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Abstract
Code-Mixed language plays a very important
role in communication in multilingual soci-
eties and with the recent increase in internet
users especially in multilingual societies, the
usage of such mixed language has also in-
creased. However, the cross translation be-
tween the Hinglish Code-Mixed and English
and vice-versa has not been explored very ex-
tensively. With the recent success of large pre-
trained language models, we explore the pos-
sibility of using multilingual pretrained trans-
formers like mBART and mT5 for exploring
one such task of code-mixed Hinglish to En-
glish machine translation. Further, we com-
pare our approach with the only baseline over
the PHINC dataset and report a significant
jump from 15.3 to 29.5 in BLEU scores, a
92.8% improvement over the same dataset.

1 Introduction

Code-Mixing is the interleaving of tokens from
different languages but in the same conversation.
Code-Mixing is a common phenomenon in multi-
lingual societies like India, China, Mexico, and in
the last decade itself, there has been a massive surge
of internet users and specifically from multilingual
societies due to the popularity of various social me-
dia and messaging platforms. This has lead to a
massive surge in mixed language data in the form
of comments, conversations, etc. Unfortunately
due to the informal nature of the code-mixed, it is
hard to set a uniformly defined structure. However,
linguists have formulated various hypotheses (Be-
lazi et al., 1994; Pfaff, 1979; Poplack, 1981) and
constraints (Sankoff and Poplack, 1981; Sciullo
et al., 1986; Joshi, 1982) that can define a general
rule for code-mixing.

Recent advances in attention-based mecha-
nisms (Bahdanau et al., 2015) and transform-
ers (Vaswani et al., 2017) have again shown sig-
nificant performance improvement and shifted

the communities’ approach and interest in train-
ing larger neural models with deeper architec-
ture. With the rise in large pretrained language
models like (Devlin et al., 2019; Radford et al.,
2019), there’s been a lot of improvement in nat-
ural language processing problems. Prior work
done in code-mixing like that of (Khanuja et al.,
2020; Gupta et al., 2020) show the effectiveness of
large multilingual pretrained language models like
mBERT (Devlin et al., 2019) and XLM (Conneau
and Lample, 2019) on code-mixed data. While
GLUECoS attempts to set GLUE benchmark using
finetuned mBERT, Gupta et al. (2020) shows the
effectiveness of machine translation from a parallel
corpus of English and Hindi to code-mixed sen-
tence using XLM and Pointer-Generator model. Sri-
vastava and Singh (2020); Dhar et al. (2018) pro-
poses new task of Hinglish code-mixed to English
translation and Srivastava and Singh (2020) col-
lects a new social media code-mixed dataset called
PHINC consisting of Hinglish code-mixed and par-
allel English sentences.

Our work attempts to utilize large seq2seq pre-
trained multilingual transformer based models like
mT5 and mBART for the Hinglish to English ma-
chine translation task. We propose a dual curricu-
lum learning method where first the models are
trained for an English to code-mixed translation
task and then finetuned again for a code-mixed to
English task. There has been very little prior work
involving this task and most of the work dealt with
the English to code-mixed translation task for syn-
thetic data generation. Our translation from code-
mixed to English shows a significant improvement
over the PHINC dataset and even beats the baseline
presented by the PHINC dataset by a margin of
92.8%.

The rest of the paper is as follows - Section 2
talks about the prior work done in code-mixed ma-
chine translation and large multilingual pretrained
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transformers. Section 3 discusses our model and
the dataset used for the Hinglish to English trans-
lation. Section 4 addresses our experiments and
our qualitative results for our approach. Finally,
Section 5 addresses the conclusive remarks for this
paper and presents a direction for future work.

2 Related Work

Code-Mixing refers to the interleaving of words
belonging to different languages. This happens
predominately in multilingual societies and is in-
creasing rapidly with the increase in internet users
on social media and messaging platforms. This
has lead to a rapid increase in research interest
in recent years and several tasks have been con-
ducted as part of Code-Switching workshops (Diab
et al., 2014, 2016). Most of the work in these work-
shops was single NLP problem-specific which were
solved using specifically tailored models like Lan-
guage Identification (Solorio et al., 2014; Molina
et al., 2016), Named Entity Recognition (Rao and
Devi, 2016; Aguilar et al., 2018), Question An-
swering (Chandu et al., 2018), Parts-of-Speech tag-
ging (Jamatia et al., 2018), and Information Re-
trieval (banerjee et al., 2016). This was changed
by Khanuja et al. (2020) which introduced a com-
mon benchmark for all the tasks using a single fine-
tuned mBERT (Devlin et al., 2019) model down-
streamed for all the benchmark tasks.

