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Abstract 

Although general question answering has 
been well explored in recent years, 
temporal question answering is a task 
which has not received as much focus.  Our 
work aims to leverage a popular approach 
used for general question answering, 
answer extraction, in order to find answers 
to temporal questions within a paragraph.  
To train our model, we propose a new 
dataset, inspired by SQuAD, specifically 
tailored to provide rich temporal 
information. We chose to adapt the corpus 
WikiWars, which contains several 
documents on history’s greatest conflicts.  
Our evaluation shows that a deep learning 
model trained to perform pattern matching, 
often used in general question answering, 
can be adapted to temporal question 
answering, if we accept to ask questions 
whose answers must be directly present 
within a text.   

1 Introduction 

Question answering is an automatic language 
processing task that aims to search for 
information in a text or database to answer a 
question in natural language. It is a task that 
differs from the query of a search engine, because 
it aims to exempt the user from querying the data 
using a formal language query. This type of 
method is particularly useful when the database is 
very large or poorly documented, or when the 
textual data to be queried is difficult to structure.  

General question answering is a subject that has 
already been widely explored, and we have 
therefore decided to focus on a particular part of 
this research domain. The purpose of this paper 

will be to explore question answering as it relates 
to temporal information in English texts.  

This is a task that can vary in difficulty: the 
temporal structure and the amount of temporal data 
can fluctuate quite a lot depending on the text, 
which can therefore be relatively simple to analyze 
or relatively complex, depending also on the 
questions asked.  A set of clear definitions is 
therefore imperative.  

 
1.1 Definitions 
 
First, we need to define and limit what constitutes 
a temporal expression. Temporal information is 
most often expressed through a phrase or 
expression that describes a point in time or 
duration.  

For this work, we define a temporal expression 
(timex) as any expression that denotes a moment or 
interval, or any other temporal reference that is not 
based on an event. Indeed, although an event can 
be located in time, it does not allow it to be 
measured (Derczynski, 2013). Thus, after the rain 
fell is not valid, unlike an expression such as the 
day after the rain fell which is centered around day, 
a measure of time.  From this definition, we can 
establish a typology of temporal expressions.  A 
temporal expression can most often be (see 
Derczynski et al., 2012 for a more thorough and 
complete typology): 
 
Absolute, when a moment is totally explicit and 
unambiguous such as Monday, October 6th, 2019.  
 
Deictic, when the moment of enunciation must be 
used to determine the moment to which the 
expression refers: two weeks ago.  We can 
assume, for example, that the moment of 
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enunciation is the moment when the text was 
written.  
 
Anaphoric, when the moment of enunciation is 
distinct from the moment when the reference is 
made, when a person is telling a story in the past 
tense for example (that evening).  The moment of 
enunciation (the moment when she tells the story) 
is not enough, it is necessary to determine the 
moment of reference within her story. 
 

Given this typology, we can more easily identify 
in a text what we will call temporal expressions and 
what our questions will focus on.  Here is an 
overview of what our system will have to process 
(text extracted from the WikiWars corpus (Mazur, 
Pawel, and Robert Dale (2010))):  

Royal flight to Varennes 

(…)On the night of 20 June 1791 the 
royal family fled the Tuileries wearing 
the clothes of servants, while their 
servants dressed as nobles.  However, 
the next day the King was recognised 
and arrested at Varennes (in the Meuse 
departement). He and his family were 
paraded back to Paris under guard, still 
dressed as servants. From this time, 
Barnave became a counselor and 
supporter of the royal family.  

A temporal question answering system will have 
to be able to answer questions on the temporal 
expressions highlighted in yellow.  We can 
distinguish different types of temporal questions. 
 
Questions which have a literal answer.  The 
answer is found literally in the text and the system 
will need to be able to select the appropriate 
passage, corresponding to the answer sought.  
Questions that would fit into this category would 
be: When did the royal family flee from Paris?  
When was the king arrested? When did Barnave 
become counselor of the royal family? 
 
