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Abstract

We present an efficient training approach to
text retrieval with dense representations that
applies knowledge distillation using the Col-
BERT late-interaction ranking model. Specif-
ically, we propose to transfer the knowledge
from a bi-encoder teacher to a student by
distilling knowledge from ColBERT’s expres-
sive MaxSim operator into a simple dot prod-
uct. The advantage of the bi-encoder teacher—
student setup is that we can efficiently add in-
batch negatives during knowledge distillation,
enabling richer interactions between teacher
and student models. In addition, using Col-
BERT as the teacher reduces training cost com-
pared to a full cross-encoder. Experiments on
the MS MARCO passage and document rank-
ing tasks and data from the TREC 2019 Deep
Learning Track demonstrate that our approach
helps models learn robust representations for
dense retrieval effectively and efficiently.

1 Introduction

For well over half a century, solutions to the ad
hoc retrieval problem—where the system’s task is
return a list of top k texts from an arbitrarily large
corpus D that maximizes some metric of quality
such as average precision or NDCG—has been
dominated by sparse vector representations, for
example, bag-of-words BM25. Even in modern
multi-stage ranking architectures, which take ad-
vantage of large pretrained transformers such as
BERT (Devlin et al., 2019), the models are de-
ployed as rerankers over initial candidates retrieved
based on sparse vector representations; this is some-
times called “first-stage retrieval”. One well-known
example of this design is the BERT-based reranker
of Nogueira and Cho (2019); see Lin et al. (2020)
for a recent survey.
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The standard reranker architecture, while effec-
tive, exhibits high query latency, on the order of
seconds per query (Hofstétter and Hanbury, 2019;
Khattab and Zaharia, 2020) because expensive neu-
ral inference must be applied at query time on
query—passage pairs. This design is known as a
cross-encoder (Humeau et al., 2020), which ex-
ploits query—passage attention interactions across
all transformer layers. As an alternative, a bi-
encoder design provides an approach to ranking
with dense representations that is far more effi-
cient than cross-encoders (Lee et al., 2019; Reimers
and Gurevych, 2019; Khattab and Zaharia, 2020;
Karpukhin et al., 2020; Luan et al., 2021; Xiong
etal., 2021; Qu et al., 2020; Hofstitter et al., 2021).
Prior to retrieval, the vector representations can
be precomputed for each of the texts in a corpus.
When retrieving texts in response to a given query,
computationally expensive transformer inference is
replaced by much faster approximate nearest neigh-
bor (ANN) search (Liu et al., 2004; Malkov and
Yashunin, 2020).

Recently, researchers have proposed bi-encoders
that produce multiple vectors to represent a query
(or a passage) (Humeau et al., 2020; Luan et al.,
2021; Khattab and Zaharia, 2020), which have
proven to be effective both theoretically and empir-
ically. However, the main disadvantage of these de-
signs is their high storage requirements. For exam-
ple, ColBERT (Khattab and Zaharia, 2020) requires
storing all the WordPiece token vectors of each text
(passage) in the corpus. On the MS MARCO pas-
sage corpus comprising 8.8M passages, for exam-
ple, this requires 154 GiB.

Of course, a common alternative is to produce
single vectors for queries and passages (Reimers
and Gurevych, 2019). Although this design is
less storage-demanding, it sacrifices ranking ef-
fectiveness since its structure breaks rich interac-
tions between queries and passages compared to
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multi-vector bi-encoders or cross-encoders. Hence,
improving the effectiveness of single-vector bi-
encoders represents an important problem.

One approach to improving the effectiveness of
single-vector bi-encoders is hard negative mining,
by training with carefully selected negative exam-
ples that emphasize discrimination between rel-
evant and non-relevant texts. There are several
approaches to accomplish this. Karpukhin et al.
(2020) and Qu et al. (2020) leverage large in-batch
negatives to enrich training signals. Guu et al.
(2020) and Xiong et al. (2021) propose to mine hard
negatives using the trained bi-encoder itself. By
searching for global negative samples from an asyn-
chronously updated ANN index, the bi-encoder can
learn information not present in the training data
produced by sparse representations (Xiong et al.,
2021). However, both large in-batch negative sam-
pling and asynchronous ANN index updates are
computationally demanding. The later is especially
impractical for large corpora since it requires peri-
odic inference over all texts in the corpus to ensure
that the best negative examples are retrieved.