2.1 Code-Mixed Machine Translation

Machine Translation on code-mixed language is
a relatively less explored area. There are only a
few studies on English-Hinglish code-mixed lan-
guage including the work of Dhar et al. (2018);
Gupta et al. (2020); Srivastava and Singh (2020)
despite a large populous of code-mixed speakers
in South Asian countries. Dhar et al. (2018) col-
lects a dataset of 6,096 Hinglish-English bitexts
and propose a pipeline where they identify the lan-
guages involved in the code-mixed sentence, com-
pute the matrix language and then translate the
resulting sentence into the target language. Srivas-
tava and Singh (2020) collects a large parallel cor-
pus called PHINC, consisting of 13,738 Hinglish-
English bitexts that they claimed was better than
those of Dhar et al. (2018) in terms of diversity,
quality, and generality. They propose a pipeline
where they selectively identify token languages
and then translate Hindi phrases to English using a
monolingual translation system while keeping the

rest of the phrases intact. This is the only work that
addresses a Hinglish to English machine translation
task. Gupta et al. (2020) propose a code-mixed text
generator built upon the encoder-decoder frame-
work, where the linguistic features obtained from
a transformer based language model are encoded
using the encoder. They proposed using features
from a pretrained cross-lingual transformer based
model XLM (Conneau and Lample, 2019) along
with Pointer-Generator (See et al., 2017) model as
its decoder for the code-mixed text generation.

2.2 Multilingual Pretrained Models

Transformer-based neural models have increasingly
become a go-to solution for any NLP problem us-
ing models trained with a self-supervised objective
like BERT (Devlin et al., 2019), BART (Lewis
et al., 2020), and T5 (Raffel et al., 2020). In cross-
lingual or multilingual domains, there has been a
rapid increase in the number of models built upon
BERT, BART, or T5 architecture or they use a sim-
ilar architecture. Works like mBERT, mBART (Liu
et al., 2020), mT5 (Xue et al., 2021), XLM (Con-
neau and Lample, 2019) and XLM-R (Conneau
et al., 2020) are a few examples of such models.
While mBERT and XLM-R are encoder only archi-
tectures that could be used for downstream classi-
fication tasks, XLM is a seq2seq encoder-decoder
task-specific model, built mostly for translation
tasks. Models like mBART and mT5 are seq2seq
encoder-decoder architecture that can solve multi-
ple downstream tasks like summarization, transla-
tion, or any other language generational task with-
out any additional modeling head. These models
are trained on multiple languages at once with a
self-supervised objective like span corruption, per-
mutation, etc. While mBART is pretrained on 25
languages on the same BART objective, mT5 is
pretrained on 101 languages on the T5 model’s
objective. None of these multilingual models are
trained on any code-mixed language or at least are
not aware of their pretraining data consisting of
code-mixed data. Therefore, it becomes an impor-
tant question to verify and validate these model
performances on code-mixed languages.

3 System Overview

In this Section, we propose our mBART and mT5
based machine translation model and the dataset
used for finetuning the same.
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Hinglish Code-Mixed to English Translation

Mujhe lagta hai wo captured humanoid am-
phibian creature play karta hai

→ I think he plays a captured humanoid am-
phibian creature.

main character ek orphan hai jo ek river mein
paya gaya

→ The main character is an orphan who is
found in a river.

kya aapko lagtha hein ki ache movie ko high-
profile actors hi chahiye?

→ Do you think a good movie should have high-
profile actors?

Main suprised hu ye itna low hai → I’m suprised how low it is.

Table 1: Samples from the Hinglish to English translation task. Red tokens refer to the Hindi tokens in the Roman
script.

