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Abstract

To highlight the challenges of achieving rep-
resentation disentanglement for text domain in
an unsupervised setting, in this paper we se-
lect a representative set of successfully applied
models from the image domain. We evaluate
these models on 6 disentanglement metrics, as
well as on downstream classification tasks and
homotopy. To facilitate the evaluation, we pro-
pose two synthetic datasets with known gener-
ative factors. Our experiments highlight the ex-
isting gap in the text domain and illustrate that
certain elements such as representation spar-
sity (as an inductive bias), or representation
coupling with the decoder could impact dis-
entanglement. To the best of our knowledge,
our work is the first attempt on the intersec-
tion of unsupervised representation disentan-
glement and text, and provides the experimen-
tal framework and datasets for examining fu-
ture developments in this direction.'

1 Introduction

Learning task-agnostic unsupervised representa-
tions of data has been the center of attention across
various areas of Machine Learning and more specif-
ically NLP. However, little is known about the
way these continuous representations organise in-
formation about data. In recent years, the NLP
community has focused on the question of design
and selection of suitable linguistic tasks to probe
the presence of syntactic or semantic phenomena
in representations as a whole (Bosc and Vincent,
2020; Voita and Titov, 2020; Torroba Hennigen
etal., 2020; Pimentel et al., 2020; Hewitt and Liang,
2019; Ettinger et al., 2018; Marvin and Linzen,
2018; Conneau et al., 2018). Nonetheless, a fine-
grain understanding of information organisation in
coordinates of a continuous representation is yet to
be achieved.

!Code and datasets are available at https://github.
com/lanzhangl28/disentanglement

Arguably, a necessity to move in this direction
is agreeing on the cognitive process behind lan-
guage generation (fusing semantic, syntactic, and
lexical components), which can then be reflected in
the design of representation learning frameworks.
However, this still remains generally as an area
of debate and perhaps less pertinent in the era of
self-supervised masked language models and the
resulting surge of new state-of-the-art results.

Even in the presence of such an agreement, learn-
ing to disentangle the surface realization of the
underlying factors of data (e.g., semantics, syntac-
tic, lexical) in the representation space is a non-
trivial task. Additionally, there is no established
study for evaluating such models in NLP. A handful
of recent works have looked into disentanglement
for text by splitting the representation space into
predefined disentangled subspaces such as style
and content (Cheng et al., 2020; John et al., 2019),
or syntax and semantics (Balasubramanian et al.,
2021; Bao et al., 2019; Chen et al., 2019), and
rely on supervision during training. However, a
generalizable and realistic approach needs to be
unsupervised and capable of identifying the under-
lying factors solely via the regularities presented in
data.

In areas such as image processing, the same ques-
tion has been receiving a lot of attention and in-
spired a wave of methods for learning and eval-
uating unsupervised representation disentangle-
ment (Ross and Doshi-Velez, 2021; Mathieu et al.,
2019; Kim and Mnih, 2018; Burgess et al., 2018;
Higgins et al., 2018, 2017) and creation of large
scale datasets (Dittadi et al., 2021). It has been ar-
gued that disentanglement is the means towards rep-
resentation interpretability (Mathieu et al., 2019),
generalization (Montero et al., 2021), and robust-
ness (Bengio et al., 2013; Bengio, 2013). However,
these benefits are yet to be realized and evaluated
in text domain.
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In this work we take a representative set of un-
supervised disentanglement learning frameworks
widely used in image domain (§2.1) and apply them
to two artificially created corpora with known un-
derlying generative factors (§3). Having known
generative factors (while being ignored during the
training phase) allows us to evaluate the perfor-
mance of these models on imposing representa-
tion disentanglement via 6 disentanglement met-
rics (§2.2; §4.1). Additionally, taking the highest
scoring models and corresponding representations,
we investigate the impact of representation disen-
tanglement on two downstream text classification
tasks (§4.3), and dimension-wise homotopy (§4.4).

We show that existing disentanglement models,
when evaluated on a wide range of metrics, are in-
consistent and highly sensitive to model initialisa-
tion. However, where disentanglement is achieved,
it shows its positive impact on improving down-
stream task performance. Our work highlights the
potential and existing challenges of disentangle-
ment on text. We hope our proposed datasets, ac-
cessible description of disentanglement metrics and
models, and experimental framework will set the
path for developments of models specific to for
text.

2 Disentanglement Models and Metrics

Let x denote data points and z denote latent vari-
ables in the latent representation space, and assume
data points are generated by the combination of two
random process: The first random process samples
a point z(¥) from the latent space with prior distri-
bution of z, denoted by p(z). The second random
process generates a point x(*) from the data space,
denoted by p(x|z?).

We consider z as a disentangled representation
for x, if the changes in single latent dimensions of
z are sensitive to changes in single generative fac-
tors of x while being relatively invariant to changes
in other factors (Bengio et al., 2013). Several prob-
abilistic models are designed to reveal this process,
here we look at some of the most widely used ones.

