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Abstract

Pretrained language models have served as the
backbone for many state-of-the-art NLP re-
sults. These models are large and expensive
to train. Recent work suggests that continued
pretraining on task-specific data is worth the
effort as pretraining leads to improved perfor-
mance on downstream tasks. We explore al-
ternatives to full-scale task-specific pretraining
of language models through the use of adapter
modules, a parameter-efficient approach to
transfer learning. We find that adapter-based
pretraining is able to achieve comparable re-
sults to task-specific pretraining while using
a fraction of the overall trainable parameters.
We further explore direct use of adapters with-
out pretraining and find that the direct fine-
tuning performs mostly on par with pretrained
adapter models, contradicting previously pro-
posed benefits of continual pretraining in full
pretraining fine-tuning strategies. Lastly, we
perform an ablation study on task-adaptive pre-
training to investigate how different hyperpa-
rameter settings can change the effectiveness
of the pretraining.

1 Introduction

Pretrained Language Models (PLM) are predom-
inant in tackling current Natural Language Pro-
cessing (NLP) tasks. Most PLMs based on the
Transformer architecture (Vaswani et al., 2017) are
first trained on massive text corpora with the self-
supervised objective to learn word representations
(Devlin et al., 2019; Liu et al., 2019), and then
are fine-tuned for a specific target task. The pre-
training and fine-tuning of PLMs achieves state-of-
the-art (SOTA) performance in many NLP tasks.
Inspired by the benefits of pretraining, there have
been studies demonstrate the effects of continued
pretraining on the domain of a target task or the
target task dataset (Mitra et al., 2020; Han and
Eisenstein, 2019; Gururangan et al., 2020). Guru-
rangan et al., 2020 adapt PLMs on the target task

by further pretraining RoBERTa (Liu et al., 2019)
on the target text corpus before it is fine-tuned for
the corresponding task and showed that this task
adaptation consistently improves the performance
for text classification tasks.

However, this full process of pretraining and
then fine-tuning can be parameter inefficient for
recent PLMs that have millions or billions of pa-
rameters (Devlin et al., 2019; Radford et al., 2018).
This parameter inefficiency becomes even worse
when one continues pre-training all the parameters
of PLMs on the task-specific corpus. Furthermore,
recent PLMs need more than 100s of MB to store
all the weights (Liu et al., 2019; Radford et al.,
2018), making it difficult to download and share
the pre-trained models on the fly.

Recently, adapters have been proposed as an al-
ternative approach to decrease the substantial num-
ber of parameters of PLMs in the fine-tuning stage
(Houlsby et al., 2019). Finetuning with adapters
mostly matches the performance of those with the
full fine-tuning strategy on many NLP tasks in-
cluding GLUE benchmark (Wang et al., 2018) and
reduces the size of the model from 100s of MB
to the order of MB (Pfeiffer et al., 2020b). As
such, a natural question arises from the successes of
the adapter approach: can the adapter alone adapt
PLMs to the target task when it is used in the sec-
ond phase of the pretraining stage and thus lead to
the improvement of the performance on the corre-
sponding task?

In this paper, we explore task-adaptive pretrain-
ing, termed TAPT (Gururangan et al., 2020), with
adapters to address this question and overcome the
limitations of the conventional full pretraining and
fine-tuning. We only train the adapter modules
in the second phase of pretraining as well as the
fine-tuning stage to achieve both parameter effi-
ciency and the benefits of continual pretraining and
compare those with the adapter-based model with-
out pretraining. Surprisingly, we find that directly
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fine-tuning adapters performs mostly on par with
the pre-trained adapter model and outperforms the
full TAPT, contradicting the previously proposed
benefits of continual pretraining in the full pretrain-
ing fine-tuning scheme. As directly fine-tuning
adapters skips the second phase of pretraining and
the training steps of adapters are faster than those
of the full model, it substantially reduces the train-
ing time. We further investigate different hyper-
parameter settings that affect the effectiveness of
pretraining.