3.1 Machine Translation model
We use mBART and mT5 models finetuned on
Hinglish code-mixed to English data as described
in Section 3.2. mBART is a multilingual seq2seq
denoising bidirectional auto-encoder pretrained
using the same BART (Lewis et al., 2020) ob-
jective but on large-scale monolingual corpora
of 25 languages. It is based on the same trans-
former (Vaswani et al., 2017) architecture and con-
sists of 12 encoder and decoder layers each with
16 attention heads and model dimensions being
1024 resulting in roughly 680 million parameters.
mT5 is the multilingual variant of the T5 model
pretrained on 101 languages. It has a similar trans-
former architecture with 2 encoder and decoder
layers each, model dimensions being 1024 and 12
attention heads resulting in approximately 770 mil-
lion parameters.

3.2 Dataset
We use the following datasets to finetune and test
our models for Hinglish code-mixed to English
translation task:

• CMU Hinglish is an extended code-mixed
form of the Document Grounded Conversa-
tion (Zhou et al., 2018) dataset. It consists
of roughly 10,000 English and Hinglish code-
mixed sentences.

• PHINC (Srivastava and Singh, 2020) consists
of Hinglish code-mixed to English transla-
tion pairs. It contains roughly 13,000 parallel
pairs.

For both of the datasets, we transliterate the
Hindi Devanagari script into its Roman script form
using CSNLI (Bhat et al., 2017, 2018) and Mi-
crosoft Translator.

4 Experiments & Results

In this section, we describe our experimental setup
and our finetuning results for our models described
in Section 3.

4.1 Experimental Setup

Our proposed approach is written in Py-
torch (Paszke et al., 2019) and all the transformer
based models and their associated weights are from
the HuggingFace’s Transformer (Wolf et al., 2020)
package. We use mbart-cc-25 model weights for
mBART and mt5-base model weight for mT5 in
all our modeling. Both the mBART and mT5 mod-
els were trained using the AdamW optimizer with
weight decay. We used all the default hyperparame-
ters except the number of training epochs, mBART
was trained for 5 epochs while the mT5 took larger
epochs (50) to converge the training.

We train both of our models in a dual curriculum
learning method where we first finetune it on a
English to code-mixed data so that model identifies
what code-mixed language looks like and then we
finetune it again on the Hinglish code-mixed gold
dataset for our final task. We show some of the
example translations of our best performing model
in Table 1. We show the performance of both mT5
and mBART models on the datasets described in
Section 3.2 in Table 2. For the BLEU evaluation,
we use the sacrebleu metric from HuggingFace’s
Dataset package.

Baseline: Our only comparative baseline is de-
fined by Srivastava and Singh (2020) where they
collect a code-mixed dataset from social media
and conversations called PHINC and propose a ma-
chine translation pipeline built on top of Google
Translate with a BLEU score of 15.3.
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Datasets BLEU score

Original Baseline

PHINC 15.3

mBART model (ours)

CMU Hinglish → Reverse CMU Hinglish 24.0

CMU Hinglish → PHINC 25.3

mT5 model (ours)

CMU Hinglish → Reverse CMU Hinglish 28.6

CMU Hinglish → PHINC 29.5

Table 2: BLEU score for code-mixed Hinglish to English Translation

4.2 Results

As shown in Table 2, we first finetune our mBART
and mT5 models on the CMU Hinglish dataset.
These finetuned models have a BLEU score of
11.53 and 11.23 respectively. These are then further
finetuned for our final task of Hinglish to English
translation. We perform and analyse the second
finetune on both the flipped CMU Hinglish dataset
and the PHINC dataset.

All four variations of our dual finetuned mBART
and mT5 models outperform the original base-
line. While the best performing mBART model
improves over the baseline by 65.3%, mT5 model
beats the PHINC baseline by a margin of 92.8%.
This shows the prowess of the large pretrained mul-
tilingual transformers in code-mixed translation
tasks.

5 Conclusion

Our work proposes using large multilingual trans-
formers (mBART and mT5) and demonstrates
how finetuning them in a dual curriculum learn-
ing method improves the performance of code-
mixed Hinglish to English machine translation
tasks. We show a very significant improvement
over the PHINC baseline by a margin of 92.8%
over the BLEU scores.

As part of the future work, we would like to
further improve our machine translation model by
using a large amount of synthetic code-mixed data
to improve our English to code-mixed translation
model, which would further improve our perfor-
mance on the code-mixed to English translation
task. We would also like to extend this work to

other low resource and code-mixed languages.
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