
Proceedings of the Student Research Workshop associated with RANLP-2021, pages 184–192,
held online, Sep 1–3, 2021.

https://doi.org/10.26615/issn.2603-2821.2021_026

184

Abstract

Although general question answering has
been well explored in recent years,
temporal question answering is a task
which has not received as much focus. Our
work aims to leverage a popular approach
used for general question answering,
answer extraction, in order to find answers
to temporal questions within a paragraph.
To train our model, we propose a new
dataset, inspired by SQuAD, specifically
tailored to provide rich temporal
information. We chose to adapt the corpus
WikiWars, which contains several
documents on history’s greatest conflicts.
Our evaluation shows that a deep learning
model trained to perform pattern matching,
often used in general question answering,
can be adapted to temporal question
answering, if we accept to ask questions
whose answers must be directly present
within a text.

1 Introduction

Question answering is an automatic language
processing task that aims to search for
information in a text or database to answer a
question in natural language. It is a task that
differs from the query of a search engine, because
it aims to exempt the user from querying the data
using a formal language query. This type of
method is particularly useful when the database is
very large or poorly documented, or when the
textual data to be queried is difficult to structure.

General question answering is a subject that has
already been widely explored, and we have
therefore decided to focus on a particular part of
this research domain. The purpose of this paper

will be to explore question answering as it relates
to temporal information in English texts.

This is a task that can vary in difficulty: the
temporal structure and the amount of temporal data
can fluctuate quite a lot depending on the text,
which can therefore be relatively simple to analyze
or relatively complex, depending also on the
questions asked. A set of clear definitions is
therefore imperative.

1.1 Definitions

First, we need to define and limit what constitutes
a temporal expression. Temporal information is
most often expressed through a phrase or
expression that describes a point in time or
duration.

For this work, we define a temporal expression
(timex) as any expression that denotes a moment or
interval, or any other temporal reference that is not
based on an event. Indeed, although an event can
be located in time, it does not allow it to be
measured (Derczynski, 2013). Thus, after the rain
fell is not valid, unlike an expression such as the
day after the rain fell which is centered around day,
a measure of time. From this definition, we can
establish a typology of temporal expressions. A
temporal expression can most often be (see
Derczynski et al., 2012 for a more thorough and
complete typology):

Absolute, when a moment is totally explicit and
unambiguous such as Monday, October 6th, 2019.

Deictic, when the moment of enunciation must be
used to determine the moment to which the
expression refers: two weeks ago. We can
assume, for example, that the moment of

Question Answering in Natural Language:
the Special Case of Temporal Expressions

Armand Stricker
LISN-CNRS, Université Paris-Saclay

armand.stricker@universite-paris-saclay.fr

185

enunciation is the moment when the text was
written.

Anaphoric, when the moment of enunciation is
distinct from the moment when the reference is
made, when a person is telling a story in the past
tense for example (that evening). The moment of
enunciation (the moment when she tells the story)
is not enough, it is necessary to determine the
moment of reference within her story.

Given this typology, we can more easily identify
in a text what we will call temporal expressions and
what our questions will focus on. Here is an
overview of what our system will have to process
(text extracted from the WikiWars corpus (Mazur,
Pawel, and Robert Dale (2010))):

Royal flight to Varennes

(…)On the night of 20 June 1791 the
royal family fled the Tuileries wearing
the clothes of servants, while their
servants dressed as nobles. However,
the next day the King was recognised
and arrested at Varennes (in the Meuse
departement). He and his family were
paraded back to Paris under guard, still
dressed as servants. From this time,
Barnave became a counselor and
supporter of the royal family.

A temporal question answering system will have
to be able to answer questions on the temporal
expressions highlighted in yellow. We can
distinguish different types of temporal questions.

Questions which have a literal answer. The
answer is found literally in the text and the system
will need to be able to select the appropriate
passage, corresponding to the answer sought.
Questions that would fit into this category would
be: When did the royal family flee from Paris?
When was the king arrested? When did Barnave
become counselor of the royal family?