2.1 Disentanglement Models

A prominent approach for learning disentangled
representations is through adjusting Variational
Auto-Encoders (VAEs) (Kingma and Welling,
2014) objective function, which decompose the
representation space into independently learned co-
ordinates. We start by introducing vanilla VAE,
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and then cover some of its widely used extensions
that encourage disentanglement:

VAE uses a combination of a probabilistic en-
coder ¢, (z|x) and decoder py(x|z), parameterised
by ¢ and 6, to learn this statistical relationship
between x and z. The VAEs are trained by max-
imizing the lower bound of the logarithmic data
distribution log p(x), called evidence lower bound,

By, (zx) [ 108 po(x|2)] — Dic1(g4(2|x), p(z))

The first term of is the expectation of the logarithm
of data likelihood under the posterior distribution
of z. The second term is KL-divergence, measur-
ing the distance between the posterior distribution
¢4(z|x) and the prior distribution p(z) and can be
seen as a regularisation.

B-VAE  (Higgins et al., 2017) adds a hyperpa-
rameter (3 to control the regularisation from the
KL-term via the following objective function:

By, (z1x) [ 108 po(x|2)] — BDk1(g4(2|%), p(z))

Reconstructing under 5-VAE (with the right value
of B) framework encourages encoding data points
on a set of representational axes on which nearby
points along those dimensions are also close in
original data space (Burgess et al., 2018).

CCI-VAE (Burgess et al., 2018) extends 5-VAE
via constraint optimisation:

IE:q(p(z\x) [logpﬁ(x‘z)] - ﬁ |]D)KL(Q¢>(Z‘X):p(Z)) - C|

where C' is a positive real value which repre-
sents the target KL-divergence term value. This
has an information-theoretic interpretation, where
the placed constraint C' on the KL term is seen
as the amount of information transmitted from a
sender (encoder) to a receiver (decoder) via the
message (z) (Alemi et al., 2018), and impacts the
sharpness of the posterior distribution (Prokhorov
et al., 2019). This constraint allows the model to
prioritize underlying factors of data according to
the availability of channel capacity and their con-
tributions to the reconstruction loss improvement.

MAT-VAE (Mathieu et al., 2019) introduces an
additional term to 3-VAE, Dararp(q4(2), pe(2)),

Eq, (z1x) [log po(x|2)] — BDk1.(q4(2]%), p(2))
—ADwnaip(g4(2), p(2))



where D7 p is computed using maximum mean
discrepancy (Gretton et al. (2012), MMD) and A
is the scalar weight. This term regularises the ag-
gregated posterior g4(z) with a factorised spike-
and-slab prior (Mitchell and Beauchamp, 1988),
which aims for disentanglement via clustering and
sparsifying the representations of z.

2.1.1 Issue of KL-Collapse

In text modelling, the presence of powerful auto-
regressive decoders poses a common optimisa-
tion challenge for training VAEs called posterior
collapse, where the learned posterior distribution
¢4 (2|x), collapses to the prior p(z). Posterior col-
lapse results in the latent variables z being ignored
by the decoder. Several strategies have been pro-
posed to alleviate this problem from different an-
gles such as choice of decoders (Yang et al., 2017;
Bowman et al., 2016), adding more dependency
between encoder and decoder (Dieng et al., 2019),
adjusting the training process (Bowman et al., 2016;
He et al., 2019), imposing direct constraints to the
KL term (Pelsmaeker and Aziz, 2020; Razavi et al.,
2019; Burgess et al., 2018; Higgins et al., 2017). In
this work, both 5-VAE (with 8 < 1) and CCI-VAE
are effective methods to avoid KL-collpase.

2.2 Disentanglement Metrics

In this section we provide a short overview of six
widely used disentanglement metrics, highlighting
their key differences and commonalities, and refer
the readers to the corresponding papers for exact
details of computations.

Eastwood and Williams (2018) define three cri-
teria for disentangled representations: disentangle-
ment, which measures the degree of one dimension
only encoding information about no more than one
generative factor; completeness, which measures
whether a generative factor is only captured by
one latent variable; informativeness, which mea-
sures the degree by which representations capture
exact values of the generative factors.” They de-
sign a series of classification tasks to predict the
value of a generative factor based on the latent code,
and extract the relative importance of each latent
code for each task to calculate disentanglement
and completeness scores. Informativeness score is
measured by the accuracy of the classifier directly.
Other existing metrics reflect at least one of these
three criteria, as summarised in Table 1.

These criteria are referred to modularity, compactness
and explicitness by Ridgeway and Mozer (2018).
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Metric Dis. Com. Info. ' Ex.11t Ex.27
Higgins et al. (2017) Yes No No ' 100 100
Ridgeway and Mozer (2018) Yes No No : 100 100
Kim and Mnih (2018) Yes Yes No |, 100 100
Chen et al. (2018) No Yes No , 81.05 5.73
Eastwood and Williams (2018)  Yes Yes Yes | 6647 63.45
Kumar et al. (2018) No Yes Yes | 4.68 3.98

Table 1: The disentanglement (Dis.), completeness
(Com.), and informativeness (Info.) criteria reflected
in six metrics. The Ex.1 and Ex.2 columns are corre-
sponding metrics’ scores (%) on two ideally disentan-
gled representations.

Higgins et al. (2017) focus on disentanglement
and propose to use the absolute difference of two
groups of representations with the same value on
one generative factor to predict this generative fac-
tor. For perfectly disentangled representations, la-
tent dimensions not encoding information about
this generative factor would have zero difference.
Hence, even simple linear classifiers could easily
identify the generative factors based on the changes
of values. Kim and Mnih (2018) consider both dis-
entanglement and completeness by first finding the
dimension which has the largest variance when fix-
ing the value on one generative factor, and then us-
ing the found dimension to predict that generative
factor. Kumar et al. (2018) propose a series of clas-
sification tasks each of which uses a single latent
variable to predict the value of a generative factor
and treat the average of the difference between the
top two accuracy scores for each generative factor
as the final disentanglement score.

