; reflects the left context of
(;
word ¢, similarity between 7“7 and [; would reflect

how often word j is found to the left of word <.
—

Thus cosine similarity between ?j and /; captures
the association of word j to the left of word ¢, and
the association of word ¢ to the right of word j.

Table 1 gives few examples of left and right as-
sociations from syntagmatic embeddings. These
examples have been filtered to remove words that
tend to appear as both left and right associates. Let
1 and r be the set of left associates and right asso-
ciates of a given word in the embedding space, then
the examples given here are 1 — r (left) and r — 1
(right). We see that the left associates of a noun
(car) tends to have adjectives (vintage) and verbs
(buy) that take the noun as its direct object. Right
associates of the noun are found to be verbs (col-
lided) that take the noun as its subject. With a verb
(eat) we see that its left associates are other verbs
(want) to which the given verb is an open clausal
component. The right associates are its direct ob-
jects (salad). With an adjective (blue) we see that
its left associates are other adjectives (vivid) that
act as intensifiers and verbs (wore) whose direct
objects are modified by the given adjective. The
right associates are nouns (scarf) that are modified
by the adjective.

3 SP Evaluation

Examples of word association in the previous sec-
tion gives a qualitative feel about the degree to
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] \ head | dependent | human-score
o air fresh 9.7
g number | medium 4.0
® | wind secret 0.7
—| cat meal 10.0
2| touch food 5.5
= eat mail 0.0
= sing singer 10.0
2| pray woman 5.8
= eat textbook 0.0

Table 2: Samples from SP-10K dataset.

which syntagmatic embeddings can capture selec-
tional preference. In the next section we follow this
up with detailed analysis using quantitative studies.

3.1 Dataset

We use the SP-10K (Zhang et al., 2019b) dataset to
quantify the correlation of between the SP informa-
tion learned by our syntagmatic embeddings and
that of human judgements. Other datasets with hu-
man scores for SP are McRae et al. (1998); Keller
and Lapata (2003); Padé6 et al. (2006). But com-
pared to SP-10K these are much smaller in size.
SP-10K has 3 direct relations and 2 indirect rela-
tions. For our evaluation we only use the direct re-
lations — amod, nsubj and dobj. In SP-10K there
are 2000 evaluation instances under each relation
class. Each instance is a triplet (wordl, word2,
human-score), where wordl is the head and word2
is a dependent, and human-score gives the plau-
sibility of word2 being dependent on wordl, via
the given relation, as judged by humans on a 0-10
scale. For amod relation, a noun is the head and
an adjective is the dependent. For nsubj and dobj
a verb is the head and a noun is the dependent. Ta-
ble 2 gives some examples from the dataset. The
model’s capacity for SP is judged by the correlation
(Spearman’s) between the association score given
by the model and the human-score. The model-
score for a given head-dependent pair is the cosine
similarity between the head and the dependent in
the embedding space.

Since the syntagmatic embeddings relegate rela-
tions to left and right directions, the cosine similar-
ity fgr each of the relations are computed as: amod:

— +—
7?; - Iy, nsubj: 7?; -1y, dobj: r_;; - l4, where subscript
h and d denotes head and dependent words respec-
tively, and symbol ‘-’ denotes cosine similarity.
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Figure 1: Average correlation of syntagmatic and paradigmatic models over various parameter combinations.

3.2 Baseline Models

We compare our syntagmatic model with 3 paradig-
matic models: Word2vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014) and DSG (Song
et al., 2018). Both Word2vec (w2v) and GloVe
(glove) are typical paradigmatic embeddings. DSG
(Directional Skip-Gram) is a variant of Word2vec
that claims to encode directional information by
predicting the co-occurring words and also their di-
rections. However, unlike syntagmatic embeddings
DSG gives only one embedding per word. The best
reported supervised model on SP-10K is Multiplex
Word Embeddings (MWE). However, we could not
use 3 the available implementation* for our experi-
ments. Older supervised models for SP, that are not
based on embeddings, have been previously eval-
uated on SP-10K (Zhang et al., 2019a), therefore
we do not include those here.

3.3 Corpus

We use the British National Corpus (BNC-
Consortium, 2007) as the source for word co-
occurrences for the embeddings. Since BNC is
sentence segmented, our co-occurrence counting
never jumps across a sentence. The word casing
is normalized to small, punctuations are removed,
and the vocabulary is limited to words occurring at
least 100 times in the corpus.