Questions that require inference. The answer is
not directly present in the text and the system will
need to be able to identify the temporal
information it will need before reaching a
conclusion: How long was the king away from
Paris? (He left on June 20 and was arrested the
next day, so he was gone 2 days). What was the
date when the king was arrested? (the next day

corresponds in fact to June 21st since the previous
day was the 20th)

In this paper, we limit ourselves to literal
questions, but these examples already give us a
glimpse of how complex temporal question
answering can be. We will begin by presenting
the methods generally used in question
answering, explaining which method we
preferred and why. We will then review state
of the art corpora by presenting the SQuAD
(Rajpurkar & al., 2016) and especially the
WikiWars (Mazur & Dale, 2010) corpora,
explaining how we combined WikiWars with
the SQuAD approach to create our own
temporal corpus. We will then detail our model
and explain how the data is represented and
which features were used, before finally
presenting and discussing the results obtained.

2 State of the Art and Methods

Traditional information retrieval involves finding
a short passage of text within a set of documents.
A selection of relevant documents is first made,
then these documents are subdivided into
sections, paragraphs, or sentences. We focus only
the second part of this task, which we adapt to the
case of temporal question answering.

We decided to mainly use the information
extraction method (vs the Knowledge-Base
approach) which means using literal questions as
we stated above, mainly because annotating the
data is faster: when building the dataset, we can
write the questions as they are without worrying
about translating them into logical form. It is also
possible to ask a third party to help build the dataset
since all that is needed is to write a question and
identify the answer within the text. These
advantages make it possible to build a larger
dataset more quickly. However, we are not
opposed to the Knowledge-Base approach and we
even think that combining the two approaches
could be something to explore in the future.

186

2.1 The SQuAD corpus

SQuAD (Rajpurkar & al, SQuAD: 100,000+
Questions for Machine Comprehension of Text,
2016) is certainly one of the most well-known
corpora when it comes to question answering. It
is a corpus developed for question answering by
extraction (the answer is literally present in the
text and must be extracted) and it is for this reason
that we have chosen to analyze it more closely,
and eventually to draw inspiration from the
methodology used.

The corpus is composed of articles from the
English Wikipedia divided into paragraphs. There
are 536 articles, chosen among the 10,000 most
popular articles. The popularity of an article was
determined using Wikipedia’s Internal PageRanks
from Project Nayuki, a site that offers a variety of
practical computer applications
(https://www.nayuki.io/page/computing-
wikipedias-internal-pageranks). The PageRank of
a document is the probability that a visitor will
arrive at that document after performing a uniform
random web search (uniform random browsing).
From this selection, individual paragraphs are then
extracted from each article, with those under 500
characters being eliminated.

As stated above, a response is equivalent to a
passage extracted from a paragraph, which greatly
simplifies the annotation of the data, and explains
how the corpus can be so large (23,215 paragraphs
in all). Indeed, the questions were produced
through intensive crowdsourcing. It is important to
note that any type of question is valid, as long as a
passage of text can be selected to answer it.
SQuAD is therefore not a corpus that is particularly
adapted to questions on temporal expressions, and
this is one of the limitations of this corpus, as far as
we are concerned.

Indeed, when looking at the types of responses
contained in the corpus in Table 1 and the
percentages they represent, few dates
(proportionally) are highlighted as responses.
Only 9% of the answers are dates, which shows
that they are not the primary concern of the corpus.
Moreover, these statistics, given by the authors,
make it difficult to determine to what extent other
types of temporal expressions (defined in the
introduction) are present (durations, deictic
expressions, anaphors, etc.)

2.2 The WikiWars corpus

On the other hand, WikiWars: A New Corpus for
Research on Temporal Expressions, (2010) is
better suited to our task in terms of content. The
corpus was developed from 22 English Wikipedia
documents that describe the historical courses of
wars. The authors of the corpus searched Google
for these two phrases: “most famous wars in
history” and “biggest wars”. They found a page
describing the 10 most famous wars in history and
a page describing the 20 most important wars of
the 20th century. They then combined these two
lists, eliminated duplicates and searched
Wikipedia for articles about these wars. Here is
an example of a paragraph from the WikiWars
corpus:

On <TIMEX2 val="1791-06-
20TNI">the night of 20 June
1791</TIMEX2> the royal family fled the
Tuileries wearing the clothes of servants,
while their servants dressed as nobles.
However, <TIMEX2 val="1791-06-
21">the next day</TIMEX2> the King
was recognised and arrested at Varennes
(in the Meuse departement)

We have highlighted the temporal expressions

as well as the TIMEX2 tags that surround them.
The TIMEX2 annotation scheme (Ferro et al.,
2005) allows us to associate a temporal value with
the expression in question, which could be
leveraged in further work involving inference
questions (expressions such as “the next day” have
dates associated with them (1791-06-21), which
would allow for questions such as “What day was
it when the King was arrested ?” to have a more
precise answer than simply “the next day”).
However, given our focus on purely extracting

Table 1: Classification of answer types for SQuAD

187

responses from the text, the val attribute was not
used.

WikiWars holds a greater number of references
to the distant past and the temporal structures of the
texts are more elaborate than those found in
SQuAD. Furthermore, the number of temporal
expressions per document is higher than other
popular temporal corpora (121.41 timex/doc vs.
7.73 for the ACE corpus (Doddington, 2005)).
This therefore makes it a better fit for our task.
However, unlike SQuAD, it is not annotated for
question answering. We believe that the
combination of these two types of corpora has not
yet been sufficiently explored and we therefore
created a dataset that addresses this shortcoming.

3 Data and Model

3.1 Using the SQuAD approach on the
WikiWars corpus

We combined the SQuAD approach with the
WikiWars corpus, in order to test the extraction
method on a corpus suitable for the study of
temporal expressions. WikiWars is not annotated
with question-answer pairs, so we augmented this
dataset to suit our task, by breaking the text into
paragraphs, like the SQuAD documents, and
adding a list of questions and answers under each
of them, using XML tags.

In order to enrich our dataset considerably, we
decided that three questions would be associated
with each temporal expression. As well as
providing a larger training set, this meant that
copying elements from the text to formulate the
questions (and therefore simplifying the task of
finding and extracting the answer for the model)
was necessarily limited since the questions could
not resemble each other exactly, as illustrated in the
following example:

On September 1, 1939 Germany and Slovakia (...)
attacked Poland and World War II broke out.

This extract could have as associated questions:
When did World War II break out? What day was
it when WWII started? When was Poland
attacked?

Rephrasing makes it more difficult for the model
to determine which part of the paragraph the
question is about. In the example above, the first
question uses information at the end of the sentence
while the answer is at the beginning; the second

question uses started instead of broke out and
synthesizes World War II into WWII; the last
question is in the passive voice, thus reversing the
order of the words found in the text. The efficiency
of the model is therefore tested by using such
examples, especially since some paragraphs can be
quite long (the longest ones contain approximately
300 words).

Given the amount of question-answer pairs to
annotate (approximately 6000) and the
straightforwardness of the annotation task, the
annotations were performed manually by 2
bilingual annotators (French and English). In the
annotation protocol, the annotators were provided
with a presentation of the WikiWars corpus and
with an explanation of our aim in creating this
corpus. They were also provided with several
examples of annotated paragraphs and guidelines
which insisted on reformulating the text when
writing the questions and on finding various
formulations.

Not all temporal expressions were taken into
account. Indeed, it was sometimes difficult to ask
coherent questions which took these expressions as
answers. Given that the priority of our task was to
have logical and coherent questions that a user
could ask, we felt that if questions became too
artificial (to accommodate a particular temporal
expression as an answer), then they should not
appear in our dataset.

For example, the adjective former sometimes
caused problems. Although we can see how this
adjective can provide useful temporal information,
formulating a question which has this specific
word as an answer does not sound natural, as can
be seen in the following example:

(…)Republican former vice president Richard

Nixon.

What vice president was Nixon? => (?)Former

We therefore asked our annotators to leave the field
blank if they felt that a question might be difficult
to phrase and proof-read their annotations.

In total, our corpus contains 702 paragraphs
(paragraphs without temporal expressions were not
counted) and 6120 question-answer pairs, which
were annotated in approximately a month and a
half. By comparison, SQuAD has around 23,000
paragraphs and 107,000 question-answer pairs.
Although the amount of data is not as large, it is

188

much more specific and only targets temporal
information.