There is also work that explores knowledge dis-
tillation (KD) (Hinton et al., 2015) to enhance re-
trieval effectiveness and efficiency. Most related to
our study is Hofstitter et al. (2020), who demon-
strate that KD using a cross-encoder teacher signif-
icantly improves the effectiveness of bi-encoders
for dense retrieval. Similarly, Barkan et al. (2020)
investigate the effectiveness of distilling a trained
cross-encoder into a bi-encoder for sentence sim-
ilarity tasks. Gao et al. (2020a) explore KD com-
binations of different objectives such as language
modeling and ranking. However, the above pa-
pers use computationally expensive cross-encoder
teacher models; thus, combining them for KD with
more advanced negative sampling techniques can
be impractical.

In light of existing work on hard negative mining
and knowledge distillation, we propose to improve
the effectiveness of single-vector bi-encoders with
a more efficient KD approach: in-batch KD using
a bi-encoder teacher. The advantage of our design
is that, during distillation, it enables the efficient
exploitation of all possible query—passage pairs
within a minibatch, which we call tight coupling
(illustrated in Figure 1). This is a key difference
between our KD approach and previous methods
for dense retrieval, where only the scores of given
query—passage triplets (not all combinations) are
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Figure 1: Illustration of the differences between pair-
wise knowledge distillation and our proposed in-batch
knowledge distillation.

computed due to the computational costs of cross-
encoders (Hofstitter et al., 2020; Gao et al., 2020a;
Barkan et al., 2020).

The contribution of this work is a simple tech-
nique for efficiently adding in-batch negative sam-
ples during knowledge distillation when training a
single-vector bi-encoder. For the remainder of this
paper, we refer to this technique as “in-batch KD”
for convenience. We empirically show that our
model, even trained with BM25 negatives, can be
more effective than cross-encoder teachers. With
hard negatives, our method approaches the state of
the art in dense retrieval. Our in-batch KD tech-
nique is able to incorporate hard negatives in a
computationally efficient manner, without requir-
ing large amounts of GPU memory for large batch
sizes or expensive periodic index refreshes.

2 Background

We focus on improving the training efficiency and
retrieval effectiveness of dense retrieval and begin
by formalizing it as a dense representation learning
problem. To be more specific, we propose to use
knowledge distillation to enrich training signals and
stabilize the representation learning procedure of
bi-encoder models in the context of the well-known
Noise-Contrastive Estimation (NCE) framework.

2.1 Dense Retrieval with Bi-encoders

The bi-encoder design has been widely adopted
for dense retrieval (Lee et al., 2019; Chang et al.,
2020; Guu et al., 2020; Karpukhin et al., 2020;
Luan et al., 2021; Qu et al., 2020; Xiong et al.,
2021), where queries and passages are encoded
in a low-dimensional space. It aims to learn low-
dimensional representations that pull queries and
relevant passages together and push queries and
non-relevant passages apart.

Following the work of Mnih and Kavukcuoglu
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(2013), we formulate a common objective for dense
representation learning for passage retrieval. Given
a query ¢ and a parameterized scoring function
¢p that computes the relevance between a query
and a candidate passage p, we define a probability
distribution over documents in a corpus D with
respect to relevance, as follows:

exp(Po(q,p))
> pepexp(¢o(q,p'))
_ exp(hg - hy)
Zp/E'D exp(hg - hy)’

where h,, (h,) € R? denotes the query (passage)
representation produced by the bi-encoder. A typ-
ical bi-encoder uses a simple scoring function for
¢g, for example, the inner product of two vectors,
as shown above.

The main challenge of evaluating and computing
gradients of Eq. (1) is the prohibitively expensive
computation cost given the number of passages in
the corpus D, typically millions (or even more).
This is already setting aside the cost of using pre-
trained transformers such as BERT as the encoder
to compute h, and h,,.

Thus, previous work approximates Eq. (1) by
NCE, which samples p € DT from training data
and p' € D' = {D* UD}, where D~ is from a
noisy distribution such as candidates retrieved by
BM25 (Nogueira and Cho, 2019), filtered by fine-
tuned transformers (Qu et al., 2020), or retrieved
by an asynchronously updated bi-encoder model
itself (Xiong et al., 2021). Another simple yet
effective approach is in-batch negative sampling,
as used by Karpukhin et al. (2020), which takes
p and p’ of other queries within a minibatch as
negative examples in NCE.