4 Experiments

In the following experiments, we compare our syn-
tagmatic embeddings with its paradigmatic coun-
terpart, identify its best parameters, distinguish
weighted from unweighted factorisation, evaluate

3it runs only on a given prepackaged corpus, we found it

difficult to replicate their packaging for our corpus
*https://github.com/HKUST-KnowComp/MWE

against baseline embeddings and test how our un-
supervised SP learning method compares with a
supervised model. The parameters involved in the
factorisation of the word co-occurrence matrix are:
1) size of the co-occurrence window (ws), 2) term-
weight or the co-occurrence weighting function
(tw), 3) dimensionality of the embedding space or
the number of principle components (dim), and 4)
the exponential weight on singular values (p).

We experiment with the following parameter val-
ues: ws=[1, 2, 3, 4], dim=[20, 50, 100, 300], p=[-
0.5, 0, 0.5, 1], tw=[raw, log, pmi, ppmi]. In term-
weights raw denotes the co-occurrence frequency
of the word as it is , log is the logo of the raw co-
occurrence frequency, pmi is the point-wise mutual
information given by equation 4 where subscript ‘*’
stands for a summation across a particular axis, and
ppmi is the positive-only variant of pmi as given by
equation 5.

i M «
PMI; ; = logiMZ i 4
PPMI; j = max(0, PMI; ;) 5)

4.1 Syntagmatic Vs Paradigmatic

In our first experiment we compare syntagmatic
representation to paradigmatic representation. Here
we consider only the unweighted factorisation
model. The paradigmatic model is similar to the
syntagmatic model described in section 2.2, but
has a context window that is symmetric and non-
directional. To get a more realistic picture of these
methods, we compare a cohort of syntagmatic and
paradigmatic models that have different parameter
values. Each of the 4 parameters have 4 chosen
parameter values. Since each parameter value com-
bination gives us a different model, we get a total
of 256 syntagmatic and 256 paradigmatic models.
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Figure 2: Average correlation (with standard deviation)
in syntagmatic models that have the same parameter-
value.

For each model (parameter-value combination)
we compute the average correlation over the 3 SP
relations. We see that in 69% of the total parame-
ter instances the syntagmatic model is better than
paradigmatic model. In those instances, on average
the syntagmatic model improves the correlation by
0.14 points, which is an improvement of 54%. The
maximum correlation obtained by a syntagmatic
model is 0.71 and by the paradigmatic model is
0.58.

Figure 1 shows two line plots for the average
correlation values of syntagmatic and paradigmatic
embeddings. Each particular parameter-value com-
bination is a value on the x-axis, for which the there
are two correlation values on the y-axis; one of the
syntagmatic model and the other of the paradig-
matic model. Apart from showing that syntagmatic
models are generally better than paradigmatic mod-
els, it shows that certain parameter combinations
give syntagmatic models a much greater advantage.
On the downside we see that for a good number of
poorly performing paradigmatic models their, syn-
tagmatic counterpart performed even worse. There
are also certain pathological parameter combina-
tions that substantially pull down syntagmatic rep-
resentations compared to corresponding paradig-
matic representation. But overall, this experiment
shows that syntagmatic embeddings are substan-
tially better at capturing SP.

4.2 Parameter Impact

In our second experiment we try to understand the
relative importance of each parameter-value. For
this we look at all 256 syntagmatic models and
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Figure 3: Average correlation of weighted and un-
weighted models with varying window sizes.

compute the mean and standard deviation of the
correlation score among those models that have a
particular parameter-value. For example we take
the parameter-value tw=Ilog and look at all syntag-
matic models with that particular parameter-value,
and compute the mean and standard deviation of
their correlation score. We do the same with all 16
parameter-values.

Figure 2 gives the results of this experiment. We
see that term-weight is the most important param-
eter, and tw=log the most significant parameter-
value. No matter what the other parameters values
are, using log as the term-weight gives on average
a correlation score of 0.55 4 0.07. Further, we
see that the dimensionality of the embedding space
is the next most significant parameter. Here we
see that higher values are better, but this is only
because we didn’t consider even higher® values in
this experiment (>300). It is well understood that
there is an optimal dimension which is task and
corpus dependent, below which a model does not
have enough capacity, and above which the model
tends to pick up noise (Yin and Shen, 2018). A
more interesting aspect is the significance of the ex-
ponential weighting factor p. The SVD factorizes
the co-occurrence matrix as M = USVT, which
can be factored into left and right components as
M = [US%] [S% VT]. We see that p=0.5 is indeed
the right’ value for the exponential weight factor.