The dataset can be acquired and used for other
experiments by contacting
armand.stricker@universite-paris-saclay.fr or
benoit.crabbe@linguist.univ-paris-diderot.fr.

3.2 Model

Neural networks are particularly well suited for
extracting answers from a text and it is this
approach that we have chosen. Indeed, to try to
answer the question, the model will try to find
similarities between the words in the question and
the words of the paragraph by comparing their
respective distributional representations. We
chose to use recurrent neural networks, since they
are ideal to encode the information contained in a
sequence.

We implemented a model inspired by the
Document Reader component of the DrQA system
designed by Chen & al. (2017), a system that
allows a user to search for a document and then
select a passage within it. Thus, a question is
composed of l tokens :

 𝑄 = {𝑞!, 𝑞", … , 𝑞#} (1)

and a paragraph is composed of m tokens :

 𝑃 = {𝑝!, 𝑝", … , 𝑝$} (2)

Paragraph encoding For each word in the
paragraph, we first create a vector representation
which is the concatenation of 4 components, all of
which are intended to try to draw the model's
attention to certain words in the paragraph, rather
than others. Here are the functions that translate
these different features:

Word embeddings - We first use 300-dimensional
GloVE pre-trained embeddings (Pennington &
al., 2014) to obtain the embedding of a word 𝑝%:

 𝑓&$'&((%)*(𝑝%) = 𝑬(𝑝%) (3)

Exact match - This function creates two features:
the fact that a word 𝑝% is identical in the question
and in the paragraph, and the fact that the
lemmatized forms of the token are also identical:

 𝑓&+,-._$,.-0(𝑝%) = 𝕀(𝑝% ∈ 𝑄) (4)

Token Features - We encoded the various
characteristics of a token 𝑝% , namely its
grammatical category (POS, part of speech),
whether it is part of a named entity (NER, named
entity recognition), and the TF-IDF (term
frequency - inverse document frequency):

 𝑓.12&)(𝑝%) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑃𝑂𝑆(𝑝%), …) (5)

To obtain the POS of a word, we used the

automatic nltk POS-tagger
(https://www.nltk.org/book/ch05.html). To obtain
named entities, we used spaCy
(https://spacy.io/usage/linguistic-features#named-
entities), who trained its algorithm on OntoNotes
(Weischedel & al., 2011). The algorithm is capable
of identifying a range of entities, and most
importantly dates. As for the TF-IDF, this measure
allows us to weigh the frequency of the token 𝑝% by
seeing if it is present in other examples. The more
the token is present in the corpus, the lower its
weighted frequency will be.

Aligned embedding of the question (attention
mechanism) - Finally we added an attention
vector: often, in addition to encoding the exact
match, question answering systems use an
attention mechanism to represent in a more
sophisticated way the similarity between a
passage and a question, for similar but non-
identical words like flight and plane for example.
The vector is supposed to reflect the proximity
between the token and the words in the question.
We use a weighted similarity function where
𝑝% 	represents the queries and 𝑞3 the keys:

 𝑓,#%*)&((𝑝%) = ∑ 𝑎%,3𝑬3 9𝑞3: (6)

The attention weight 𝑎%,3 encodes the similarity

between the token 𝑝% and each word 𝑞3 	 in the
question. This attention weight can be calculated
as the dot product between the functions 𝛼 of the
question words’ embeddings and the paragraph’s,
where 𝛼 can be a simple feed forward neural
network:

 𝑎%,3 =
56789:𝑬(=!)?

".9A𝑬:B#?CD

∑ 567	(#$ 9:𝑬(=!)?
".9G𝑬AB#$CH

 (7)

189

We concatenate all these feature vectors to
obtain a vector representation for each token in the
paragraph:

 𝒑"𝒊 = 𝑐𝑜𝑛𝑐𝑎𝑡)𝑓"#$"%%&'((𝑝&), … 0 (8)

Finally, each 𝒑=𝒊 is passed through an RNN so as

to obtain a final 𝒑𝒊J for each token:

{𝒑𝟏J , 𝒑𝟐J , …	, 𝒑𝒎J } = 𝑅𝑁𝑁({𝒑=!, 𝒑=𝟐, … , 𝒑=𝒎	}) (9)