2 Pretraining and Adapters

Pre-trained language model We use RoBERTa
(Liu et al., 2019), a Transformer-based language
model that is pre-trained on a massive text corpus,
following Gururangan et al., 2020. RoBERTa is an
extension of BERT (Devlin et al., 2019) with opti-
mized hyperparameters and a modification of the
pretraining objective, which excludes next sentence
prediction and only uses the randomly masked to-
kens in the input sentence. To evaluate the per-
formance of RoBERTa on a certain task, a classi-
fication layer is appended on top of the language
model after the pretraining and all the parameters in
RoBERTa are trained in a supervised way using the
label of the dataset. In this paper, training word rep-
resentations using RoBERTa on a masked language
modeling task will be referred to as pretraining.
Further, taking this pretrained model and adding a
classification layer with additional updates to the
language model parameters will be referred to as
fine-tuning.

Task-adaptive pretraining (TAPT) Although
RoBERTa achieves strong performance by sim-
ply fine-tuning the PLMs on a target task, there
can be a distributional mismatch between the pre-
training and target corpora. To address this issue,
pretraining on the target task or the domain of the
target task can be usefully employed to adapt the
language models to the target task and it further
improves the performance of the PLMs. Such meth-
ods can be referred to as Domain-Adaptive Pretrain-
ing (DAPT) or Task Adaptive-Pretraining (TAPT)
(Gururangan et al., 2020). In this paper, we limit
the scope of our works to TAPT as domain text cor-
pus is not always available for each task, whereas
TAPT can be easily applied by directly using the
dataset of the target task while its performance of-
ten matches with DAPT (Gururangan et al., 2020).
In TAPT, the second phase of pretraining is per-

Figure 1: The adapter achitecture in the Transformer
layer (Pfeiffer et al., 2020a)

formed with RoBERTa using the unlabeled text
corpus of the target task, and then it is fine-tuned
on the target task.

Adapter Adapter modules have been employed
as a feature extractor in computer vision (Rebuffi
et al., 2017) and have been recently adopted in
the NLP literature as an alternative approach to
fully fine-tuning PLMs. Adapters are sets of new
weights that are typically embedded in each trans-
former layer of PLMs and consist of feed-forward
layers with normalizations, residual connections,
and projection layers. The architectures of adapters
vary with respect to the different configuration set-
tings. We use the configuration proposed by Pfeif-
fer et al., 2020a in Figure 1, which turned out to be
effective on diverse NLP tasks, and add the adapter
layer to each transformer layer.

Pfeiffer et al., 2020c use two types of
adapter: language-specific adapters and task-
specific adapters for cross-lingual transfer. These
two types of adapter modules have similar architec-
ture as in Figure 1. However, the language adapters
involve invertible adapters after the embedding
layer to capture token-level language representa-
tion when those are trained via masked language
modeling in the pretraining stage, whereas the task
adapters are simply embedded in each transformer
layer and trained in the fine-tuning stage to learn the
task representation. Following Pfeiffer et al., 2020c,
we employ language adapter modules with invert-
ible adapter layers to perform pretraining adapters
on the unlabeled target dataset. However, we per-
form fine-tuning pre-trained parameters of the lan-
guage adapter modules for evaluation to align with
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Domain Task Label type Number of inst (Train/Dev/Test) Classes
Biomedical CHEMPROT Relationship classification 4169 / 2427 / 3469 13
Biomedical RCT Abstract sentence roles 18040 / 30212 / 30135 5
Computer Science ACL-ARC Citation intent 1688 / 114 / 139 6
Computer Science SCIERC Relation classification 3219 / 455 / 974 7
News HYPERPARTISAN Partisanship 515 / 65 / 65 2
News AGNEWS Topic 115000 / 5000 / 7600 4
Reviews HELPFULNESS Review helpfulness 115251 / 5000 / 25000 2
Reviews IMDB Review sentiment 20000 / 5000 / 25000 2

Table 1: Datasets used for experimentation. Datasets include both high-resource (RCT (Dernoncourt and Lee,
2017), AGNEWS (Zhang et al., 2015), HELPFULNESS (McAuley et al., 2015), IMDB (Maas et al., 2011)) and
low-resource (CHEMPROT (Kringelum et al., 2016), ACL-ARC (Jurgens et al., 2018), SCIERC (Luan et al.,
2018), HYPERPARTISAN (Kiesel et al., 2019) settings.