4.3 Influence of Weighted Factorisation

To understand the influence of weighted factori-
sation on syntagmatic embeddings, we compare
the syntagmatic Glo Ve (s-glove) model, introduced
in section 2.3 to our SVD based unweighted fac-

3See figure 5 in appendix
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torisation model. We choose our best performing
SVD based syntagmatic model (tw=log, dim=300,
p=0.5) naming it spvec. We also test the SkipGram
Word2vec (w2v) and GloVe (glove), for providing
a comparison with popular paradigmatic models,
and DSG to compare against a model with direc-
tional information. Embedding sizes in all models
are 300, and window-sizes 1 to 7 are evaluated.
Other parameters of dsg, s-glove, glove, w2v are
kept to the default values in their respective imple-
mentations.

Figure 3 shows the results of the experiment. We
find that our SVD based unweighted syntagmatic
model outperforms all other models, including
the weighted syntagmatic model based on GloVe.
The s-glove model performed slightly worse than
the paradigmatic glove (glove) model under low
window-sizes. We tried increasing the number of
iterations in the training process, from the default 5
to 10. The resulting model (s-gloveil0) performed
much better than than paradigmatic GloVe model.
It is interesting to note that all weighted models
behave similarly to increasing window-sizes. They
perform better as window-sizes increase. Whereas,
our SVD based unweighted model (spvec) gives
a better performance at window-size 2 and 3 and
gradually decreases in performance as window-size
is further increased. The directional variant of
Word2vec (dsg) performs better than Word2vec,
but performs poorly compared to spvec. Compar-
ing s-gloveil0 and spvec, we see that even at much
higher window-size of 15 (not shown in figure 3),
s-gloveilQ barely reaches an average correlation
of 0.69. spvec on the other hand gets an average
correlation 0.71 at a much smaller window-sizes (2
and 3).

4.4 Comparison to Supervised Models

Our syntagmatic word embedding model aims to
provide an effective method to approach selectional
preference in the absence of a parsed corpus. In
this experiment we assess how deficient our unsu-
pervised model is when compared to supervised
models. Since we were not able to use the available
implementation of MWE, we simply compare our
unsupervised syntagmatic model (spvec) with su-
pervised versions of itself. The supervised version
of syntagmatic embeddings is obtained by defining
word co-occurrence as a pair of words related by a
dependency relation. For this we parse our corpus
(BNC) using the Stanford dependency parser (Qi

model | amod | nsubj | dobj | AVG |
w2v 0.582 | 0.489 | 0.539 | 0.536
glove 0.694 | 0.489 | 0.587 | 0.590
dsg 0.625 | 0.490 | 0.556 | 0.557
s-gloveilO | 0.738 | 0.565 | 0.649 | 0.650
spvec 0.750 | 0.654 | 0.738 | 0.714
spvec-s 0.761 | 0.637 | 0.740 | 0.712
spvec-sr 0.757 | 0.653 | 0.741 | 0.717

Table 3: Spearman’s correlation for supervised and un-
supervised models on the SP-10K dataset.

et al., 2020). In order to remain compatible with
a syntagmatic model, we maintain word ordering
of the co-occurrences. For example, the sentence
‘big cat ate rat’ gives three co-occurrences where
the head and the dependent are ordered as they are
found in the sentence: ‘big cat’, ‘cat ate’ and ‘ate
rat’. We test two supervised models 1) spvec-s:
which uses all dependency related word pairs 2)
spvec-sr: which uses only related word pairs in a
particular dependency relation. spvec-sr thus has
3 distinct embedding pairs (left/right) per word, an
embedding pair for each of the tested dependency
relation: amod, nsubj, dobj. For comparison we
also show the results of unsupervised paradigmatic
models.

Table 3 gives the results of this experiment.
Surprisingly we see that our unsupervised model
(spvec) is as good as its supervised counterparts
(spvec-s and spvec-sr). The model trained on all
dependency related word pairs scores lower than
the fully unsupervised model. The model with re-
lation specific embeddings improves on the fully
unsupervised model only by a meager 0.4%. We
clearly see that unsupervised syntagmatic embed-
dings are not deficient but may be as good as super-
vised models.