Question encoding The question encoding is
similar to the paragraph encoding but is simpler
because not as many features are used to represent
each token in the question. Pre-trained
embeddings such as GloVE (Pennington & al.,
2014) are used to obtain the vector representation
	𝒒=% which will be transmitted to the RNN (an
LSTM (Hochreiter & al., 1997) in our case). We
do not create any other features for the tokens in
the question:

 𝒒=% = 	𝑓&$'&((%)*(𝑞%) (10)

The sequence is encoded and we output the

hidden representations of the network:

{𝒒𝟏J , 𝒒𝟐J , …	, 𝒒𝒍J} = 𝑅𝑁𝑁({	𝒒=!, 𝒒=𝟐, … , 𝒒=𝒍}) (11)

These vector representations are then combined

through a weighted sum to produce a single vector
q which represents the question:

 𝒒 = 	∑ 𝑏3𝒒𝒋J3 (12)

The weight 𝑏3 	 is a measure that reflects the
relevance of each word in the question and can be
learned from a weight vector w:

 𝑏3 =
567:𝒘.𝒒𝒋

$?
∑ 567	(𝒘.𝒒𝒋$

$
#$)

 (13)

Prediction of a span - Once the two previous
steps are completed, we obtain an embedding of
the question q and a vector representation for each
token of the paragraph {𝒑𝟏J , 𝒑𝟐J , …	, 𝒑𝒎J }. We then
train two different classifiers: one to calculate the
probability 𝑃R.,S.(𝑖) that a word 𝑝% marks the
beginning of the answer and one to calculate
𝑃&)((𝑖). We use a bilinear attention layer as a

similarity function, where 𝑊R.,S. and 𝑊&)(are
matrices of learned weights:

							𝑃R.,S.exp	(𝒑′𝒊𝑊R.,S.𝒒) (14)

 𝑃&)(∝ exp	(𝒑′𝒊𝑊&)(𝒒) (15)

One way to determine which passage is the
answer is to take the word with the highest start
probability and the one with the highest end
probability, in order to deduce that the words in
between are part of the answer. This is obviously
not the only way to proceed, and it would also have
been possible to build a model that goes through
the text predicting whether or not a word is part of
the answer.

We use cross-entropy loss as our loss function,
where the argmax position of the vectors
containing the start and end probabilities is
compared to the indices of the gold labels in the
example in order to update the model’s parameters.

3.3 Training

We split our documents into three csv files: train,
dev and test. The paragraphs of each document
were split into three temporary datasets with the
following proportions: 80%, 10%, 10%. Since
each paragraph contains several questions,
distributing the data in this way and not per
question, avoids that a paragraph be present in
both the dev and the train dataset, which would
distort the results.

4 Results and discussion

4.1 Metrics

We used several metrics to evaluate the
performance of our model. The model
systematically predicts a start and end token, so
we evaluated: the percentage of tokens at the
beginning of an answer correctly predicted,
the percentage of correctly predicted tokens at the
end of a response, the mean of the two previous
measures, the percentage of whole passages
correctly predicted (the start token and the end
token are correct, it is an exact match).

 The table below shows our results, on the
development and test sets:

190

We see that our model manages to predict
correctly about 50% of the passages on the dev set.
We also notice that the performances are lower on
the test corpus. It is difficult to evaluate why,
except to consider the fact that the corpus may
present examples that are too different from those
encountered during training. We will take a closer
look at the errors made by our model in the next
section.

4.2 Ablation Analysis

We also conducted an analysis of the features
used to encode the paragraphs on the development
set by ablation, as shown in the table below:

We notice that the f-measure (which boils down
to the percentage of exact matches in this case)
does not drop much (3%) when we remove the
exact match, traditionally a very important feature
for general question answering. We also notice
that the removal of the NER (named entity
recognition) does not lead to a drastic drop either
(4.3%) even if the algorithm used
(https://spacy.io/usage/linguistic-features#named-
entities) allows us to identify temporal expressions
quite reliably. This means that even when the

possible answers are indicated in the paragraph,
our model does not rely only on this feature to find
the answer, and that it is not enough to simply
extract the temporal expressions of a paragraph to
find the right answer. The features that account for
the link between the question and the text are
therefore of great importance.