TAPT, whereas Pfeiffer et al., 2020c employ both
the language and the task adapters by stacking task
adapters on top of the language adapters.

3 Experiments

We now propose an adapter-based approach that
is a parameter efficient variant of Task-Adaptive
Pretraining (TAPT) and measure the margin of the
performance between the pre-trained adapter model
and the adapter model without pretraining. For pre-
training adapters, we added the adapter module in
each transformer layer of RoBERTa using adapter-
transformer (Pfeiffer et al., 2020b)1 and continued
pretraining all the weights in adapter layers on tar-
get text corpus while keeping the original parame-
ters in RoBERTa fixed. After finishing the second
phase of pretraining, we performed fine-tuning of
RoBERTa by training the weights in the adapters
and the final classification layers while keeping all
of the parameters in RoBERTa frozen.

3.1 Dataset

Following Gururangan et al., 2020 2, we consider 8
classification tasks from 4 different domains. The
specification of each task is shown in Table 1. We
covered news and review texts that are similar to
the pretraining corpus of RoBERTa as well as scien-
tific domains in which text corpora can have largely
different distributions from those of RoBERTa. Fur-
thermore, the pretraining corpora of the target tasks
include both large and small cases to determine
whether the adapter-based approach can be appli-
cable in both low and high-resource settings.

1https://github.com/Adapter-Hub/
adapter-transformers

2Downloadble link for task dataset: https://github.
com/allenai/dont-stop-pretraining

3.2 Implementation Details
Our implementation is based on HuggingFace since
we found AllenNLP (Gardner et al., 2018) used
in Gururangan et al., 2020 is incompatible with
adapter-transformer (Pfeiffer et al., 2020b). We
follow the hyperparameters setting in Gururangan
et al., 2020, and each model in the pretraining
and fine-tuning stage is trained on a single GPU
(NVIDIA RTX 3090). Details of hyperparame-
ters are described in Appendix A. Note that for
the pretraining step, we use a batch size of 8 and
accumulate the gradient for every 32 steps to be
consistent with the hyperparameter setting in Guru-
rangan et al., 2020.

We perform pretraining with the self-supervised
objectives, which are randomly masked tokens,
with a probability of 15% for each epoch and we
do not apply validation to pretraining and save the
model at the end of the training from a single seed.
For TAPT, we train the entire parameters of the
RoBERTa via masked language modeling (MLM)
on the target dataset, whereas for the adapter-based
model, we embed the language adapters in each
transformer layer and add invertible adapters after
the embedding layers to perform MLM while freez-
ing the original parameters of RoBERTa, following
Pfeiffer et al., 2020c. Fine-tuning step is straight-
forward. We perform fine-tuning parameters that
are pretrained via MLM for both TAPT and the
adapter model. Validation is performed after each
epoch and the best checkpoint is loaded at the end
of the training to evaluate the performance on the
test set.

3.3 Experimental setup
Experiments cover four different models. First, we
reproduce the performance of RoBERTa and TAPT
in Gururangan et al., 2020 as presented in Appendix
C. Then we proceed to the adapter-based approach.

https://github.com/Adapter-Hub/adapter-transformers
https://github.com/Adapter-Hub/adapter-transformers
https://github.com/allenai/dont-stop-pretraining
https://github.com/allenai/dont-stop-pretraining
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Dataset Baseline RoBERTa TAPT Adapter w/o PT Adapter w/ PT
CHEMPROT 81.9 1.0 82.6 0.4 82.69 0.4 82.71 0.4

RCT 87.2 0.1 87.7 0.1 87.35 0.04 87.4 0.1

ACL-ARC 63.0 5.8 67.4 1.8 69.47 2.4 69.25 2.5

SCIERC 77.3 1.9 79.3 1.5 81.5 0.9 82.37 1.0

HYPERPARTISAN 86.6 0.9 90.4 5.2 93.01 4.7 84.97 6.4

AGNEWS 93.9 0.2 94.5 0.1 94.00 0.1 93.94 0.1

HELPFULNESS 65.1 3.4 68.5 1.9 70.96 0.6 70.83 0.8

IMDB 95.0 0.2 95.5 0.1 95.51 0.1 95.57 0.1

Average F1 81.3 83.24 84.31 83.38
Trainable params per task (PT/FT) -/124.64M 163.35M/124.64M -/1.78M 2.18M/2.08M
Ratio to total params (PT/FT) -/100% 100% /100% -/1.42% 1.32%/1.65%
Relative training speed (PT/FT) -/1.0 1.0/1.0 -/1.29 1.14/1.24
Relative inference speed (PT/FT) -/1.0 1.0/1.0 -/0.98 0.88/0.98