Apart from designing classification tasks for dis-
entanglement evaluation, another method is based
on estimating the mutual information (MI) between
a single dimension of the latent variable and a sin-
gle generative factor. Chen et al. (2018) propose to
use the average of the gap (difference) between the
largest normalised MI (by the information entropy
of the generative factor) and the second largest nor-
malised MI over all generative factors as the disen-
tanglement score, whereas the modularity metric of
Ridgeway and Mozer (2018) measures whether a
single latent variable has the highest MI with only
one generative factor and none with others.

The algorithmic details for computing the above
metrics are provided in Appendix A.

Empirical Difference. To highlight the empir-
ical difference between these metrics, we use a
toy set built by permuting four letters: A B C D.
Each letter representing a generative factor with 20
choices of assignments (i.e, X = {X1,..., X20}



where X € {A, B,C, D}). We consider two set-
tings where each generative factor is embedded in
a single dimension (denoted by Ex.1), or two di-
mensions (denoted by Ex.2). In each setting we
uniformly sample 20 values from -1 to 1 to repre-
sent 20 assignments per factor and use them to allo-
cate the assignments into distinctive bins per each
corresponding dimension. By concatenating dimen-
sions for each generative factor, we construct two
ideal disentangled representations for data points in
this toy dataset, amounting to 4 and 8 dimensional
representations, respectively. Using these repre-
sentations (skipping the encoding step), we mea-
sured the above metrics. Table 1 (Ex.1 and Ex.2
columns) summarises the results, illustrating that
out of the 6 metrics, Higgins et al. (2017); Ridge-
way and Mozer (2018); Kim and Mnih (2018) are
the only ones that reach the potential maximum
(i.e., 100), while Chen et al. (2018) exhibits its
sensitivity towards completeness when we allocate
two dimensions per factors.

Data Requirement. Measuring the mentioned
disentanglement metrics requires a dataset satisfy-
ing the following attributes:

1. A set F where each of its elements is a gen-
erative factor which should be disentangled
through representations;

2. For each element f; € F, a value space V;
which is the domain of f;;

3. For each value v;; € V;, a sample space S;;
which contains observations who has value v;;
on generative factor f; while everything else is
arbitrary.

We present two synthetic datasets (§3) that meet
these criteria and use them in our experiments (§4).

3 Generative Synthetic Datasets

The use of synthetic datasets is the common prac-
tice for evaluating disentanglement in image do-
main (Dittadi et al., 2021; Higgins et al., 2017; Kim
and Mnih, 2018). Generative simplistic datasets
in image domain define independent generative
factors (e.g. shape, color) behind the data genera-
tion. However, a comparable resource is missing
in text domain. We develop two synthetic genera-
tive datasets with varying degrees of difficulty to
analyse and measure disentanglement: The YNOC
dataset (§3.1) which has only three structures and
generative factors appearing in every sentence, and
the POS dataset (§3.2) which has more structures
while some generative factors are not guaranteed

Simple Sentence Structures # of Sentences

n. v. n. end-punc. 200
n. v. adj. n. end-punc. 1,000
n. adv. v. n. end-punc. 1,000
n. adv. v. adj. n. end-punc. 5,000
n. v. prep. n. end-punc. 1,000
n. v. prep. adj. n. end-punc. 5,000
n. adv. v. prep. n. end-punc. 5,000
n. adv. v. prep. adj. n. end-punc. 25,000
adj. n. v. n. end-punc. 1,000
adj. n. v. adj. n. end-punc. 4,000
adj. n. adv. v. n. end-punc. 5,000
adj. n. adv. v. adj. n. end-punc. 20,000
adj. n. v. prep. n. end-punc. 5,000
adj. n. v. prep. adj. n. end-punc. 20,000
adj. n. adv. v. prep. n. end-punc. 25,000
adj. n. adv. v. prep. adj. n. end-punc. 100,000

L]
n. [dogs cats foxes horses tigers]
v. [want need have get require]
adv. [really recently gradually frequently eventually]
adj. [happy big small beautiful fantastic]
prep. [on in for to of]
conjl. [although because when where whereas]
conj2. [and or]
comma [,]
end-punc. [. !]

Table 2: Simple sentence structures and the vocabulary
used for each POS tag in our synthetic dataset.

to appear in every sentence. The YNOC dataset
offers a simpler setting for disentanglement.

3.1 YNOC Dataset

Sentences in YNOC are generated by 4 generative
factors: Year (Y), Name (N), Occupation (O), and
City (C), describing the occupation of a person.
Since we often use different means to express the
same message, we considered three templates to
generate YNOC sentences:

Template I. in Y, N was a/an O in C.
Template I1. in Y’s C, N was a/an O.
Template III. N was a/an O in CinY.

The templates were then converted into real sen-
tences using 10 years, 40 names, 20 occupations,
and 30 cities. This amounted to a total of 720K
sentences, split as (60%,20%,20%) into training,
validation, and test sets.

3.2 POS Dataset

We use part-of-speech (POS) tags to simulate the
structure of sentences and define a base grammar as
“n. v. n. end-punc.”, where ‘n.” denotes noun, ‘v.
denotes verb and ‘end-punc.’ denotes the punctua-
tion which appears at the end of sentences. Then
we define simple sentence structures as “(adj.) n.