What is interesting to note is the interaction of
the different features with each other. Indeed, the
individual ablations of attention (faligned) and of
fexact_match generate relatively small decreases (6.3%
and 3.2%). But when we remove both features
simultaneously, the performance of the model
drops drastically: by 17.4%. We can conclude that
these two features play a similar but
complementary role and that they are quite
essential in the search for the passage in the
paragraph, allowing to identify the context within
which to look for the answer.

Nevertheless, not all features interact with each
other. In another case, the decrease is additive: the
simultaneous removal of the information on the
grammatical category (POS), on the named entities
(NER) and of the TF-IDF generates a score of
43.5% (“No ftoken” in table 3, where ftoken is a
concatenation of the features mentioned). This
score corresponds approximately to the sum of the
individual losses caused by each feature
(respectively - 2.5%, - 4.3% and - 1.1%, which
would result in a score of 44.7%). However, 43.5%
is indeed slightly lower than 44.7%, so there must
be some interaction. We also tested the interaction
between named entity recognition and
contextualization features fexact_match and faligned, but
the drop in performance was not significant.

4.3 Qualitative Analysis of Model Inference

In the following examples, "(START)" and
“(END)" indicate the boundaries of the expected
response, while "****_" and "_****" indicate the
start and end tokens predicted by our model. They
appear only when the prediction is wrong. The
examples were taken directly from the output of
the model.

Overall, our model predicts almost only
temporal expressions. When there is an error, the
answer is often not the temporal expression
expected or turns out to be incomplete, as we will
see through the following series of examples.

Correctly handled cases - The most favorable
case for predicting a correct answer is when the

Our

Model

Dev Test

Mean Exact
match

Mean Exact
Match

 61.5 52.6 54.7 41.4

Table 2: Results on dev and test
sets

Features F-measure
Full 52.6

No NER 48.3
No POS 50.1
No TF-IDF 51.5
No ftoken 43.5
No faligned 46.3
No fexact_match 49.4

No faligned et fexact_match 35.11
No faligned et NER 46.2
No fexact_match et NER 43.3

Table 3: Ablation analysis for the features used

191

paragraph is relatively short and the question is
formulated in such a way that the context of the
answer is easy to identify and relatively close to
the answer. The model also performs better when
the choice of temporal expressions within the
paragraph is limited, as in the following example:

when did emperor charles i attempt
secret negotiations with <unk> ?

in (START)1917(END) , emperor
charles i of austria secretly attempted
separate peace negotiations with <unk>
, with his <unk> ' s brother <unk> in
belgium as an intermediary , without the
knowledge of germany . (…)

This example is quite short and 1917 is the only
temporal expression. We have highlighted the
shared passages in the question and the paragraph.
The words are exact matches here, except for
“attempt” and “attempted” although they still have
the same lemma.

Partially correct answers - The fact that our
model is trying to predict a start and end token
means that several temporal expressions are
sometimes combined by our model, as in the
example below:

when was south africa invaded by
german troops ?
some of the first clashes of the war
involved british , french and german
colonial forces in africa . on ****_7
august , french and british troops
invaded the german <unk> of <unk> .
on (START)10 august(END) german
forces in south - west africa attacked
south Africa; sporadic and fierce
fighting continued for the remainder of
the war .

Our model predicted the wrong start token but
the correct end token. The predicted start token is
indeed a date but is not part of the correct temporal
expression. It is as if the model had tried to
combine 7 and august, surely because the context
around these two terms fits the question well (we
have highlighted the exact matches around the two
temporal expressions). Modeling the proximity
between temporal expressions within a paragraph

could therefore be considered during future
experiments. Nevertheless, we see the importance
of the model’s ability to contextualize correctly,
and this type of error can even lead to completely
inconsistent answers, where the end token is
predicted to be before the start token.

Embeddings - We also observed a lack of
expressiveness in the embeddings used. When a
token in the question had a synonym in the
paragraph, this did not always help guide the
model. Indeed, the model seemed sometimes
disoriented when a synonym for a word near the
answer was used, resulting in an incorrect
prediction.