Table 2: Average F1 score with standard deviation on test set. Each score is averaged over 5 random seeds.
Evaluation metric is macro-F1 scores on test set for each task except for CHMEPROT and RCT which use micro-
F1. We report the results of baseline RoBERTa and TAPT from Gururangan et al., 2020. Following Rücklé et al.,
2020, we measure the average relative speed for the training and the inference time across all tasks except for the
the inference speed in fine-tuning stage, which excludes low-resource tasks. PT and FT indicate pretraining and
fine-tuning respectively.

To investigate the benefits of task-adaptive pretrain-
ing with adapters, we compare the performance of
the pre-trained adapter model with the model with-
out pretraining, i.e., directly fine-tuning adapters in
RoBERTa on the target task.

For the adapter-based approach, we compare
the adapter-based model with the second phase of
pretraining and the model without the pretraining.
Since the weights of the adapters are randomly ini-
tialized, we empirically found that a larger learning
rate worked well compared to the full fine-tuning
experiments. We sweep the learning rates in {2e-5,
1e-4, 3e-4, 6e-4} and the number of epochs in {10,
20} on the validation set and report the test score
that performs the best on the validation set.

3.4 Results

The results are summarized in Table 2. Surpris-
ingly, for the average F1 score, the adapter-based
model without task-adaptive pretraining performs
best, followed by the other adapter with the pre-
training model, TAPT, and the baseline RoBERTa.
Except for Hyperpartisan news, the adapter model
without pretraining performs mostly on par with the
counterpart adapter model that involves pretraining
on target text corpus, suggesting that the benefits of
additional task-adaptive pretraining diminish when
we use the adapter-based approach. Furthermore,
directly fine-tuned adapter model only trains 1.42%
of the entire parameters which leads to the 30%
faster-training step than the full model and skips
the pretraining stage that typically expensive to
train than the fine-tuning, substantially reducing

Figure 2: F1 score as a function of learning rate on
test set with log scale on x-axis. F1 score is av-
eraged over 5 random seeds for low-resource tasks
(CHEMPROT, ACL-ARC, SCIERC, HYPER) due
to the high variance. For high-resource tasks (RCT,
AGNEWS, HELPFULNESS, IMDB), we report the
F1 score from a single random seed for each task. For
RoBERTa and TAPT, we follow the hyper-parameter
settings in Gururangan et al., 2020 except for the learn-
ing rate.

the training time while the relative speed for the
inference only decreases by 2% to the full model.

3.5 Analysis

We analyze how the adapter alone can surpass or
perform on par with both the full model and adapter
model with task-adaptive pretraining. Since we
sweep the learning rates and the number of epochs
in the range that includes larger figures compared
to those in the full model when fine-tuning adapters
and kept the other hyper-parameters the same as
in Gururangan et al., 2020, we hypothesize that
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Dataset Baseline RoBERTa TAPT
CHEMPROT 82.8 0.9 82.62 0.5

RCT 86.89 0.1 87.4 0.2

ACL-ARC 69.24 2.6 70.08 2.3

SCIERC 80.59 0.9 81.28 1.2

HYPER 94.53 2.0 86.171.3

AGNEWS 93.9 0.2 94.050.1

HELPFUL 69.63 0.6 71.280.8

IMDB 94.93 0.1 95.330.1

Average F1 84.06 83.52

Table 3: Best performance of baseline RoBERTa and
TAPT (Gururangan et al., 2020) on our implementa-
tion. Each score is averaged over 5 random seeds. Best
configuration settings for each task is described in Ap-
pendix Table 8.

the larger learning rate zeroes out the benefits of
pretraining. Figure 2. shows the average F1 score
across all tasks as a function of learning rate.