5 Related Work

There have been previous studies that explored Syn-
tagmatic representations. Rapp (2002); Sahlgren
(2006) viewed syntagmatic representations as first-
order word co-occurrence statistics, and paradig-
matic representations as second-order statistics.
First-order models represent words using text units
in which they appear. Text units are generally doc-
uments or large regions of text, like paragraphs.
Thus, first order statistics come from a word-
document co-occurrence matrix, whereas paradig-
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Figure 4: Window-size preferences of spvec for differ-
ent relations.

matic representations come from word-word co-
occurrence matrix and hence called second order.
While their evaluation of paradigmatic representa-
tion as second-order statistics was appropriate, their
claim of syntagmatic representation as first-order
statistics is not well justified. This is because the
evaluation datasets they used for first-order models
were a mix of (mostly) paradigmatic and syntag-
matic relations, and not purely syntagmatic. A
large-scale study by Lapesa et al. (2014) showed
that fine-tuned second-order statistics can capture
both syntagmatic and paradigmatic relations. Dif-
ferent parametrisations, mainly window size and
dimensionality reduction, were shown to adapt the
second-order statistics to either relations accord-
ingly.

The notion of syntagmatic representation ex-
plored in our work is adapted from Schiitze and
Pedersen (1993), in which the syntagmatic repre-
sentation is introduced qualitatively without resort-
ing to any quantitative studies. Our study on the
other hand applies syntagmatic representation to
the task of selectional preference, exploring various
model parametrisations.

6 Discussion

Our experiments have shown that a weakly struc-
tured model can be as good as a strongly struc-
tured model. The spvec model, though unsuper-
vised, incorporates a simple linguistically moti-
vated bias/structure — directionality or word order.
Such a weakly biased model, when coupled with
low-rank embedding process, seems to pickup ap-
propriate linguistic structure by effectively getting
rid of noise. But why did the supervised mod-

els not have a bigger advantage when compared
to the unsupervised model? We can hypothesize
that words that are not directly related by a depen-
dency relation but are in the vicinity of a target
word make substantial contribution to the seman-
tics of the word which may not be captured by a
dependency-parsed model. It can also be because
the low-rank embedding process is as good at re-
moving noise as a dependency parse. A closer look
at the results reveal that amod and dobj relations
do benefit from supervision, although it is minor.
The effect of window-size on each of the depen-
dency relation, may help us to better understand
this (figure 4). In the unsupervised model, amod
relation is maximized with a window-size of 1, but
the results reported in table 3 are of window-size
3. Certainly, the excess window-size will result
in noise which may be mitigated by a dependency
parse, as seen in the results of supervised mod-
els. Similarly, dobj relation which is maximized in
the unsupervised model at window-size of 4 also
benefits from the dependency parse. However, the
case of nsubj relation does not fit this reasoning.
nsubj is maximized in the unsupervised model at
a window-size of 2, but even at window-size 3 it
improves over the supervised model. Here we may
have to consider the possibility that, words that are
not directly related may contribute to the semantics,
which is lost in a dependency-parsed model. We
would also like to point out that parsing a large
corpus can be resource intensive. Parsing the BNC
consumed about 24 GPU® hours. However, our
experiments show that the gains derived do not sub-
stantiate the compute incurred. The unsupervised
spvec model performs the factorisation in less than
5 minutes on a 20-core CPU.

Weighted factorisation of word co-occurrences
is generally found to produce high quality word
embeddings. Previously such embeddings showed
improvements in tasks such as word similarity and
solving word analogies. But we have shown that,
when it comes to selectional preference and syntag-
matic embeddings, weighted factorisation may be
detrimental.

We also observe that appropriate co-occurrence
term-weights are crucial for the performance.
PPMI has been shown to work well for tasks that
test paradigmatic nature such as word similarity
(Bullinaria and Levy, 2007). Pennington et al.
(2014) remarked that log is better for solving word

®Nvidia RTX 2080 GPU
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analogies than PPMI. Our experiments show that
log is also valuable for learning selectional prefer-
ence.

Here we have tested our syntagmatic embed-
dings only on English, but it should be directly
applicable to other word-ordered languages also.

7 Conclusion

In this paper, we have introduced syntagmatic word
embeddings, a simple and effective method, for
learning selectional preference (SP). Our model
is simple because it captures SP by direct factori-
sation of a word co-occurrence matrix. We have
showed that by incorporating a weak linguistic bias
of directionality as a proxy for syntactic relations,
our model can be made as effective as a model
with access to syntactic relations. This is important
because SP has always been seen as a task that
requires a dependency-parsed corpus, our work
shows that it need not be the case.

We hope that syntagmatic embeddings will be
a valuable source of selectional preference infor-
mation for resource-poor as well as resource-rich
languages. We also hope that the structural bias
of directionality will be further explored in simple
models for other NLP tasks, instead of relying on
models that are complex and opaque to interpreta-
tion.
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Figure 5: Variations in SP correlation of spvec on each
relation with variations in parameter-values of term-
weight, dimensions, and exponential-weight-p. Varia-

tions in window-size are shown in figure 4.
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