Questions that require inference.  The answer is 
not directly present in the text and the system will 
need to be able to identify the temporal 
information it will need before reaching a 
conclusion:  How long was the king away from 
Paris? (He left on June 20 and was arrested the 
next day, so he was gone 2 days).  What was the 
date when the king was arrested? (the next day 

corresponds in fact to June 21st since the previous 
day was the 20th) 

In this paper, we limit ourselves to literal 
questions, but these examples already give us a 
glimpse of how complex temporal question 
answering can be.  We will begin by presenting 
the methods generally used in question 
answering, explaining which method we 
preferred and why.  We will then review state 
of the art corpora by presenting the SQuAD 
(Rajpurkar & al., 2016) and especially the 
WikiWars (Mazur & Dale, 2010) corpora, 
explaining how we combined WikiWars with 
the SQuAD approach to create our own 
temporal corpus.  We will then detail our model 
and explain how the data is represented and 
which features were used, before finally 
presenting and discussing the results obtained. 

2 State of the Art and Methods 

Traditional information retrieval involves finding 
a short passage of text within a set of documents. 
A selection of relevant documents is first made, 
then these documents are subdivided into 
sections, paragraphs, or sentences. We focus only 
the second part of this task, which we adapt to the 
case of temporal question answering.   

We decided to mainly use the information 
extraction method (vs the Knowledge-Base 
approach) which means using literal questions as 
we stated above, mainly because annotating the 
data is faster: when building the dataset, we can 
write the questions as they are without worrying 
about translating them into logical form. It is also 
possible to ask a third party to help build the dataset 
since all that is needed is to write a question and 
identify the answer within the text. These 
advantages make it possible to build a larger 
dataset more quickly. However, we are not 
opposed to the Knowledge-Base approach and we 
even think that combining the two approaches 
could be something to explore in the future.  
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2.1 The SQuAD corpus 

SQuAD (Rajpurkar & al, SQuAD: 100,000+ 
Questions for Machine Comprehension of Text, 
2016) is certainly one of the most well-known 
corpora when it comes to question answering. It 
is a corpus developed for question answering by 
extraction (the answer is literally present in the 
text and must be extracted) and it is for this reason 
that we have chosen to analyze it more closely, 
and eventually to draw inspiration from the 
methodology used.  

The corpus is composed of articles from the 
English Wikipedia divided into paragraphs. There 
are 536 articles, chosen among the 10,000 most 
popular articles. The popularity of an article was 
determined using Wikipedia’s Internal PageRanks 
from Project Nayuki, a site that offers a variety of 
practical computer applications 
(https://www.nayuki.io/page/computing-
wikipedias-internal-pageranks). The PageRank of 
a document is the probability that a visitor will 
arrive at that document after performing a uniform 
random web search (uniform random browsing). 
From this selection, individual paragraphs are then 
extracted from each article, with those under 500 
characters being eliminated.  

As stated above, a response is equivalent to a 
passage extracted from a paragraph, which greatly 
simplifies the annotation of the data, and explains 
how the corpus can be so large (23,215 paragraphs 
in all). Indeed, the questions were produced 
through intensive crowdsourcing.  It is important to 
note that any type of question is valid, as long as a 
passage of text can be selected to answer it. 
SQuAD is therefore not a corpus that is particularly 
adapted to questions on temporal expressions, and 
this is one of the limitations of this corpus, as far as 
we are concerned.  

Indeed, when looking at the types of responses 
contained in the corpus in Table 1 and the 
percentages they represent, few dates 
(proportionally) are highlighted as responses.  
Only 9% of the answers are dates, which shows 
that they are not the primary concern of the corpus. 
Moreover, these statistics, given by the authors, 
make it difficult to determine to what extent other 
types of temporal expressions (defined in the 
introduction) are present (durations, deictic 
expressions, anaphors, etc.) 