131



(adv.) v. (prep.) (adj.) n. end-punc.”, where ‘adj.’
denotes adjective, ‘adv.’” denotes adverb, ‘prep.’
denotes preposition, and ‘()’ marks the arbitrary
inclusion/removal of the corresponding POS tag.
We populate the structures with 24 = 16 simple
structures presented in Table 2.

Next, we define complex sentence structures as
combinations of two simple sentence structures by
applying one of the following three rules:

Rule 1. conji. S1 comma S2 end-punc.
Rule I1. S7 conjl. S2 end-punc.
Rule II1. SI comma conj2. S2 end-punc.

where ‘conjl.’ and ‘conj2.” denote two different
kinds of conjunction, ‘comma’ denotes ,” and ‘S1’
and ‘S2’ are two simple sentence structures with-
out ‘end-punc.” We limit the number of POS tags
that appear in ‘S1’ and ‘S2’ to 9 to control the
complexity of generating sentences and obtain 279
complex structures in total. A maximum of 5 words
is chosen for each POS to construct our sentences.

The frequency of appearance for each word in a
sentence is limited to one. Although this construc-
tion does not focus on sentences being “realistic”,
it simulate natural text in terms of the presence of
an underlying grammar and rules over POS tags.?
We deliberately ignore semantics, since isolating
semantics in terms of generative factors potentially
involves analysis over multiple dimensions (combi-
natorial space) and quantifying grouped disentan-
glement requires suitable disentanglement metrics
to be developed. We leave further exploration of
this to our future work.

We split the dataset into training, validation and
test sets with proportion 60%, 20%, 20%. This
proportion is used for every structure to ensure they
have representative sentences in each portion of the
data splits. The final size of (training, validation,
test) sets are (1723680, 574560, 574560). All three
sets are unbiased on word selection for each POS
tag: e.g., all 5 noun POS vocabs from Table 2
have equal frequency (i.e., 20%). Exactly the same
proportions are preserved for validation and test
sets.

Through the process of the generation, we can
define each POS tag as one ground truth generative
factor for sentences.* Because the choices of words

3For structures which can produce more than 10k sentences
(e.g. longer structures), we randomly choose 10k.

*While we consider POS tags as the generative factors in

this paper, further sub-categorisation of POS tags based on
position (e.g., first-noun and second-noun, etc) or grammatical
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for different POS tags are independent, these gen-
erative factors are independent. However, for the
same POS, the choices of words are dependent and
POS tags are dependent on the structures as well. It
is noteworthy that in contrast to the image domain
where all generative factors are always present in
the data, in POS dataset this cannot be guaranteed,
making it a more challenging setting.

4 Experiments and Analysis

In this section, we examine the introduced disentan-
glement models on text. We measure the disentan-
glement scores of each model on our two synthetic
datasets and quantify how well-correlated these
metrics are with reconstruction loss, active units,
and KL (§4.1). We then look at various strategies
for coupling the latent code during decoding and
highlight their impacts on training and disentangle-
ment behaviors (§4.2). We continue our analysis
by showing how the representation learned by the
highest scoring model (on disentanglement met-
rics) performs compared to vanilla VAE in two text
classification tasks (§4.3), and finish our analysis
by looking at these models’ generative behaviors

(§4.4).

Training Configuration. We adopt the VAE ar-
chitecture from (Bowman et al., 2016), using a
LSTM encoder-decoder. Unless stated otherwise,
(word embedding, LSTM, representation embed-
ding) dimensionalities for YNOC and POS datasets
are (4D, 32D, 4D) and (4D, 64D, 8D), respectively,
and we use the latent code to initialize the hidden
state of the LSTM decoder. We use greedy decod-
ing. All models are trained from multiple random
starts using Adam (Kingma and Ba, 2015) with
learning rate 0.001 for 10 epochs. We set batch
size to 256 and 512 for YNOC and POS, respec-
tively.

4.1 Disentanglement Metrics

Taking the models (§2.1) and also an Autoencoder
(AE) as a baseline we use the YNOC and POS
datasets to report average KL-divergence (KL), re-
construction loss (Rec.), and number of active units
(AU) in Table 3, and illustrate disentanglement
metrics’ scores in Figure 1.

As demonstrated in Table 3, different models
pose various behaviors, noteworthy of those are:
mct—noun and object-noun, etc) is a possibility

for future investigation.
*i is active if Covariancex (E;q (i) [i]) > 0.01.



YNOC POS

Model KL Rec.] AUT Top-31 KL Rec.] AUT Top-31
AE - 8.87+0.66 4.0+0.0 1 - 4.91+1.83 8.040.0 3
Vanilla-VAE 0.02+0.02 13.4840.02 0.440.5 0 0.01+0.00 19.57+0.00 0.240.4 3
B-VAE (8 = 0.2) 4251031 9.721025 1.0+o00 3 11.1942.88  12.034204  2.810.7 3
B-VAE (8 = 0.4) 3444023 10321023 1.2104 1 7.7540.69 13.87+0.85  2.6+05 3
B-VAE (8 = 0.8) 1.39+0.41  12.141040 1.0xto0.0 1 5.61+o0.78 14.2610.72 1.840.4 1
CCI-VAE (C = 5) 5.0040.00 9.5110.30 1.841.0 1 5.0410.03 15.01+0.30 2.240.4 0
CCI-VAE (C = 10) 10.0040.00 9484049 34405 2 10.01+0.01 12.7641.18 4.0+1.3 1
MAT-VAE (8 = 0.1, A = 0.1) 6.1140.39 9.49+0.17  1.0+0.0 2 22.1442.92 8.47+2.28 3.0+0.0 3
MAT-VAE (6 = 0.01,A =0.1) 15.38+1.86 7.1240.32 3.240.7 7 45.4811 65 3.4710.99 8.0+0.0 1

