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Abstract

Conventional Knowledge Graph Completion
(KGC) assumes that all test entities appear dur-
ing training. However, in real-world scenarios,
Knowledge Graphs (KG) evolve fast with out-
of-knowledge-graph (OOKG) entities added
frequently, and we need to efficiently repre-
sent these entities. Most existing Knowledge
Graph Embedding (KGE) methods cannot rep-
resent OOKG entities without costly retrain-
ing on the whole KG. To enhance efficiency,
we propose a simple and effective method that
inductively represents OOKG entities by their
optimal estimation under translational assump-
tions. Moreover, given pretrained embeddings
of the in-knowledge-graph (IKG) entities, our
method even needs no additional learning. Ex-
perimental results on two KGC tasks with
OOKG entities show that our method outper-
forms the previous methods by a large margin
with higher efficiency. !

1 Introduction

Knowledge Graphs (KG) play a pivotal role in var-
ious NLP tasks, but generally suffer from incom-
pleteness. To address this problem, Knowledge
Graph Completion (KGC) aims to predict missing
relations in a KG based on Knowledge Graph Em-
beddings (KGE). Transductive KGE methods, such
as TransE (Bordes et al., 2013) and RotatE (Sun
et al., 2019), achieve success in conventional KGC,
which assumes that all test entities appear during
training. However, in real-world scenarios, KGs
evolve fast with out-of-knowledge-graph (OOKG)
entities added frequently. To represent these emerg-
ing OOKG entities, transductive KGE methods
need to retrain on the whole KG frequently, which
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Figure 1: An example of KGC with OOKG entities.
When an OOKG entity “TENET” is added, we can
represent it efficiently via information of its IKG neigh-
bors to predict its missing relations with other entities.

is extremely time-consuming. Faced with this prob-
lem, we are in urgent need of an efficient method
to tackle KGC with OOKG entities.

Figure 1 shows an example of KGC with OOKG
entities. Based on an existing KG, a new movie
“TENET” is added as an OOKG entity with some
auxiliary relations that connect it with some in-
knowledge-graph (IKG) entities. To predict the
missing relations between “TENET” and other en-
tities, we need to obtain its embedding first. Being
aware that “TENET” is directed by “Christopher
Nolan”, is an “action” movie, and is starred by
“John David Washington”, we can combine these
clues to profile “TENET” and estimate its embed-
ding. This embedding can then be used to predict
whether its relation with “English” is “language”.

In recent years, some inductive methods have
been proposed for OOKG entities without retrain-
ing. Hamaguchi et al. (2017); Wang et al. (2019);
Bi et al. (2020); Zhao et al. (2020) adopt Graph
Neural Networks (GNN) to aggregate the IKG
neighbors to represent the OOKG entities. These
methods are effective but require relatively com-
plex calculations, which could be simplified for
higher efficiency. Xie et al. (2016, 2017); Shi and
Weninger (2018) utilize external resources such as
entity descriptions or images to enrich the OOKG
entity embedding, thus avoiding retraining. How-
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ever, high-quality external resources are expensive
to acquire, which may limit the feasibility.

In this paper, we propose an inductive method
that derives formulas from translational assump-
tions to estimate OOKG entity embeddings. Com-
pared to existing methods for KGC with OOKG en-
tities, our method has simpler calculations and does
not need external resources. For a triplet (h,r, ),
translational assumptions of translational distance
KGE models suppose that embedding h can estab-
lish a connection with t via an r-specific opera-
tion. Assuming that h is an OOKG entity and ¢
is an IKG entity, we show that if a translational
assumption can derive a specific formula to com-
pute h via pretrained t and r, then there will be
no other candidate for h that better fits this trans-
lational assumption. Therefore, the computed h
is the optimal estimation of the OOKG entity un-
der this translational assumption. Among existing
typical KGE models, we discover that translational
assumptions of TransE and RotatE can derive these
specific estimation formulas. Therefore, based on
them, we design two instances of our method called
InvTransE and InvRotatE, respectively. Note that
our estimation formulas have no trainable param-
eters, so our method needs no additional learning
when given pretrained IKG embeddings.

Our contributions are summarized as follows:
(1) We propose a simple and effective method to
inductively represent OOKG entities by their opti-
mal estimation under translational assumptions. (2)
Our method needs no external resources. Given pre-
trained IKG embeddings, our method even needs
no additional learning. (3) We evaluate our method
on two KGC tasks with OOKG entities. Experi-
mental results show that our method outperforms
the state-of-the-art methods by a large margin with
higher efficiency, and maintains a robust perfor-
mance even with higher OOKG entity ratios.