2.2 The WikiWars corpus 

On the other hand, WikiWars: A New Corpus for 
Research on Temporal Expressions, (2010) is 
better suited to our task in terms of content.  The 
corpus was developed from 22 English Wikipedia 
documents that describe the historical courses of 
wars. The authors of the corpus searched Google 
for these two phrases: “most famous wars in 
history” and “biggest wars”. They found a page 
describing the 10 most famous wars in history and 
a page describing the 20 most important wars of 
the 20th century. They then combined these two 
lists, eliminated duplicates and searched 
Wikipedia for articles about these wars.  Here is 
an example of a paragraph from the WikiWars 
corpus:  
 

On <TIMEX2 val="1791-06-
20TNI">the night of 20 June 
1791</TIMEX2> the royal family fled the 
Tuileries wearing the clothes of servants, 
while their servants dressed as nobles. 
However, <TIMEX2 val="1791-06-
21">the next day</TIMEX2> the King 
was recognised and arrested at Varennes 
(in the Meuse departement) 

 
We have highlighted the temporal expressions 

as well as the TIMEX2 tags that surround them. 
The TIMEX2 annotation scheme (Ferro et al., 
2005) allows us to associate a temporal value with 
the expression in question, which could be 
leveraged in further work involving inference 
questions (expressions such as “the next day” have 
dates associated with them (1791-06-21), which 
would allow for questions such as “What day was 
it when the King was arrested ?” to have a more 
precise answer than simply “the next day”).  
However, given our focus on purely extracting 

Table 1: Classification of answer types for SQuAD  
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responses from the text, the val attribute was not 
used.   

WikiWars holds a greater number of references 
to the distant past and the temporal structures of the 
texts are more elaborate than those found in 
SQuAD.  Furthermore, the number of temporal 
expressions per document is higher than other 
popular temporal corpora (121.41 timex/doc vs. 
7.73 for the ACE corpus (Doddington, 2005)).  
This therefore makes it a better fit for our task. 
However, unlike SQuAD, it is not annotated for 
question answering. We believe that the 
combination of these two types of corpora has not 
yet been sufficiently explored and we therefore 
created a dataset that addresses this shortcoming.  

3 Data and Model 

3.1 Using the SQuAD approach on the 
WikiWars corpus 

We combined the SQuAD approach with the 
WikiWars corpus, in order to test the extraction 
method on a corpus suitable for the study of 
temporal expressions. WikiWars is not annotated 
with question-answer pairs, so we augmented this 
dataset to suit our task, by breaking the text into 
paragraphs, like the SQuAD documents, and 
adding a list of questions and answers under each 
of them, using XML tags. 

In order to enrich our dataset considerably, we 
decided that three questions would be associated 
with each temporal expression.  As well as 
providing a larger training set, this meant that 
copying elements from the text to formulate the 
questions (and therefore simplifying the task of 
finding and extracting the answer for the model) 
was necessarily limited since the questions could 
not resemble each other exactly, as illustrated in the 
following example:  

On September 1, 1939 Germany and Slovakia (...) 
attacked Poland and World War II broke out.  

This extract could have as associated questions: 
When did World War II break out? What day was 
it when WWII started? When was Poland 
attacked?  

Rephrasing makes it more difficult for the model 
to determine which part of the paragraph the 
question is about. In the example above, the first 
question uses information at the end of the sentence 
while the answer is at the beginning; the second 

question uses started instead of broke out and 
synthesizes World War II into WWII; the last 
question is in the passive voice, thus reversing the 
order of the words found in the text. The efficiency 
of the model is therefore tested by using such 
examples, especially since some paragraphs can be 
quite long (the longest ones contain approximately 
300 words).   

Given the amount of question-answer pairs to 
annotate (approximately 6000) and the  
straightforwardness of the annotation task, the 
annotations were performed manually by 2 
bilingual annotators (French and English).  In the 
annotation protocol, the annotators were provided 
with a presentation of the WikiWars corpus and 
with an explanation of our aim in creating this 
corpus.  They were also provided with several 
examples of annotated paragraphs and guidelines 
which insisted on reformulating the text when 
writing the questions and on finding various 
formulations.   