Peq(p,'D):

)

2.2 Knowledge Distillation

Other than designing sophisticated sampling meth-
ods for p/, training bi-encoder models using knowl-
edge distillation (KD) with effective teacher mod-
els is another promising approach (Hofstétter et al.,
2020). In this case, we aim to make the bi-encoder
model mimic the teacher model’s probability distri-
bution as follows:
, exp(hy - hy)
(p, D ) ZP’GD’ CXp(hq . hp’)
L exp(04(a.p)/7)

> e €xp(d4(q, ')/ T)

=P _ (p,D),

T ;teacher

Pq

0;student

2)
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where ¢, denotes the relevance score estimated by

a pretrained model parameterized by 6 and T, the
temperature hyperparameter used in the KD frame-
work. To improve retrieval effectiveness, one can
leverage pre-computed scores from pretrained mod-
els such as cross-encoders, e.g., BERT, bi-encoders,
e.g., ColBERT, or ensembled scores from multiple

models ¢; = Zj QS(;;]..
3  Our Approach

3.1 In-batch Knowledge Distillation

Using KD in Eq. (2) provides soft labels for bi-
encoder training, and can be integrated with the pre-
viously mentioned NCE framework. In this work,
we propose to enhance teacher—student interactions
by adding in-batch negatives to our knowledge dis-
tillation. Specifically, we estimate ¢y on in-batch
examples from a minibatch B guided by an aux-
iliary teacher model ¢, through the minimization
of Kullback-Leibler (KL) divergence of the two
distributions:

arg min Z Z £¢97¢§, 3)
4 q€9B peDy
where Ed)e,% 1s:
q ( D/
A. p7 B)
q ,D/ 1 0;teacher . 4
B;teacher(p7 B) 08 Pgstudent(p7D23) ( )

Note that here we consider all pairwise relationship
between queries and passages within a minibatch
that contains a query set Qp and a passage set Dj.

3.2 Teacher Model Choice

A cross-encoder has been shown to be an effective
teacher (Hofstitter et al., 2020; Gao et al., 2020a)
since it allows rich interactions between the inter-
mediate transformer representations of a query ¢
and a passage p. For example, a “vanilla” cross-
encoder design using BERT can be denoted as:

Pp.car = W f(hgap), 5)

where the ranking score is first computed by the
hidden representation of the concatenation ¢ & p
from BERT (along with the standard special tokens)
and then mapped to a scalar by a pooling operation
f and a mapping matrix W.

Although effective, due to BERT’s quadratic
complexity with respect to input sequence length,
this design makes exhaustive combinations be-
tween a query and possible candidates impractical,



since this requires evaluating cross-encoders |32
times to compute Eq. (3) using Eq. (5). Thus, an
alternative is to conduct pairwise KD by comput-
ing the KL divergence of only two probabilities of
a positive pair (¢, p) and a negative pair (g, p) for
each query ¢q. However, this might not yield a good
approximation of Eq. (2).

A bi-encoder can also be leveraged as a teacher
model, which has the advantage that it is more
feasible to perform exhaustive comparisons be-
tween queries and passages since they are passed
through the encoder independently. Among bi-
encoder designs, ColBERT is a representative
model that uses late interactions of multiple vec-
tors ({h,...,hi}, {h},... h}}) to improve the
robustness of dense retrieval, as compared to in-
ner products of pairs of single vectors (hg, h,).
Specifically, Khattab and Zaharia (2020) propose
the following fine-grained scoring function:

max h! - b/, (6)

b £
6;MaxSim j€|hy|

i€|hg|

where ¢ and j are the indices of token repre-
sentations of a query ¢ and a passage p of Col-
BERT (Khattab and Zaharia, 2020).

The contribution of our work is in-batch knowl-
edge distillation with a tightly-coupled teacher. The
computation of ¢é;MaxSim enables exhaustive in-
ference over all query—passage combinations in
the minibatch 5 with only 2-|5| computation cost,
enabling enriched interactions between teacher
and student. We call this design Tightly-Coupled
Teacher ColBERT (TCT-ColBERT). Table 1 pro-
vides a training cost comparison between different
teachers. When training with pairwise KD, cross-
encoders exhibit the highest training cost. On the
other hand, ColBERT enables in-batch KD at a
modest training cost compared to pairwise KD.