2 Methodology

2.1 Notations and problem formulation

Let £ denote the IKG entity set and R denote the
relation set. Kyin is the training set where all en-
tities are IKG. KCyyx is the auxiliary set connecting
OOKG and IKG entities during inference, where
each triplet contains an OOKG and an IKG entity.
We define the K-neighbor set of an entity e as all
its neighbor entities and relations in K: N (e) =
{(r,t)|(e,r,t) € L} U{(h,7)|(h,T,€) € K}

Using notations above, we formulate our prob-
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Figure 2: An illustration of our method, which consists
of an estimator and a reducer.

lem as follows: Given K,,x and IKG embeddings
pretrained on /Ci,in, we need to represent an OOKG
entity e ¢ £ as an embedding. This embedding can
then be used to tackle KGC with OOKG entities.

2.2 Proposed method

As shown in Figure 2, our proposed method is com-
posed of an estimator and a reducer. The estimator
aims to compute a set of candidate embeddings for
an OOKG entity via its IKG neighbor information.
The reducer aims to reduce these candidates to the
final embedding of the OOKG entity.

2.2.1 Estimator

For an OOKG entity e, given its IKG neighbors
N, (€) with pretrained embeddings, the estima-
tor aims to compute a set of candidate embeddings.
Except TransE and RotatE, other typical KGE mod-
els have relatively complex calculations in their
translational assumptions. These complex calcula-
tions prevent their translational assumptions from
deriving specific estimation formulas for OOKG en-
tities.> Therefore, we design two sets of estimation
formulas based on TransE and RotatE, respectively.
To be specific, if e is the head entity, we can obtain
its optimal estimation € by the following formulas:

8

where o denotes the element-wise product, r~' de-
notes the element-wise inversion.

Otherwise, if e is the tail entity, we can obtain
its optimal estimation € by the following formulas:

{

2.2.2 Reducer

After the estimator computes |Ni,,, (e)| candidate
embeddings, the reducer aims to reduce them to the
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Detailed proof is included in Appendix A.



final embedding of the OOKG entity by weighted
average. We design two weighting functions.

Correlation-based weights are query-aware.
Inspired by Wang et al. (2019), we first use the
conditional probability to model the correlation
between two relations:

Zeeg ]]' (Tl’ T2 € NK:train (6))
ZGES Il (Tl S NIClrain (e)) .

When the query relation 7 is specified, we as-
sign more weight to the candidate that is computed
via a more relevant relation to r:

P(ra|r1) =

(P (relrq) + P (rqlrs))”
Zeorr ’

Weorr (6) =

where Z o s the normalization factor, rg is the
neighbor relation via which e is computed, s is a
hyper-parameter set to 4.0.

Degree-based weights focus more on the entity
with higher degree in the training set:

_ log (dg + )

cg

where Zge is the normalization factor, d; is the de-
gree of the neighbor entity via which e is computed,
d is a smoothing factor set to 0.1.

Based on these weighting functions, the final
embedding of the OOKG entity e is computed by

e = Z €- Weorr/deg (Aé)a

eeC

where C denotes the candidate embedding set.

3 Experiments

3.1 Tasks and datasets

We conduct experiments on two KGC tasks with
OOKG entities: link prediction and triplet classifi-
cation. For link prediction, we use two datasets
released by Wang et al. (2019) built based on
FB15k (Bordes et al., 2013): FB15k-Head-10 and
FB15k-Tail-10. For triplet classification, we use
nine datasets released by Hamaguchi et al. (2017)
built based on WN11 (Socher et al., 2013): WNI11-
Head-1000, WN11-Head-3000, WN11-Head-5000,
WN11-Tail-1000, WN11-Tail-3000, WN11-Tail-
5000, WN11-Both-1000, WN11-Both-3000, and
WN11-Both-5000. Each of the datasets mentioned
above is composed of four sets: a training set, an
auxiliary set, a validation set, and a test set. Each
triplet in the training and validation sets contains
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only IKG entities. Each triplet in the auxiliary set
contains an OOKG entity and an IKG entity. Each
triplet in the test set contains at least one OOKG
entity. The dataset statistics are shown in Table 1.

3.2 Experimental settings

We tune pretraining hyper-parameters on the valida-
tion set. We use Adam (Kingma and Ba, 2015) with
an initial learning rate of 103 as the optimizer and
a batch size of 1,024. For link prediction, we use
1,000-dimensional embeddings and the correlation-
based weights. For triplet classification, we use
300-dimensional embeddings and the degree-based
weights. Details are included in Appendix B.