Table 3: Results are calculated on the test set. We report mean value and standard deviation across 5 runs.
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Higgins et al., 2017

Ridgeway and Mozer, 2018 Kim and Mnih, 2018

Chen et al., 2018  Eastwood and Williams, 2018 Kumar et al., 2018

Figure 1: Disentanglement scores across six metrics on top: YNOC dataset and bottom: POS dataset. For better
illustration, we multiply the scores of Eastwood and Williams (2018) and Kumar et al. (2018) by 10.

(1) the positive correlation of C' with AU which
intuitively means the increase of channel capacity
demands more dimensions of the representation to
carry information which then translates into having
a better reconstruction of data, (2) the negative
correlation between the increase of 8 and decrease
of reconstruction loss, (3) the best Rec. and AU are
achieved by AE and MAT-VAE whereas the worst
one is achieved by the (collapsed) vanilla-VAE, (4)
the MAT-VAE (8 = 0.01, A = 0.1) model which
induces more sparse representations ¢ performs the
best on both datasets, indicating the positive impact
of representation sparsity as an inductive bias.

As illustrated in Figure 1, the difference between
means of each disentanglement score on various
models is relatively small, and due to large stan-
dard deviation on metrics, it is difficult to single
out a superior model. This verifies findings of Lo-

SSparsity is measured using Hoyer (Hurley and Rickard,
2009). In this paper we report this as the average Hoyer
over data points’ posterior means. Hoyer for data point z;

with posterior mean u; is calculated as W,

where d is the dimensionality of the representations and fi; =
wi/o(p), where u = {1, ..., n }, and o(.) is the standard
deviation.
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catello et al. (2019) on image domain. In Table 3
(Top-3 column) we report the number of appear-
ances of a model among the top 3 highest scoring
models on at least one disentanglement metric. The
ranking suggests that 5-VAE with smaller 3 values
reach better disentangled representations, and MAT-
VAE performing superior on YNOC and poorly on
POS, highlighting its more challenging nature. For
MAT-VAE we also observe an interesting correla-
tion between sparsity and disentanglement: for in-
stance on YNOC, MAT-VAE (8 = 0.01, A = 0.1)
achieves the highest Hoyer (See Table 4) and oc-
curs 7 times among Top-3 (see Table 3). Interest-
ingly, the success of MAT-VAE does not translate
to POS dataset, where it underperforms AE. These
two observations suggest that sparsity could be a
facilitator for disentanglement, but achieving a sta-
ble level of sparsity remains as a challenge. The
more recent development in the direction of spar-
sity, HSVAE (Prokhorov et al., 2020), addresses
the stability issue of MAT-VAE but we leave its
exploration to future work.

To further analyse the inconsistency between
different metrics we calculate the Pearson product-



AE VAE B-VAE CCI-VAE MAT-VAE
8=02 B=04 B=08 C=5 C=10 B=01,A=01 B=00LA=01
YNOC 0.2210.03 0.0310.02 0.30£0.03 0.30x0.02 0.30x0.05 0.3210.04 0.30x0.01 0.36£0.03 0.43+0.09
POS 0.30+0.05 0.21x0.03 0.2510.00 0.2710.01 0.2910.04 0.2940.05 0.28+0.01 0.29+0.00 0.28+0.01

Table 4: Hoyer scores are calculated on the test set. We report mean value and standard deviation across 5 runs.
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Figure 2: Correlation coefficients between six disentan-
glement metrics, Hoyer, AU, Rec, and KL on Upper
Triangle: YNOC dataset and Lower Triangle: POS
dataset.
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(a) Different coupling strategies for the latent code and de-
coder (§4.2). Gray box denotes decoder.
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(b) Absolute differences between disentanglement metrics’
scores of Init. coupling and others (§4.2).

Figure 3: Different coupling strategies for the latent
code and decoder and their impacts on disentanglement
on POS and YNOC.

Coupling Methods

Init. Concat. Init.Concat. ~ Concat. w/o Emb.
v KL 1.51+0.01 1.524+0.01 1.524+0.01 1.62+0.04
% Rec.| 12.044+0.04 12.06£0.03 12.0140.02 12.29+0.16
~ AUt 1.2+0.4 2.0£0.0 1.0£0.0 1.2+0.4
» KL 5.5440.02 5.53+0.02 5.5140.00 5.69+0.03
O Rec.| 14.5440.33 15.89+0.26 15.9840.05 16.48+0.09
&~ AU?T 2.240.4 4.0£0.0 3.240.4 3.6£0.5

Table 5: Test set KL, Reconstruction loss, Active Units
using 4 coupling methods (§4.2).
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moment correlation coefficient between them and
KL, -Rec, AU, Hoyer on POS and YNOC datasets.
See the heatmap in Figure 2. While text-specific
metrics are yet to be developed, our experiment
suggests Higgins et al. (2017) is a good candidate
to try first for text domain as it seems to be the one
with strong correlation with Hoyer, AU, -Rec, and
KL and has the highest level of agreement (overall)
with other metrics.