TCT-ColBERT provides a flexible design for bi-
encoders, as long as the encoders produce query
and passage representations independently. For
simplicity, our student model adopts shared en-
coder weights for both the query and the passage,
just like the teacher model ColBERT. Following
Khattab and Zaharia (2020), for each query (pas-
sage), we prepend the [CLS] token and another
special [Q] ([D]) token in the input sequence
for both our teacher and student models. The
student encoder outputs single-vector dense repre-
sentations (hy, h),) by performing average pooling
over the token embeddings from the final layer.

Table 1: Training cost comparison. We report the
training time per batch against the baseline (without
a teacher model) on a single TPU-v2. Our backbone
model is BERT-base, with batch size 96. The in-batch
cross-encoder training time is not available because it
exceeds the memory limit.

Teacher / KD strategy ~ Pairwise  In-batch
Cross-encoder (¢4.c,)  +48.1% OOM
CoIBERT (#4.p1axsim) +32.7%  +33.5%

3.3 Hard Negative Sampling

Given that in-batch negative sampling is an effi-
cient way to add more information into knowledge
distillation, we wonder whether our tightly-coupled
teacher design works well when applied to more
sophisticated sampling methods. Following the
work of Xiong et al. (2021), we use our pretrained
bi-encoder model, namely TCT-ColBERT, to en-
code the corpus and sample “hard” negatives for
each query to create new training triplets by us-
ing the negatives D~ of the bi-encoder instead of
BM25. Specifically, we explore three different
training strategies:

1. HN: we train the bi-encoder using in-batch hard
negatives without the guide of ColBERT.

2. TCT HN: we train the bi-encoder with TCT-
ColBERT;

3. TCT HN+: we first fine-tune our ColBERT
teacher with augmented training data containing
hard negatives and then distill its knowledge into
the bi-encoder student through TCT-ColBERT.

We empirically explore the effectiveness of these
strategies for both passage and document retrieval.

4 Experiments

In this section, we conduct experiments on the
MS MARCO passage and document corpora. For
passage ranking, we first train models on BM25
negatives as warm-up and compare different KD
methods. We then further train models on the hard
negatives retrieved by the BM25 warmed-up check-
point. For document ranking, following previous
work (Xiong et al., 2021; Zhan et al., 2020; Lu
et al., 2021), we start with our BM25 warmed-up
checkpoint for passage ranking and conduct addi-
tional hard negative training.
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Table 2: Passage retrieval results with BM25 negative training. For knowledge distillation (KD) methods, the
effectiveness of teacher (T) models is also reported. All our implemented models are labeled with a number and
superscripts represent significant improvements over the labeled model (paired ¢-test, p < 0.05).

# params of MARCO Deyv TREC-DL "19
Strategy Model Teacher
MRR@10 (T/S) R@1K NDCG@I10(T/S) R@IK

- (1) Baseline - - 1310 945 - 1.626 658

KD-T1 (Hofstitter et al., 2020) 110M 376/ .304 931 730/ .631 702
Pairwise K KD-T2 (Hofstitter et al., 2020) 467TM 399/ .315 947 743 1 668 737

(2) KD-T2 (Ours) 467M 399 /.3411 9641 743/ .659! 708"

(3) KD-ColBERT 110M 350/ .339! 962! 730/ .670" 710t
In-batch KD (4) TCT-ColBERT 110M 350/ .344%3 96743 730/ .685* 745423

4.1 Passage Retrieval

We perform ad hoc passage retrieval on the MS
MARCO passage ranking dataset (Bajaj et al.,
2016), which consists of a collection of 8.8M pas-
sages from web pages and a set of ~0.5M relevant
(query, passage) pairs as training data. We evaluate
model effectiveness on two test sets of queries:

1. MARCO Dev: the development set of MS
MARCO comprises 6980 queries, with an aver-
age of one relevant passage per query.

2. TREC-DL *19 (Craswell et al., 2019): the orga-
nizers of the Deep Learning Track at the 2019
Text REtrieval Conference (TREC) released 43
queries with multi-graded (0-3) relevance labels
on 9K (query, passage) pairs.

To evaluate output quality, we report MRR @10
(NDCG@10) for MARCO Dev (TREC-DL ’19)
and Recall@1K, denoted as R@1K. To compare
with current state-of-the-art models, we evaluate
our design, TCT-ColBERT, under two approaches
for negative sampling: (1) BM25 and (2) hard neg-
atives retrieved by the bi-encoder itself.