The adapter model without a second phase of
pretraining consistently outperforms or performs
on par with the adapter model with pretraining from
1e-4 to 6e-4, demonstrating that the additional pre-
training turns out to be ineffective. In contrast,
TAPT outperforms baseline RoBERTa from 2e-5,
where both TAPT and baseline RoBERTa perform
best. The results show that different learning rates
used in the fine-tuning stage can affect the effective-
ness of pretraining and demonstrate that directly
fine-tuning a fraction of parameters can provide
comparable performance to the full-model as well
as the adapter model with pretraining while sub-
stantially reducing the training time.

Inspired by the results of the adapter models, we
perform the same experiments for the full model
(baseline RoBERTa and TAPT) on our implemen-
tation by sweeping the learning rates and the num-
ber of epochs. We hypothesize that proper hyper-
parameter settings such as a larger learning rate
or increasing the number of training steps in the
fine-tuning stage can improve the performance of
baseline RoBERTa, making pretraining on the un-
labeled target task less effective. We sweep the
learning rates in {1e-5, 2e-5, 3e-5} and the num-
ber of epochs in {10, 20} on the validation set and
report the test score that performs the best on the
validation set. Table 3 shows the best performance
of the full models for each task among different
hyper-parameter settings. The average F1 score
of baseline RoBERTa greatly increases and sur-
prisingly, it surpasses the performance of TAPT in
some tasks. The results ensure that although pre-
training PLMs on the target task results in better

performance, one can achieve comparable perfor-
mance by simply using a larger learning rate or
increasing training steps in the fine-tuning stage
while skipping the pretraining step that is computa-
tionally demanding compared to the fine-tuning.

4 Conclusion

Our work demonstrates that adapters provide a
competitive alternative to large-scale task-adaptive
pretraining for NLP classification tasks. We show
that it is possible to achieve similar performance
to TAPT with pretraining training just 1.32% of
the parameters through pretraining with adapters.
However, the most computationally efficient option
is to skip pretraining and only perform fine-tuning
with adapters. We found that skipping pretraining
altogether and just fine-tuning with adapters outper-
forms or performs mostly on par with TAPT and
the adapter model with pretraining across our tasks
while substantially reducing the training time.
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Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Se-
bastian Ruder. 2020c. MAD-X: An Adapter-Based
Framework for Multi-Task Cross-Lingual Transfer.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 7654–7673, Online. Association for Computa-
tional Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea
Vedaldi. 2017. Learning multiple visual domains
with residual adapters. In Advances in Neural Infor-
mation Processing Systems, volume 30, pages 506–
516. Curran Associates, Inc.
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A Hyperparameter Details

Details of hyperparameter setting including the
learning rates for the best performing results are
provided in Table 4, 5, and 6.

B Validation Results

We present validation performance in Table 7 and
Figure 3 and 8.

C Replication results

We provide replication results of Gururangan et al.,
2020 in Table 9.
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Hyper-parameter Value
Optimizer Adam
Adam epsilon 1e-8, 0.999
Learning rate 1e-4
Batch size 8
Gradient accumulation step 32
Epochs 40 or 100
Adapter reduction factor 12
Maximum sequence length 512

Table 4: Details of hyperparameters used in pretraining experiments. We used 40 number of epochs for HELP-
FULNESS and 100 for the other tasks.

Hyper-parameter Value
Optimizer Adam
Adam epsilon 1e-8, 0.999
Batch size 16
Gradient accumulation step 1
Epochs 10 or 20
Patience 3 or 5
Adapter reduction factor 12
Dropout 0.1
Feedforward layer 1
Feedforward nonlinearity tanh
Classification layer 1
Learning rate see Table 6
Learning rate decay linear
Warmup proportion 0.06
Maximum sequence length 512

Table 5: Details of hyperparameters used in fine-tuning experiments. For baseline RoBERTa and TAPT, we used
10 number of epochs with patience of 3 and the learning rate of 2e-5. For adapter experiments, see Table 6.