3.3 Baselines

For link prediction, we compare our method
with three strong GNN-based baselines. GNN-
MEAN (Hamaguchi et al., 2017) uses a mean
function to aggregate neighbors. GNN-LSTM
adopts LSTM for aggregation. LAN (Wang et al.,
2019) adopts both rule- and network-based atten-
tion mechanisms for aggregation. For triplet clas-
sification, we compare with two more competi-
tive GNN-based baselines. ConvLayer (Bi et al.,
2020) uses convolutional layers as the transition
function. FCLEntity (Zhao et al., 2020) uses fully-
connected networks as the transition function with
an attention-based aggregation.

3.4 Evaluation metrics

For link prediction, we use Mean Reciprocal Rank
(MRR) and the proportion of ground truth entities
ranked in top-k (Hits@k, k£ € {1,10}). All the met-
rics are filtered versions that exclude false negative
candidates. For triplet classification, we use Accu-
racy. We determine relation-specific thresholds 9,
by maximizing the accuracy on the validation set.

3.5 Main results

Evaluation results of link prediction are shown
in Table 2. From the table, we observe that: (1)
With the optimal estimation under translational as-
sumptions, both instances of our method signifi-
cantly outperform all baselines. (2) Neighbors are
unordered, so order-insensitive methods like ours
or LAN perform better, while GNN-LSTM that
captures ordered information performs worse. For
triplet classification, we show the results in Ta-
ble 3. The table shows that our method achieves
the best performance, consistent with the link pre-



Dataset |’Ctrain ‘ |’Cvalid| |’Caux | |Klesl| ‘ |R| |£‘ ‘5/ |

FB15k-Head-10 108,854 11,339 249,798 2,811 1,170 10,336 2,082
FB15k-Tail-10 99,783 10,190 261,341 2,987 1,126 10,603 1,934
WN11-Head-1000 108,197 4,561 1,938 955 11 37,700 340
WNI11-Head-3000 99,963 4,068 5,311 2,686 11 36,646 985
WNI11-Head-5000 92,309 3,688 8,048 4,252 11 35,560 1,638
WN11-Tail-1000 96,968 3,864 6,674 852 11 36,771 811
WN11-Tail-3000 78,812 2,851 12,824 2,061 11 33,800 1,874
WN11-Tail-5000 68,040 2,258 15,414 2,968 11 31,311 2,589
WNI11-Both-1000 93,683 3,625 7,875 873 11 36,277 1,136
WN11-Both-3000 71,618 2,436 14,453 2,242 11 32,254 2,805
WN11-Both-5000 58,923 1,788 16,660 3,218 11 28,979 3,934

Table 1: Statistics of datasets with OOKG entities. These datasets are built based on FB15k or WN11 and named
in the form of “Base-Pos-Num”. Base denotes the based datasets. Pos denotes the position of OOKG entities in
test triplets. Num distinguishes different numbers of OOKG entities represented by |E’|.

Method FB15k-Head-10 FB15k-Tail-10
MRR H@10 H@1 | MRR H@10 H@1
GNN-LSTM |0.254 429 162 {0.219 373 143
GNN-MEAN |0.310 48.0 2220251 410 17.1
LAN 0.394 56.6 3021|0314 482 22.7
InvIransE |0.462 60.4 38.5|0.357 48.7 29.0
InvRotatE |0.453 604 369 0362 49.1 293

Table 2: Evaluation results (MRR, Hits@k) of link pre-
diction. Bold is the best. Underline is the second best.
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Figure 3: Results with increasing OOKG entity ratios.

diction results. This again validates the effect of
our method.

3.6 Analysis

How does our method perform with increasing
OOKG entity ratios? We compare the triplet clas-
sification results of InvTransE, LAN, and GNN-
MEAN with increasing OOKG entity ratios in Fig-
ure 3. We find that, when the OOKG entity ratio
increases, the performance of our method drops
the slowest. This suggests that our method is more
robust to increasing OOKG entity ratios.

How efficient is our method? We compare LAN
and InvTransE to analyze our efficiency. Consid-
ering the time complexity, LAN needs O(md?)
to represent an entity, where m is the number of
neighbors and d is the embedding dimension. By
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contrast, InvTransE needs only O(d) and O(md)
to represent an IKG and OOKG entity, respec-
tively. Empirically, taking triplet classification as
an example, InvTransE is nearly 15 times faster
than LAN under similar configurations. Moreover,
when given IKG embeddings pretrained by TransE,
InvTransE does not even need training. This sug-
gests that our method is highly efficient.