Not all temporal expressions were taken into 
account.  Indeed, it was sometimes difficult to ask 
coherent questions which took these expressions as 
answers.  Given that the priority of our task was to 
have logical and coherent questions that a user 
could ask, we felt that if questions became too 
artificial (to accommodate a particular temporal 
expression as an answer), then they should not 
appear in our dataset.   

For example, the adjective former sometimes 
caused problems.  Although we can see how this 
adjective can provide useful temporal information, 
formulating a question which has this specific 
word as an answer does not sound natural, as can 
be seen in the following example:  

 
(…)Republican former vice president Richard 

Nixon. 
 
What vice president was Nixon?  => (?)Former 
 

We therefore asked our annotators to leave the field 
blank if they felt that a question might be difficult 
to phrase and proof-read their annotations. 

In total, our corpus contains 702 paragraphs 
(paragraphs without temporal expressions were not 
counted) and 6120 question-answer pairs, which 
were annotated in approximately a month and a 
half. By comparison, SQuAD has around 23,000 
paragraphs and 107,000 question-answer pairs. 
Although the amount of data is not as large, it is 
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much more specific and only targets temporal 
information.   

The dataset can be acquired and used for other 
experiments by contacting 
armand.stricker@universite-paris-saclay.fr or 
benoit.crabbe@linguist.univ-paris-diderot.fr.  

 

3.2 Model 

Neural networks are particularly well suited for 
extracting answers from a text and it is this 
approach that we have chosen. Indeed, to try to 
answer the question, the model will try to find 
similarities between the words in the question and 
the words of the paragraph by comparing their 
respective distributional representations. We 
chose to use recurrent neural networks, since they 
are ideal to encode the information contained in a 
sequence.  

We implemented a model inspired by the 
Document Reader component of the DrQA system 
designed by Chen & al. (2017), a system that 
allows a user to search for a document and then 
select a passage within it. Thus, a question is 
composed of l tokens : 

 
                                   𝑄 = {𝑞!, 𝑞", … , 𝑞#}          (1) 

 

and a paragraph is composed of m tokens : 
 

              𝑃 = {𝑝!, 𝑝", … , 𝑝$}                    (2) 
 

Paragraph encoding For each word in the 
paragraph, we first create a vector representation 
which is the concatenation of 4 components, all of 
which are intended to try to draw the model's 
attention to certain words in the paragraph, rather 
than others.  Here are the functions that translate 
these different features: 
 
Word embeddings - We first use 300-dimensional 
GloVE pre-trained embeddings (Pennington & 
al., 2014) to obtain the embedding of a word 𝑝%:  

 
                    𝑓&$'&((%)*(𝑝%) = 𝑬(𝑝%)               (3) 

 
Exact match - This function creates two features: 
the fact that a word 𝑝% is identical in the question 
and in the paragraph, and the fact that the 
lemmatized forms of the token are also identical: 
 
              𝑓&+,-._$,.-0(𝑝%) = 𝕀(𝑝% ∈ 𝑄)            (4) 

 
Token Features - We encoded the various 
characteristics of a token 𝑝% , namely its 
grammatical category (POS, part of speech), 
whether it is part of a named entity (NER, named 
entity recognition), and the TF-IDF (term 
frequency - inverse document frequency):   
 
         𝑓.12&)(𝑝%) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑃𝑂𝑆(𝑝%), … )        (5) 

 
To obtain the POS of a word, we used the 

automatic nltk POS-tagger 
(https://www.nltk.org/book/ch05.html).  To obtain 
named entities, we used spaCy 
(https://spacy.io/usage/linguistic-features#named-
entities), who trained its algorithm on OntoNotes 
(Weischedel & al., 2011).  The algorithm is capable 
of identifying a range of entities, and most 
importantly dates.  As for the TF-IDF, this measure 
allows us to weigh the frequency of the token 𝑝% by 
seeing if it is present in other examples.  The more 
the token is present in the corpus, the lower its 
weighted frequency will be.     