4.1.1 Training with BM25 Negatives

In this setting, models are trained using the official
public data triples.train.small, where
negative samples are produced by BM25. We com-
pare different bi-encoder models using BERT-base
as the backbone, which uses single 768-dim vectors
to represent each query and passage:

1. Baseline: a single-vector bi-encoder trained
with in-batch negatives, as discussed in Sec-
tion 2.1, which is similar to Karpukhin et al.
(2020) but with a smaller batch size.

2. Pairwise KD: the approach of Hofstitter et al.
(2020), who improve ranking effectiveness us-
ing cross-encoders with pairwise KD.

We also compare against two models, KD-T1 and
KD-T2, which use BERT-base bi-encoders as stu-
dent models. In the former, the student is distilled
from a BERT-base cross-encoder, while the latter
is distilled from ensembled cross-encoders com-
prising BERT-base, BERT-large, and ALBERT-
large. These figures reported in Table 2 are copied
from Hofstitter et al. (2020). For a fair comparison
with our models based on KL-divergence KD, we
also implement our KD-T?2 using the precomputed
pairwise softmax probabilities provided by Hof-
stétter et al. (2020) (who use MSE margin loss
for KD). In addition, we adopt pairwise softmax
probabilities from fine-tuned ColBERT to train KD-
ColBERT for comparison.

All our models are fine-tuned with batch size
96 and learning rate 7 x 1075 for 500K steps
on a single TPU-V2. For TCT-ColBERT, there
are two steps in our training procedure: (1) fine-
tune ¢é;MaxSim as our teacher model, (2) freeze
¢é;MaxSim and distill knowledge into our student
model ¢g. We keep all the hyperparameter settings
the same but adjust temperature 7 = 0.25 for KD
at the second step. For all our models, including
the baseline, we initialize the student model using
the fine-tuned weights of the teacher model in the
first step. We limit the input tokens to 32 (150) for
queries (passages). To evaluate effectiveness, we
encode all passages in the corpus and conduct brute
force search over the vector representations.

Our main results, including paired ¢-test for sig-
nificance testing, are shown in Table 2. In addition
to the effectiveness of the student models, we also
show the effectiveness of the teacher models for
the KD methods.!

First, we see that pairwise KD methods show
significant improvements over the baseline, indicat-

"We report our trained ColBERT’s accuracy by reranking the
top-1000 candidates provided officially.
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Figure 2: Passage retrieval effectiveness on a synthetic corpus comprising relevant passages and BM25 results as
additional “distractors” randomly sampled from the corpus are added.

ing that information from BM25 negatives cannot
be fully exploited without teacher models. Sec-
ond, although KD-T2 improves the bi-encoder’s
effectiveness over KD-T1, it is not consistently
better than KD-ColBERT in terms of students’ ef-
fectiveness. We suspect that they have comparable
capabilities to discriminate most paired passages
(BM25 negative vs. positive samples), i.e., Col-
BERT is good enough to guide bi-encoder student
models to discriminate them. On the other hand,
our TCT-ColBERT model, which uses only one
teacher model and adds only 33% more training
time over the baseline, yields the best effectiveness,
demonstrating the advantages of our proposed in-
batch KD — exhaustive exploitation of all query—
document combinations in a minibatch.

To understand why TCT-ColBERT yields better
results, we study the models’ retrieval effectiveness
against carefully selected distractors. We start with
a small synthetic corpus composed of the relevant
passages and the top-1000 BM25 candidates of the
6980 (43) queries from MARCO Dev (TREC-DL
’19). To increase the corpus size, we gradually
add passages uniformly sampled from the corpus
without replacement. From Figure 2, we see that
the three KD models exhibit nearly the same ef-
fectiveness when the corpus only contains BM25
candidates. This shows that the bi-encoders learn
to discriminate relevant passages from the BM25
negative samples well. However, as the index size
increases, TCT-ColBERT demonstrates better rank-
ing effectiveness than the other pairwise KD meth-
ods, indicating that the learned representations are
more robust. We attribute this robustness against
“distractors” to the enriched information from in-
batch KD, where we are able to exploit all in-batch
query—document combinations.

4.1.2 Training with Hard Negatives

In this subsection, we evaluate TCT-ColBERT
when training with hard negatives (HNs). We com-
pare our model to four competitive approaches:

1. ANCE (Xiong et al., 2021) is the most represen-
tative work, which proposes asynchronous index
refreshes to mine hard negatives. The model is
trained for 600K steps with index refreshes ev-
ery 10K steps. ANCE uses RoBERTa-base as
its backbone.