Dataset Adapter w/o PT (LR, Epochs, Patience) Adapter w/ PT (LR, Epochs, Patience)
CHEMPROT 3e-4, 20, 5 6e-4, 20, 5
RCT 1e-4, 10, 3 1e-4, 10, 3
ACL-ARC 6e-4, 10, 3 6e-4, 20, 5
SCIERC 3e-4, 20, 5 6e-4, 20, 5
HYPER 3e-4, 20, 5 1e-4, 20, 5
AGNEWS 1e-4, 10, 3 1e-4, 10, 3
HELPFUL 3e-4, 20, 5 1e-4, 20, 5
IMDB 1e-4, 10, 3 1e-4, 10, 3

Table 6: Learning rate, the nubmer of epochs and patience for best-performing models. For adapter experiments,
we sweep the learning rates in {1e-4, 3e-4, 6e-4}, the number of epochs in {10, 20}, and patience factor in {3, 5}
on validation set.
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Dataset Adapter w/o pretraining Adapter w/ pretraining
CHEMPROT 83.77 0.5 84.02 0.7

RCT 88.16 0.1 88.13 0.1

ACL-ARC 72.41 2.2 77.31 2.9

SCIERC 86.86 0.5 87.87 0.3

HYPER 86.33 1.4 86.00 3.5

AGNEWS 94.28 0.1 94.57 0.1

HELPFUL 70.83 1.2 70.8 0.7

IMDB 95.52 0.1 95.6 0.1

Average F1 84.77 85.54

Table 7: Validation performance of adapter experiments. Each score is averaged over 5 random seeds. Evaluation
metric is macro-F1 scores for each task except for CHMEPROT and RCT which use micro-F1.

Figure 3: F1 score as a function of learning rate on development setwith log scale on x-axis. F1 score is averaged
over 5 random seeds for low-resource tasks (CHEMPROT, ACL-ARC, SCIERC, HYPER) due to the high
variance. For high-resource tasks (RCT, AGNEWS, HELPFULNESS, IMDB), we report the F1 score from a
single random seed for each task. Here we sweep the learning rates in {1e-4, 3e-4, 6e-4}, the number of epochs in
{10, 20}, and the patience factor in {3, 5}.

Dataset Baseline RoBERTa TAPT Hyper-parameters (LR, Epochs, Patience)
CHEMPROT 82.8 0.9 82.62 0.5 3e-5, 20, 5
RCT 86.89 0.1 87.4 0.2 2e-5, 10, 3
ACL-ARC 69.24 2.6 70.08 2.3 3e-5, 20, 5
SCIERC 80.59 0.9 81.28 1.2 2e-5, 20, 5
HYPER 94.53 2.0 86.171.3 3e-5, 10, 3
AGNEWS 93.9 0.2 94.050.1 2e-5, 10, 3
HELPFUL 69.63 0.6 71.280.8 2e-5, 20, 5
IMDB 94.93 0.1 95.330.1 2e-5, 20, 5
Average F1 84.06 83.52

Table 8: Validation performance of Baseline RoBERTa and TAPT experiments that corresponds to Table 3. Each
score is averaged over 5 random seeds.
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Original Results Original Results Our Results Our Results
Dataset Baseline RoBERTa TAPT Baseline RoBERTa TAPT
CHEMPROT 81.9 1.0 82.6 0.4 81.64 0.8 82.58 0.5

RCT 87.2 0.1 87.7 0.1 86.89 0.1 87.4 0.2

ACL-ARC 63.0 5.8 67.4 1.8 64.12 5.5 66.11 4.6

SCIERC 77.3 1.9 79.3 1.5 78.89 2.7 79.94 0.7

HYPER 86.6 0.9 90.4 5.2 85.03 6.0 91.56 2.5

AGNEWS 93.9 0.2 94.5 0.1 93.72 0.2 94.05 0.1

HELPFULNESS 65.1 3.4 68.5 1.9 69.2 1.4 71.24 0.7

IMDB 95.0 0.2 95.5 0.1 95.15 0.1 95.33 0.1

Average F1 81.3 83.24 81.83 83.53

Table 9: Reproducing Baseline RoBERTa and TAPT Results, average F1 Scores with standard deviation. F1 score
is averaged over 5 random seeds. We use the same hyper-parameters in Gururangan et al., 2020.