Do our weighting functions matter? We attempt
to reduce candidates with uniform weights. As
shown in Table 4, the performance without our
weighting functions drops dramatically. This veri-
fies the effectiveness of our weighting functions.
How does the number of neighbors impact the
performance? We randomly select up to k €
{32, 8, 1} IKG neighbors to use. As shown in Ta-
ble 4, as the number of used neighbors decreases,
the performance drops. This suggests that using
more neighbors can lead to better performance.
Moreover, we find that InvTransE can outperform
previous methods using only up to 32 neighbors.

4 Related Work

Transductive KGE methods map entities and re-
lations to embeddings, and then use score func-
tions to measure the triplet salience. TransE (Bor-
des et al., 2013) pioneers translational distance
methods and is widely-used. It derives a series
of methods, such as TransH (Wang et al., 2014),
TransR (Lin et al., 2015), and RotatE (Sun et al.,
2019). Besides, semantic matching methods form
another mainstream (Nickel et al., 2011; Yang et al.,
2015; Trouillon et al., 2016; Nickel et al., 2016;
Balazevic et al., 2019). These transductive KGE
methods achieve success in conventional KGC, but



Method WN11-Head WN11-Tail WN11-Both

1000 3000 5000 | 1000 3000 5000 | 1000 3000 5000
ConvLayer - - - - - - 74.9 - 64.6

FCLEntity - 82.6 - - 72.1 - - 68.6 -
GNN-LSTM | 87.0 835 81.8 | 829 714 63.1 | 785 716 658
GNN-MEAN | 87.3 843 833 | 840 752 692 | 830 733 682
LAN 88.8 852 842 | 84.7 788 743 | 833 769 70.6
InvTransE 89.2 878 870 | 845 801 775 | 8.3 784 74.6
InvRotatE 88.6 869 865 | 847 801 758 | 842 750 70.6

Table 3: Evaluation results (Accuracy) of triplet classification. Bold is the best. Underline is the second best. The
results of all five baselines are taken from their original papers.

Method | MRR H@I0 He@l
InvTransE (Full) | 0.462 60.4 38.5
Uniform Weights ‘ 0.361 52.0 28.1

Up to 32 Neighbors 0.447 59.2 37.2
Up to 8 Neighbors 0.386 52.0 31.3
Only 1 Neighbor 0.246 379 18.1

Table 4: Ablation experiment results for InvTransE on
the FB15k-Head-10 dataset of link prediction.

fail to directly represent OOKG entities efficiently.
To improve efficiency, some inductive methods
adopt GNN to aggregate IKG neighbors to pro-
duce embeddings for OOKG entities (Hamaguchi
et al., 2017; Wang et al., 2019; Bi et al., 2020;
Zhao et al., 2020). These methods are effective
but need relatively complex calculations. Other
inductive methods incorporate external resources
to enrich embeddings and represent OOKG entities
via only external resources (Xie et al., 2016; Shi
and Weninger, 2018; Xie et al., 2017). However,
high-quality external resources are hard and expen-
sive to acquire, which may limit the feasibility.

5 Conclusion

This paper aims to efficiently represent OOKG en-
tities. We propose a simple and effective method
that inductively represents OOKG entities by their
optimal estimation under translational assumptions.
Moreover, given pretrained IKG embeddings, our
method needs no additional learning. Evaluations
on two KGC tasks show that our method outper-
forms the state-of-the-art methods by a large mar-
gin with higher efficiency, and maintains a robust
performance with higher OOKG entity ratios.
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Appendices

A Which Translational Assumptions
Can Derive Specific Estimation
Formulas for OOKG Entities?

For a triplet (h, r, t), translational assumptions of
KGE models suppose that h can establish a con-
nection with t via an r-specific operation, which
can be formulated by the following equation:

Fr(h,t) =0, )

where F.(+) is an r-specific function that is deter-
mined by the specific KGE model. Without loss
of generality, we may assume that h is an OOKG
entity and ¢ is an IKG entity. Under a translational
assumption, we can obtain a specific estimation
formula for h if and only if (1) we regard h as
unknown, and its solution in Equation 1 exists, (2)
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the solution is unique. If the above two conditions
hold, the unique solution of h is the optimal esti-
mation under the translational assumption, since
no other candidate for h can better fit Equation 1.
In the following parts, we analyze translational as-
sumptions of four KGE models (TransE, RotatE,
TransH, TransR) as examples.