 
Aligned embedding of the question (attention 
mechanism) - Finally we added an attention 
vector: often, in addition to encoding the exact 
match, question answering systems use an 
attention mechanism to represent in a more 
sophisticated way the similarity between a 
passage and a question, for similar but non-
identical words like flight and plane for example.  
The vector is supposed to reflect the proximity 
between the token and the words in the question.  
We use a weighted similarity function where 
𝑝% 	represents the queries and 𝑞3 the keys: 
 
              𝑓,#%*)&((𝑝%) = ∑ 𝑎%,3𝑬3 9𝑞3:             (6) 

 
The attention weight 𝑎%,3 encodes the similarity 

between the token 𝑝%  and each word 𝑞3 	 in the 
question.  This attention weight can be calculated 
as the dot product between the functions 𝛼 of the 
question words’ embeddings and the paragraph’s, 
where 𝛼  can be a simple feed forward neural 
network: 

             𝑎%,3 =
56789:𝑬(=!)?

".9A𝑬:B#?CD

∑ 567	(#$ 9:𝑬(=!)?
".9G𝑬AB#$CH

         (7) 
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We concatenate all these feature vectors to 
obtain a vector representation for each token in the 
paragraph:  

 
                   𝒑"𝒊 = 𝑐𝑜𝑛𝑐𝑎𝑡)𝑓"#$"%%&'((𝑝&), … 0            (8) 

 
Finally, each 𝒑=𝒊 is passed through an RNN so as 

to obtain a final 𝒑𝒊J for each token:  
 

{𝒑𝟏J , 𝒑𝟐J , …	, 𝒑𝒎J } = 𝑅𝑁𝑁({𝒑=!, 𝒑=𝟐, … , 𝒑=𝒎	})     (9) 
 
 
Question encoding The question encoding is 
similar to the paragraph encoding but is simpler 
because not as many features are used to represent 
each token in the question.  Pre-trained 
embeddings such as GloVE (Pennington & al., 
2014) are used to obtain the vector representation 
	𝒒=%  which will be transmitted to the RNN (an 
LSTM (Hochreiter & al., 1997) in our case).  We 
do not create any other features for the tokens in 
the question: 
 
                    𝒒=% = 	𝑓&$'&((%)*(𝑞%)                       (10) 

 
The sequence is encoded and we output the 

hidden representations of the network: 
 
{𝒒𝟏J , 𝒒𝟐J , …	, 𝒒𝒍J} = 𝑅𝑁𝑁({	𝒒=!, 𝒒=𝟐, … , 𝒒=𝒍})     (11) 

 
These vector representations are then combined 

through a weighted sum to produce a single vector 
q which represents the question: 

 
                               𝒒 = 	∑ 𝑏3𝒒𝒋J3                     (12) 

 
The weight 𝑏3 	 is a measure that reflects the 
relevance of each word in the question and can be 
learned from a weight vector w: 

 

                            𝑏3 =
567:𝒘.𝒒𝒋

$?
∑ 567	(𝒘.𝒒𝒋$

$
#$ )

                 (13) 

 
Prediction of a span - Once the two previous 
steps are completed, we obtain an embedding of 
the question q and a vector representation for each 
token of the paragraph {𝒑𝟏J , 𝒑𝟐J , …	, 𝒑𝒎J }.  We then 
train two different classifiers: one to calculate the 
probability 𝑃R.,S.(𝑖)  that a word 𝑝%  marks the 
beginning of the answer and one to calculate 
𝑃&)((𝑖).  We use a bilinear attention layer as a 

similarity function, where 𝑊R.,S.  and 𝑊&)(  are 
matrices of learned weights:             
 

							𝑃R.,S.exp	(𝒑′𝒊𝑊R.,S.𝒒)                   (14) 
 
                   𝑃&)( ∝ exp	(𝒑′𝒊𝑊&)(𝒒)               (15) 
 

One way to determine which passage is the 
answer is to take the word with the highest start 
probability and the one with the highest end 
probability, in order to deduce that the words in 
between are part of the answer.  This is obviously 
not the only way to proceed, and it would also have 
been possible to build a model that goes through 
the text predicting whether or not a word is part of 
the answer. 