4.2 Coupling Latent Code and Decoder

In VAEs, we typically feed the decoder with the
latent code as well as word embeddings during
training. The method to couple the latent code
with decoder could have some effects on disentan-
glement for text. To highlight this, we train with
4 different coupling strategies: Init, Concat, Init
Concat, Concat w/o Emb. See Figure 3a for an
accessible visualisation. To analyse the impact of
coupling, we opt for CCI-VAE which allows the
comparisons to be made for the same value of KL.

We first use Concat w/o Emb to find an optimal
KL in vanilla VAEs, which is then used as the C' to
train CCI-VAE:s using the other coupling metrics
on YNOC and POS datasets. For YNOC, C' =
1.5, and for POS, C' = 5.5. This is to keep KL-
divergence and reconstruction loss at the same level
for fair comparison across different strategies. We
report results in Table 5. Among the investigated
coupling methods, the key distinguishing factor for
disentanglement is their impacts on AU which is
the highest for Concat.

Next, using Init as the baseline, we measure
the absolute difference between disentanglement
scores of different coupling methods in Figure 3b.
In general, using concatenation can bring a large
improvement in disentanglement. Using both ini-
tialization and concatenation do not lead to a better
result. Despite our expectation, not feeding word
embeddings into decoder during training does not
encourage disentanglement due to the added re-
liance on the latent code.

A confounding factor which could pollute this
analysis is the role of strong auto-regressive decod-
ing of VAEs and the type of information captured
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Figure 4: Classification accuracy on DBpedia and Ya-
hoo Question using different VAE models. Results are
reported as mean and std across 3 randomly initialised
runs.

by the decoder in such scenario. While a prelim-
inary analysis has been provided recently (Bosc
and Vincent, 2020), this has been vastly under-
explored and requires more explicit attempts. We
leave deeper investigation of this to future work.

4.3 Disentanglement and Classification

To examine the performance of these models
on real-world downstream task setting, we con-
sider the classification task. For our classification
datasets, we use DBpedia (14 classes) and Yahoo
Question (10 classes) (Zhang et al., 2015). Each
class of these two datasets has (10k, 1k, 1k) ran-
domly chosen sentences in (train, dev, test) sets.
We train Vanilla-VAE, §-VAE (6 = 0.2), CCI-
VAE (C' = 10), and MAT-VAE (8 = 0.01, A =
0.1) from Table 3 on DBpedia and Yahoo (without
the labels), then freeze the trained encoders and
place a classifier on top to use the mean vector rep-
resentations from the encoder as a feature to train
a classifier.

We set the dimensionality of word embedding,
LSTM, and the latent space to 128, 512, 32, respec-
tively. The VAE models are trained using a batch
size of 64, for 6 epochs with Adam (learning rate
0.001). For the classifier, we use a single linear
layer with 1024 neurons, followed by a Softmax
and train it for 15 epochs, using Adam (learning
rate 0.001) and batch size 512. We illustrate the
mean and standard deviation across 3 runs of mod-
els in Figure 4.

We observe that the ranking of classification ac-
curacy among the models on DBpedia is consistent
with their Top-3 performance in Table 3, with MAT-
VAE outperforming the other three variants. We
see roughly the same trend for Yahoo, with MAT-
VAE being the dominating model. This indicates

135

START [21,1,21,2,21,3]

1= 211 [Py 22,218 0 [221) 21,2, 21,3
i=2 zy - i)
i=3 2/1’3 — b
END 2y [22,1,22,2, 22,3

Table 6: An example of a 3D latent code transforma-
tion in the dimension-wise homotopy. In row 7, —
denotes the start and end points of interpolation, solid
box denotes the two dimensions being interpolated, and
dashed box denotes the updated dimensions from ¢ — 1.

that disentangled representations are likely to be
easier to discriminate, although the role of sparsely
learned representations could contribute to MAT-
VAE’s success as well (Prokhorov et al., 2020).

4.4 Disentanglement and Generation

To observe the effect of disentanglement in homo-
topy (Bowman et al., 2016), we use the exactly
same toy dataset introduced in §2.1 and assess the
homotopy behaviour of the highest scoring VAE vs.
an ideal representation. To conduct homotopy, we
interpolate between two sampled sequences’ rep-
resentations and pass the intermediate representa-
tions to decoder to generate the output. We use 4D
word embedding, 16D LSTM, 4D latent space. We
report the results for the VAEs scoring the highest
on disentanglement (w.r.t. Higgins et al. (2017) de-
noted as VAE-Higg) and completeness (w.r.t. Chen
et al. (2018) denoted as VAE-Chen). The VAE-
Higg and VAE-Chen are 8-VAE with 8 = 0.4 and
MAT-VAE with g8 = 0.01, A = 0.1, respectively.
Additionally, to highlight the role of genera-
tive factor in generation, we conduct a dimension-
wise homotopy, transitioning from the first to the
last sentence by interpolating between the dimen-
sions one-by-one. This is implemented as fol-
lows: (i) using prior distribution” we sample two
latent codes denoted by z; = (21,1, 21,2, -, Z1,n)s
Zy = (221,222, ..., %2,); (ii) for i-th dimension,
using Z/Li = (22,1,--+22,i—1,21,is-- - 21,n) as the
start, we interpolate along the ¢-th dimension to-
wards Zl2’i = (22’1, ce o3 R20y RLi41y s e ey Zl,n)- Ta-
ble 6 illustrates this for a 3D latent code example.