2. LTRe (Zhan et al., 2020) further improves from
an ANCE checkpoint by adding more training
steps with the same hard negative mining ap-
proach; thus, the computation cost of index re-
freshes from ANCE cannot be neglected. LTRe
also use RoBERTa-base as its backbone.

3. SEED-Encoder (Lu et al., 2021) leverages a
pretraining strategy to enhance the capability of
the bi-encoder, which is further fine-tuned with
HNss using asynchronous index refreshes.

4. RocketQA (Qu et al., 2020) trains a bi-encoder
model using hard negatives denoised by a cross-
encoder, ERNIE-2.0-Large (Sun et al., 2019). It
further demonstrates that training bi-encoders
with many in-batch negatives (batch size up to
4096) significantly improves ranking effective-
ness; however, this approach is computationally
expensive (the authors report using 8xV100
GPUs for training). To the best of our knowl-
edge, RocketQA represents the state of the art
in single-vector bi-encoders for dense retrieval.
For a more fair comparison, we also report the
ranking effectiveness of their model trained with
a smaller batch size of 128.

For all the approaches above, we directly copy the
reported effectiveness from the original papers.
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Table 3: Passage retrieval results with hard negative training. All our implemented models are labeled with a
number and superscripts represent significant improvements over the labeled model (paired ¢-test, p < 0.05).

Model # Index Ba}tch MARCO Dev TREC-DL ’19
Refresh Size

MRR@10 R@1K NDCG@10 R@1K
ANCE (Xiong et al., 2021) 60 32 330 959 648 -
LTRe (Zhan et al., 2020) 60 32 341 962 675 -
SEED-Encoder (Lu et al., 2021)  >10 (est.) - .339 961 - -
RocketQA (Qu et al., 2020) 1 128 310 - - -
RocketQA (Qu et al., 2020) 1 4096  .364 - - -
(1) TCT-ColBERT 0 9 344 967 685 745
(2) w/ HN ] 9 237 929 .543 674
(3) w/ TCT HN 1 96 35412 97142 7052 76512
(4) w/ TCT HN+ 1 96  .3591:? .970* 71942 760"

For our TCT-ColBERT model, following the set-
tings of the above approaches, we first use our
TCT-ColBERT model trained on BM25 negatives
as a warm-up starting point and index all 8.8M
MARCO passages. Using the warmed-up index,
we retrieve top-200 passages for each training
query and randomly sample (with replacement)
hard negatives from the 200 candidates to form our
training data. Note that due to resource limitations
we do not conduct experiments with asynchronous
index refreshes since multiple V100 GPUs are re-
quired for such a model training scheme.? In this
experiment, all the hyperparameter settings are the
same as the ones in the BM25 negative training,
except for training steps, which is set to 100K for
both student and teacher training.

Table 3 reports the results of our experiments
with hard negative training. First, we observe that
our TCT-ColBERT model trained with BM25 neg-
atives marginally outperforms the other models
trained with HNs, except for RocketQA. Compar-
ing the different training strategies discussed in
Section 3.3 (second main block of the table), we
see that the ranking effectiveness of TCT-ColBERT
(HN) degrades when training on hard negatives
without the guide of a teacher. This is consistent
with the findings of Qu et al. (2020) that hard neg-
atives contain noisy information (i.e., some hard
negatives may actually be relevant). Also, Xiong
et al. (2021) show that training bi-encoders with
hard negatives can be unstable: hard negatives ben-
efit ranking effectiveness only under certain hyper-
parameter settings.

In contrast, hard negative training using Col-
BERT’s in-batch KD further boosts ranking effec-
tiveness, especially when our teacher (ColBERT)

’Re-encoding the entire corpus takes ~10 hours on one GPU.
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is trained with the same hard negative samples be-
forehand. It is also worth noting that our TCT-
ColBERT (w/ TCT HN+) with batch size 96 yields
competitive ranking effectiveness compared to
RocketQA (the current state of the art), which uses
batch size 4096. These results demonstrate the
advantages of our TCT design: our approach effec-
tively exploits hard negatives in a computationally
efficient manner (i.e., without the need for large
batch sizes or periodic index refreshes).