A.1 TransE

For TransE, its translational assumption is formu-
lated by
Fet)=|htr—t],,=0. @

In this case, we can obtain a unique solution of h
by the following steps:

Ih+r =t =0, (3)
— h+r—t=0, )
— h=t-r. )

This computed h is the optimal estimation under
the translational assumption.

A.2 RotatE
For RotatE, its translational assumption is formu-
lated by

Febt) = [hor—tf,,=0.  (©

In this case, we can obtain a unique solution of h
by the following steps:

[hor—t],,, =0, (7
— hor—t=0, (8)
— h=tor .. 9)

This computed h is the optimal estimation under
the translational assumption.

A.3 TransH

For TransH, its translational assumption is formu-
lated by

)

(10)
where w;. is the unit normal vector of the plane P
that r lies on. From the translational assumption,
we can derive the following equations:

Fe(h,t) = H(h —w, hw,) +r— (t —w, tw,)

’1/2

H(hqunThWT)Jrrf (t — w, tw,) ,
1/2

0, dbn

(12)
13)

— (h—w, hw,) +r— (t —w, tw,) =0,

— (h—w, hw,) = (t —w, tw,) —r 2 v.



Datasets | d 5y a n L2 Training Steps
FB15k-based | 1,000 240 1.0 256 N/A 100,000
WN11-based 300 0.5 1.0 128 107° 20,000

Table 5: Hyper-parameters for two categories of datasets. We use the same hyper-parameters for two FB15k-based
datasets and the same hyper-parameters for nine WN11-based datasets. On each dataset, we use the same hyper-
parameters for two pretrained models. d denotes the embedding dimension.  denotes the margin. « denotes the
sampling temperature. n denotes the negative sampling size. L2 denotes the parameter of L2 regularization, where

N/A means no regularization.

From a geometric perspective, h — w, hw, is the
projection of h on the plane P. From the trans-
lational assumption, we can only deduce that the
projection of h is equal to v. However, there exist
infinitely many possible h that can satisfy this con-
dition. Therefore, the solution of h is not unique,
and we cannot obtain a specific estimation formula
from the translational assumption of TransH.

A4 TransR
For TransR, its translational assumption is formu-
lated by

Fr(h,t) = ||[M,h+r— MrtHl/2 =0, (14

where M, is an r-specific matrix. From the trans-
lational assumption, we can derive the following
equations:

IMyh+r — Mt ), =0, (15)
— M,h+r—-M,t =0, (16)
— M,h=M,t—r2v. (17)

In this case, we derive a system of linear equations
from the translational assumption. In this system,
there exists a unique solution for h if and only if
the rank of the coefficient matrix M, is equal to the
rank of the augmented matrix [M,; v]. However,
M, is automatically learned by TransR without
this restriction. Therefore, we cannot guarantee
that there exists a unique solution for h, and we
cannot obtain a specific estimation formula from
the translational assumption of TransR.

B Details of Experimental Settings

To pretrain the TransE and RotatE models, we
adopt the self-adversarial negative sampling loss
proposed by Sun et al. (2019) in consideration of
its good performance on training TransE and Ro-
tatE. The self-adversarial negative sampling loss L
is formulated as:

L:floga(va(h,r,t))

=3 p (B ) logo (D (Wr,8) — ),
i=1

&9

where o is the sigmoid function, + is the margin,
n is the negative sampling size and (h}, r, t}) is the
i-th negative sample triplet. D (-) is the distance
function. D (h, r,t) is equal to [[h +r — &/, 5 for
TransE and is equal to ||h o r — [, /, for RotatE. p
is the self-adversarial weight function which gives
more weight to the high-scored negative samples:

p(hg,r, t;) X exp (a-}"(hg,r,t;)) ,  (19)
where « is a hyper-parameter called sampling tem-
perature to be tuned. F(+) is the score function that
is equal to —D(+).

We conduct each experiment on a single
Nvidia Geforce GTX-1080Ti GPU and tune hyper-
parameters on the validation set. Generally, we
set the batch size to 1,024 and use Adam (Kingma
and Ba, 2015) with an initial learning rate of 1073
as the optimizer. We choose the correlation-based
weights for link prediction and choose the degree-
based weights with a smoothing factor of 0.1 for
triplet classification. Other hyper-parameters are
shown in Table 5.