We use cross-entropy loss as our loss function, 
where the argmax position of the vectors 
containing the start and end probabilities is 
compared to the indices of the gold labels in the 
example in order to update the model’s parameters.    

3.3 Training 

We split our documents into three csv files: train, 
dev and test. The paragraphs of each document 
were split into three temporary datasets with the 
following proportions: 80%, 10%, 10%. Since 
each paragraph contains several questions, 
distributing the data in this way and not per 
question, avoids that a paragraph be present in 
both the dev and the train dataset, which would 
distort the results.  

4 Results and discussion 

4.1 Metrics  

We used several metrics to evaluate the 
performance of our model.  The model 
systematically predicts a start and end token, so 
we evaluated: the percentage of tokens at the 
beginning of an answer correctly predicted, 
the percentage of correctly predicted tokens at the 
end of a response, the mean of the two previous 
measures, the percentage of whole passages 
correctly predicted (the start token and the end 
token are correct, it is an exact match).  

 The table below shows our results, on the 
development and test sets: 
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We see that our model manages to predict 
correctly about 50% of the passages on the dev set.  
We also notice that the performances are lower on 
the test corpus.  It is difficult to evaluate why, 
except to consider the fact that the corpus may 
present examples that are too different from those 
encountered during training.  We will take a closer 
look at the errors made by our model in the next 
section.   

4.2 Ablation Analysis 

We also conducted an analysis of the features 
used to encode the paragraphs on the development 
set by ablation, as shown in the table below: 

We notice that the f-measure (which boils down 
to the percentage of exact matches in this case) 
does not drop much (3%) when we remove the 
exact match, traditionally a very important feature 
for general question answering.   We also notice 
that the removal of the NER (named entity 
recognition) does not lead to a drastic drop either 
(4.3%) even if the algorithm used 
(https://spacy.io/usage/linguistic-features#named-
entities) allows us to identify temporal expressions 
quite reliably.  This means that even when the 

possible answers are indicated in the paragraph, 
our model does not rely only on this feature to find 
the answer, and that it is not enough to simply 
extract the temporal expressions of a paragraph to 
find the right answer.  The features that account for 
the link between the question and the text are 
therefore of great importance.    

What is interesting to note is the interaction of 
the different features with each other.  Indeed, the 
individual ablations of attention (faligned) and of 
fexact_match generate relatively small decreases (6.3% 
and 3.2%).  But when we remove both features 
simultaneously, the performance of the model 
drops drastically: by 17.4%.  We can conclude that 
these two features play a similar but 
complementary role and that they are quite 
essential in the search for the passage in the 
paragraph, allowing to identify the context within 
which to look for the answer.   

Nevertheless, not all features interact with each 
other.  In another case, the decrease is additive: the 
simultaneous removal of the information on the 
grammatical category (POS), on the named entities 
(NER) and of the TF-IDF generates a score of 
43.5% (“No ftoken” in table 3, where ftoken is a 
concatenation of the features mentioned).  This 
score corresponds approximately to the sum of the 
individual losses caused by each feature 
(respectively - 2.5%, - 4.3% and - 1.1%, which 
would result in a score of 44.7%).  However, 43.5% 
is indeed slightly lower than 44.7%, so there must 
be some interaction.  We also tested the interaction 
between named entity recognition and 
contextualization features fexact_match and faligned, but 
the drop in performance was not significant. 

4.3 Qualitative Analysis of Model Inference 

In the following examples, "(START)" and 
“(END)" indicate the boundaries of the expected 
response, while "****_" and "_****" indicate the 
start and end tokens predicted by our model.  They 
appear only when the prediction is wrong.  The 
examples were taken directly from the output of 
the model. 

Overall, our model predicts almost only 
temporal expressions.  When there is an error, the 
answer is often not the temporal expression  
expected or turns out to be incomplete, as we will 
see through the following series of examples.   