4.2 Document Retrieval

To validate the effectiveness and generality of our
training strategy, we conduct further experiments
on document retrieval using the MS MARCO
document ranking dataset. This dataset contains
3.2M web pages gathered from passages in the MS
MARCO passage ranking dataset. Similar to the
passage condition, we evaluate model effectiveness
on two test sets of queries:

1. MARCO Dev: the development set contains
5193 queries, each with exactly one relevant

document.

TREC-DL ’19: graded relevance judgments are
available from the TREC 2019 Deep Learning
Track, but on only 43 queries.

Per official guidelines, we report different metrics
for the two query sets: MRR @100 for MARCO
Dev and NDCG@10 for TREC-DL *19.
Following the FirstP setting for document re-
trieval described in Xiong et al. (2021), we feed
the first 512 tokens of each document for encoding,
and start with the warmed-up checkpoint for our en-
coder’s parameters trained for passage retrieval (us-
ing BM25 negatives, as described in Section 4.1.1).
The settings for fine-tuning our warmed-up encoder



Table 4: Document retrieval results using the FirstP approach. All our implemented models are labeled with a
number and superscripts represent significant improvements over the labeled model (paired ¢-test, p < 0.05).

MARCO Dev TREC-DL °19
Model

MRR @100 NDCG@10
ANCE (Xiong et al., 2021) 368 614
LTRe (Zhan et al., 2020) - 634
SEED-Encoder (Lu et al., 2021)  .394 -
(1) TCT-ColBERT 339 573
(2) w/ TCT HN+ 3921 613
(3) w/ 2x TCT HN+ 41812 65012

(e.g., learning rate, training steps, top-200 negative
sampling) are the same as passage retrieval except
for batch size, which is set to 64.

Ranking effectiveness is reported in Table 4.
First, we observe that TCT-ColBERT (our warmed-
up checkpoint) performs far worse than other ap-
proaches to document retrieval using the FirstP
method. This may be due to the fact that FirstP
document retrieval is very different from passage
retrieval, making zero-shot transfer ineffective. Af-
ter applying HN training on both teacher and stu-
dent models (condition 2), the ranking effective-
ness increases significantly. In addition, we find
that another iteration of training with an index re-
fresh (condition 3) further improves ranking ef-
fectiveness. To sum up, in the document ranking
task, TCT-ColBERT yields competitive effective-
ness with a one-time index refresh and outperforms
other computationally expensive methods with one
additional index refresh.

4.3 Dense-Sparse Hybrids

In our final set of experiments, we show that dense
retrieval with single-vector representations can be
integrated with results from sparse retrieval to fur-
ther increase effectiveness. We illustrate the end-
to-end tradeoffs in terms of quality, time, and space
of different dense—sparse hybrid combinations on
the passage retrieval tasks.

Many papers (Luan et al., 2021; Gao et al.,
2020b; Ma et al., 2021; Lin et al., 2021) have
demonstrated that sparse retrieval can comple-
ment dense retrieval via a simple linear combina-
tion of their scores. In our implementation, for
each query ¢, we use sparse and dense techniques
to retrieve the top-1000 passages, D, and Dy,
with their relevance scores, ¢,(q,p € Dsp) and
®as(q,p € Dys), respectively. Then, we compute
the final relevance score for each retrieved passage

#(q,p), where p € Dy, U Dy, as follows:

a - d)sp(%p> + min ¢ds(Q7p)a lfp ¢ Dds
PEDys
o min ¢g(q,p) + das(q:p), ifp ¢ Dgp
peDsp

a- dsp(q,p) + das(a,p), otherwise.

This technique is an approximation of a linear
combination of sparse and dense retrieval scores.
Specifically, if p ¢ Dgy,(or Dy ), we instead use the
minimum score of ¢4,(q,p € Dyp), or Pas(q,p €
Dys) as a substitute.

For the sparse and dense retrieval combina-
tions, we tune the hyperparameter o on 6000 ran-
domly sampled queries from the MS MARCO
training set. We conduct dense—sparse hybrid ex-
periments with sparse retrieval (BM25 ranking)
on the original passages (denoted BM25) and on
passages with docTTTTTquery document expan-
sion (Nogueira and Lin, 2019) (denoted doc2query-
T5). To characterize end-to-end effectiveness and
efficiency, we perform sparse retrieval with the Py-
serini toolkit (Lin et al., 2021) and dense retrieval
with Faiss (Johnson et al., 2017), but implement
the score combination in separate custom code.