Results: Table 7 reports the outputs for standard
homotopy (top block) and dimension-wise homo-
topy. The results for standard homotopy demon-

"Instead of prior, we sample two sentences from test set
and use their representations. This is to avoid the situation
where samples are not in the well-estimated region of the
posterior.



Ideal VAE-Higg VAE-Chen
Z1 A9 B17 C13 D3 A12 B14 C14 D12 A9 B4 C10 D15
Z A20B17C1D3 Al12B14 C14 D12 A7 B4 C10 D15
% A4 B17 C12 D6 A8 B14 Cl14 D12 A14 B4 C10 D15
£ A3 B1C6 D6 A20B14 C14 D12 A20B19 C10 D15
é A13 B1 C6 D20 A15B14 C14 D12 A8 B19 C10 D15
Z2 A15 B2 C8 D10 A4 B14 C14 D12 A12 B19 C10 D15
z A9 B17 C13 D3 A12 B14 C14 D12 A9 B4 C10 D15
- A20B17C13 D3 Al12B14 C14 D12 A7 B4 C10D15
E A4 B17 C13 D3 A8 B14 C14 D12 A4 B19 C10 D15
= A3B17C13D3 A20B14 C14 D12 A8 B19 C10 D15
A13B17 C13 D3 A18B14 C14 D12 A12B19 C10 D15
1,1,2 A15B17CI13 D3 A4 B14 Cl14 D12 A12B19 C10 D15
«a A15B17 C13 D3 A4 B14 C14 D12 A12B19 C10 D15
E A15B17C13 D3 A4B14 Cl14 D12 A12B19 C10 D15
=] Al5B17C13 D3 A4 B14 C14 D12 A12B19 C10 D15
A15B1C13D3 A4B14 C14 D12 A12B19 C10D15
1,1,3 A15B2C13D3 A4B14 C14 D12 A12 B19 C10 D15
o Al15B2C1 D3 A4 B14 Cl14 D12 A12B19 C10D15
E A15B2C12D3 A4 B14 C14 D12 Al12B19 C10 D15
=] A15B2 C6 D3 A4 B14 Cl14 D12 A12B19 C10 D15
A15B2 C6 D3 A4B14 C14 D12 A12B19 C10 D15
Z,M Al5 B2 C8 D3 A4 B14 C14 D12 A12B19 C10 D15
-« A15B2C8 D3 A4B14 C14 D12 Al12B19 C10 D15
E A15B2 C8 D6 A4 B14 C14 D12 A12B19 C10 D15
= A15B2 C8 D6 A4B14 C14 D12 A12B19 C10 D15
A15 B2 C8 D20 A4 B14 C14 D12 A12B19 C10 D15
Z2 A15B2 C8 D10 A4 B14 C14 D12 A12 B19 C10 D15

Table 7: The homotopy experiments, comparing an
ideal generator and the best disentangled VAEs accord-
ing to Higgins et al. (2017) (VAE-Higg) and Chen et al.
(2018) (VAE-Chen).

strate that the presence of ideally disentangled rep-
resentation translates into disentangled generation
in general. However, both VAE-Higg and VAE-
Chen seem to mainly be producing variations of
the letter in the first position (letter A) during the
interpolation. The same observation holds in the
dimension-wise experiments. VAE-Chen also pro-
duces variations of the letter in the second position
(letter B) along with the variation of letter A, which
suggests the lesser importance of completeness for
disentangled representations.

This indicates that despite the relative superior
performance of certain models on the metrics and
classification tasks, the amount of disentangle-
ment present in the representation is not sufficient
enough to be reflected by the generative behavior of
these models. As a future work, we would look into
the role of auto-regressive decoding and teacher-
forcing as confounding factors that can potentially
affect the disentanglement process.

5 Conclusion and Future Directions

We evaluated a set of recent unsupervised disentan-
glement learning frameworks widely used in image
domain on two artificially created corpora with
known underlying generative factors. Our experi-
ments highlight the existing gaps in text domain,

the daunting tasks state-of-the-art models from im-
age domain face on text, and the confounding ele-
ments that pose further challenges towards repre-
sentation disentanglement in text domain. Moti-
vated by our findings, in future, we will explore the
role of inductive biases such as representation spar-
sity in achieving representation disentanglement.
Additionally, we will look into alternative forms
of decoding and training which may compromise
reconstruction quality but increase the reliance of
decoding on the representation, hence allowing for
a more controlled analysis and evaluation.

Our synthetic datasets and experimental frame-
work provide a set of quantitative and qualitative
measures to facilitate and future research in devel-
oping new models, datasets, and evaluation metrics
specific for text.
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space R;;, who has a bijection mapping with S;;.
Hence, when sampling representations which have
the same value on one generative factor, we only
need to sample in one R;;.

Under these notations, we write the pseudo code
of metrics in Algorithm 1-6. For Algorithm 5 and
6, although we only use one criterion in the main
paper, we still provide the details for other criteria.
We set N = 1000 and L = 64 for Algorithm 1 and
2, and N = 10000 for Algorithm 3, 4, 5, and 6.