 
Correctly handled cases - The most favorable 
case for predicting a correct answer is when the 

 
Our 

Model 

Dev Test 

Mean Exact 
match 

Mean Exact 
Match 

  61.5 52.6   54.7 41.4 

Table 2: Results on dev and test 
sets 

Features F-measure 
Full 52.6 

 
No NER 48.3 
No POS 50.1 
No TF-IDF 51.5 
No ftoken 43.5 
No faligned 46.3 
No fexact_match 49.4 

 
No faligned et fexact_match 35.11 
No faligned et NER 46.2 
No fexact_match et NER  43.3 

Table 3: Ablation analysis for the features used  
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paragraph is relatively short and the question is 
formulated in such a way that the context of the 
answer is easy to identify and relatively close to 
the answer.  The model also performs better when 
the choice of temporal expressions within the 
paragraph is limited, as in the following example:  
 

when did emperor charles i attempt 
secret negotiations with <unk> ? 
 
in (START)1917(END) , emperor 
charles i of austria secretly attempted 
separate peace negotiations with <unk> 
, with his <unk> ' s brother <unk> in 
belgium as an intermediary , without the 
knowledge of germany . (…) 
 

This example is quite short and 1917 is the only 
temporal expression.  We have highlighted the 
shared passages in the question and the paragraph.  
The words are exact matches here, except for 
“attempt” and “attempted” although they still have 
the same lemma.     
 
Partially correct answers - The fact that our 
model is trying to predict a start and end token 
means that several temporal expressions are 
sometimes combined by our model, as in the 
example below: 
 

when was south africa invaded by 
german troops ? 
some of the first clashes of the war 
involved british , french and german 
colonial forces in africa . on ****_7 
august , french and british troops 
invaded the german <unk> of <unk> . 
on (START)10 august(END) german 
forces in south - west africa attacked 
south Africa; sporadic and fierce 
fighting continued for the remainder of 
the war .  
 

Our model predicted the wrong start token but 
the correct end token.  The predicted start token is 
indeed a date but is not part of the correct temporal 
expression.  It is as if the model had tried to 
combine 7 and august, surely because the context 
around these two terms fits the question well (we 
have highlighted the exact matches around the two 
temporal expressions).  Modeling the proximity 
between temporal expressions within a paragraph 

could therefore be considered during future 
experiments.  Nevertheless, we see the importance 
of the model’s ability to contextualize correctly, 
and this type of error can even lead to completely 
inconsistent answers, where the end token is 
predicted to be before the start token. 
 
Embeddings - We also observed a lack of 
expressiveness in the embeddings used.  When a 
token in the question had a synonym in the 
paragraph, this did not always help guide the 
model.  Indeed, the model seemed sometimes 
disoriented when a synonym for a word near the 
answer was used, resulting in an incorrect 
prediction. 
 
Year, day, and season - Our model seemed to be 
able  to recognize these key words in the questions 
and understood what format the answer was 
expected to have.  This was especially apparent 
when we compared the answers for “when” 
questions (which were note as precise) with “what 
year”, ”what day”, ”which season” questions for 
the same paragraph. 
 
5 Conclusion  
 
In this work, we chose to simplify the temporal 
question answering problem and limit our work to 
literal questions.  We were thus able to apply an 
extractive approach with some success.   

Indeed, this method allowed us to create a rather 
large dataset, annotated by hand, over a rather short 
period of time (only about a month and a half).  
Thanks to this, we were also able to devote time to 
the state-of-the-art implementation of a deep 
machine learning model, the results of which 
demonstrated some of this model’s strengths.   

Nevertheless, it is not clear that the model is 
capable of understanding the underlying structure 
of the text it is dealing with.  When the model has 
to choose between several temporal expressions, 
searching for the tokens closest to the answer does 
not always lead to the right prediction.  

Moreover, our model is certainly not capable of 
making inferences and determining, for example, 
the date to which a deictic temporal expression, 
such as “this day”, refers.  In future work, we 
propose to broaden the definition of a temporal 
question in order to be able to deal with a larger 
variety of questions, especially inferential 
questions.   
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