Table 5 shows passage retrieval results in terms
of ranking effectiveness, query latency, and stor-
age requirements (i.e., index size) for each model
and Table 6 reports the component latencies of our
TCT-ColBERT dense—sparse hybrid.> The cross-
encoder reranker of Nogueira and Cho (2019) pro-
vides a point of reference for multi-stage reranking
designs, which is effective but slow.

Generally, dense retrieval methods (whether
single-vector or multi-vector) are more effective
but slower than sparse retrieval methods, which
rely on bag-of-words querying using inverted in-
dexes. Single-vector dense models also require
more space than sparse retrieval methods. Moving

3Here we assume running dense and sparse retrieval in parallel.
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Table 5: End-to-end comparisons of output quality, query latency, and storage requirements for passage retrieval.

Ranking effectiveness Latency  Storage

MARCO Dev TREC-DL 19 ms/q GiB
Sparse retrieval
BM25 with Anserini (Yang et al., 2018) 184 .506 55 4
DeepCT (Dai and Callan, 2020) 243 551 55 4
doc2query-T5 (Nogueira and Lin, 2019) 277 551 64 14
Dense retrieval: single-vector
TAS-B (Hofstitter et al., 2021) .343 122 64 13
RocketQA (Qu et al., 2020) 370 - 107 13
TCT-ColBERT 344 .685 107 13
TCT-ColBERT (w/ TCT HN+) .359 719 107 13
Dense retrieval: multi-vector
ME-BERT (Luan et al., 2021) 334 .687 - 96
ColBERT (Khattab and Zaharia, 2020) .360 - 458 154
Hybrid dense + sparse
CLEAR (Gao et al., 2020b) 338 .699 - 17*
ME-HYBRID-E (Luan et al., 2021) 343 706 - 100
TAS-B + doc2query-T5 (Hofstitter et al., 2021) .360 753 67 27%
TCT-ColBERT + BM25 .356 720 110 17
TCT-ColBERT + doc2query-T5 .366 734 110 27
TCT-ColBERT (w/ TCT HN+) + BM25 .369 730 110 17
TCT-ColBERT (w/ TCT HN+) + doc2query-T5 375 741 110 27
Multi-stage reranking
BM25 + BERT-large (Nogueira and Cho, 2019) .365 736 3500 4
TAS-B + doc2query-T5 + Mono-Duo-T5 (Hofstitter et al., 2021) 421 759 12800 27%
RocketQA with reranking (Qu et al., 2020) 439 - - 13?

* We estimate dense index size using 16-bit floats; for hybrid, we add the sizes of sparse and dense indexes.

® We assume latency comparable to our settings.

Table 6: Component latencies per query of our model.

Stage latency (ms) device
BERT query encoder 7 GPU
Dot product search 100 GPU
Score combination 3  CPU

from single-vector to multi-vector dense models,
we see that ColBERT exhibits higher effectiveness
but is slower and requires much more storage.

Finally, when integrated with sparse retrieval
methods, TCT-ColBERT is able to beat a ba-
sic multi-stage reranking design (BM25 + BERT-
large), but with much lower query latency, al-
though at the cost of increased storage. Hybrid
TCT-ColBERT (w/ TCT HN+) + doc2query-T5
compares favorably with a recent advanced model,
TAS-B + doc2query-T5 (Hofstitter et al., 2021),
which introduces topic-aware sampling and dual
teachers, incorporating part of our TCT-ColBERT
work. Nevertheless, even the best hybrid variant
of TCT-ColBERT alone, without further rerank-
ing, remains quite some distance from RocketQA,
the current state of the art (with reranking using
cross-encoders). This suggests that there remain
relevance signals that require full attention interac-
tions to exploit.
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5 Conclusions

Improving the effectiveness of single-vector bi-
encoders is an important research direction in dense
retrieval because of lower latency and storage re-
quirements compared to multi-vector approaches.
We propose a teacher—student knowledge distilla-
tion approach using tightly coupled bi-encoders
that enables exhaustive use of query—passage com-
binations in each minibatch. More importantly, a
bi-encoder teacher requires less computation than a
cross-encoder teacher. Finally, our approach leads
to robust learned representations.

Overall, our hard negative sampling strategy
leads to an effective and efficient dense retrieval
technique, which can be further combined with
sparse retrieval techniques in dense—sparse hybrids.
Together, these designs provide a promising so-
lution for end-to-end text retrieval that balances
quality, query latency, and storage requirements.
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