Algorithm 1 Metric of Higgins et al. (2017)
- D=g
2: for f; € Fdo
3: forn=1,2,...,Ndo

=1l 7

D = {(zn, fi)} UD

10: Split D into training set TR and test set TE
with proportion (80%, 20%)

11: Train 10 MLPs with only input and output
layer on TR

12: Calculate the accuracy on TE for 10 models

13: Calculate the mean and variance of accuracy

4: Sample s,, from (J; S;;

5: Find the value v;; on f; for s,

6: Sample (zgl), e ,z(Ll)) from R;;
7: Sample (zgz), e z(L2)) from R;;
8:

9:

Algorithm 2 Metric of Kim and Mnih (2018)
:D=g
2: ford=1,2,...,dim, do
Calculate the standard deviation o4 of di-
mension d
for f; € Fdo
forn=1,2,...,Ndo
Sample s,, from Uj Sij
Find the value v;; on f; for s,
Sample (z1, ...,zy) from R;;
di = argmaxgvar(22, .. Z(fc’ld)
10 D = {(dj, £)} UD
11: Split D into training set TR and test set TEE
with proportion (80%, 20%)
12: Train 10 majority vote classifiers on TR
13: Calculate the accuracy on TE for 10 models
14: Calculate the mean and variance of accuracy

b

R A

Algorithm 3 Metric of Kumar et al. (2018)

1: for f; € Fdo
2 for v;; € V; do
. y __ Count(Sy)
3 p(UU) Y Count(]S,-j)
4 Sample N; = N x p(v;;) representa-

tions z’ from R;;

5 ford=1,2,...,dim, do

6 Dg=o

7: for Vij € V; do

8 forn=1,2,...,N; do

9 Dig = {(2}, 4, vij) } UDia

10: Split Dy into training set TR, and test
set TE, with proportion (80%, 20%)

11: Train a linear SVM classifier on TRy

12: Record the accuracy accg on TE;q4

13: d* = argmax, accy

14: SAP; = accgs — max g+ accq

15: score = avg(SAP;)

Algorithm 4 Metric of Chen et al. (2018)
1: ford=1,2,...,dim, do
2: Divide values on dimension d into 20 uni-
form bins B,

3: forn=1,2,...,20do

. ny Count({z4€B7 })
4 p(Zd < Bd) oy Count({z4€B7})
5: H(zg) = — Ziozlp(zd € B))logp(zq €

B7)
for f; € F do
for v;; € V; do
_ Count(S;;)
p(Uij) X C’ount(]Sij)
Sample N; = N x p(v;;) representa-
tions r/ from R;;

0. H(fi) =—>;p(vij) logp(vij)

Y % 2D

11: ford=1,2,...,dim, do

12: for Vij € V; do

13: forn=1,2,...,20do

14: . p(Zd € IB%Z}]UU) =

Count({r)€B7})

>0 | Count({r}€B"})

15: H(zq4|fi) =
=Y, p(vig) Yorly pza € Blj|vij) log plza €
By |vis)

16: I(Zd,fi) = H(Zd) — H(Zd’fz)

17: d* = arg maxy Igz‘]’c{;)

18 MIG; = “Gd) — maxg g TG0

19: score = avg(MIG;)
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Algorithm 5 Metric of Ridgeway and Mozer
(2018)

Modularity:

1:

Same steps as Algorithm 4 without step 17, 18
and 19

2: ford=1,2,...,dim, do
3 i* = argmax; I(zq, fi)
4: 04 = I(Zdafi*)
5: for f; € F do
6: if i = ¢* then
7T: ti =0y
8: else
9: t;, =0 )
100 0g= %(gﬁiif&)ff)
11: score = avg(l — dg)
Explicitness:
1: for f; € Fdo
2 D=9
3: for v;; € V; do
4 p(vij) = 72%%75?2%2]-)
5 Sample N; = N x p(v;;) representa-
tions r/ from R;;
6: forn=1,2,...,N; do
7 D; = {(I‘%,’l)i]’)}UD
8: Split D; into training set TIR; and test set

10:

11:

TE; with proportion (80%, 20%)

Train an one-versus-rest logistic regress
classifier on TRR;

Record the ROC area-under-the-curve
(AUC) auc;; on TR; for every v;;

score = avg(auci;)
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Algorithm 6 Metric of Eastwood and Williams

(2018)
1: for f; € Fdo
2 D, =9
3: for Vij € V; do
4 p(vij) = %
5 Sample N; = N x p(v;;) representa-
tions z’ from R;;
6: forn=1,2,...,N; do
7: D; = {(Z%,U@‘)}UD
8: Split D; into training set TR; and test set
TE; with proportion (80%, 20%)
9: Train a random forest classifier on TIR;
10: Informativeness score in f, is the accuracy

11:

12:
13:

14:
15:
16:
17:
ford=1,2,..
19:
20:

21:
22:

23:

on TEZ

734 18 the relative importance of dimension
d in predicting v;;, obtained from the random
forest

ford=1,2,...,dim, do

J— T
Pd o Zd;{id
H = _dedlogdimz Py
diSi =1—-H

S8COT €djsentanglement = ng(disi)
SCOT€in formativeness — ng(infi)
.,dim, do

for f; € F do

Qi = Tid
v 2 Tid

H = =3 Qilogcounim Qi
Completeness score comg =1 — H

SCOT €completeness = avg(comd)