Year, day, and season - Our model seemed to be
able to recognize these key words in the questions
and understood what format the answer was
expected to have. This was especially apparent
when we compared the answers for “when”
questions (which were note as precise) with “what
year”, ”what day”, ”which season” questions for
the same paragraph.

5 Conclusion

In this work, we chose to simplify the temporal
question answering problem and limit our work to
literal questions. We were thus able to apply an
extractive approach with some success.

Indeed, this method allowed us to create a rather
large dataset, annotated by hand, over a rather short
period of time (only about a month and a half).
Thanks to this, we were also able to devote time to
the state-of-the-art implementation of a deep
machine learning model, the results of which
demonstrated some of this model’s strengths.

Nevertheless, it is not clear that the model is
capable of understanding the underlying structure
of the text it is dealing with. When the model has
to choose between several temporal expressions,
searching for the tokens closest to the answer does
not always lead to the right prediction.

Moreover, our model is certainly not capable of
making inferences and determining, for example,
the date to which a deictic temporal expression,
such as “this day”, refers. In future work, we
propose to broaden the definition of a temporal
question in order to be able to deal with a larger
variety of questions, especially inferential
questions.

192

References
Allen, James F. (1983) “Maintaining Knowledge about

Temporal Intervals.” Communications of the ACM
26, no. 11 (November 1, 1983): 832–43.

Chen, Danqi, Adam Fisch, Jason Weston, and Antoine
Bordes. (2017) “Reading Wikipedia to Answer
Open-Domain Questions.” ArXiv:1704.00051 [Cs],
April 27, 2017.

Derczynski, L., H. Llorens, and E. Saquete (2012),
“Massively increasing TIMEX3 resources: a
transduction approach.” In Proceedings of the
Language Resources and Evaluation Conference.

Derczynski, Leon R A. (2013) “Determining the Types
of Temporal Relations in Discourse,” n.d., 218.

Doddington, George. (2004) « The Automatic Content
Extraction (ACE) Program », s. d., 4.

Lisa Ferro, L. Gerber, I. Mani, B. Sundheim, and G.
Wil- son. 2005. TIDES 2005 Standard for the
Annotation of Temporal Expressions. Technical
report, MITRE, September.

Hochreiter, Sepp & Schmidhuber, Jürgen. (1997).
Long Short-term Memory. Neural computation. 9.
1735-80. 10.1162/neco.1997.9.8.1735.

Jurafsky, Daniel and James H. Martin (2019), Speech
and Language Processing, An Introduction to
Natural Language Processing, Computational
Linguistics, and Speech Recognition, Third Edition
Draft

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Pawel Mazur and Robert Dale. 2007. The DANTE
Temporal Expression Tagger. In Zygmunt Vetulani,
editor, Proceedings of the 3rd Language And
Technology Conference (LTC), Poznan, Poland,
October.

Mazur, Pawel, et Robert Dale. (2010) « WikiWars: A
New Corpus for Research on Temporal
Expressions ». In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, 913–922. Cambridge, MA:
Association for Computational Linguistics, 2010

Meng, Yuanliang, Anna Rumshisky, and Alexey
Romanov. (2017) “Temporal Information
Extraction for Question Answering Using Syntactic
Dependencies in an LSTM-Based Architecture.” In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 887–
896. Copenhagen, Denmark: Association for
Computational Linguistics, 2017.

Neji, Zeineb, Marieme Ellouze, and Lamia Hadrich
Belguith. (2016) “Question Answering Based on

Temporal Inference.” Research in Computing
Science 117, no. 1 (December 31, 2016): 133–41.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: Global vectors for word representation. In
EMNLP 2014, pp. 1532–1543.

Pustejovsky P, Castaño, J, Ingria R, Saurí R,
Gaizauskas R, Setzer A, and Katz G TimeML:
Robust Specification of Event and Temporal
Expressions in Text. In: Proceedings of the IWCS-5
Fifth International Workshop on Computational
Semantics, 2003.

Pustejovsky, James & Hanks, Patrick & Saurí, Roser
& See, Andrew & Gaizauskas, Rob & Setzer,
Andrea & Radev, Dragomir & Sundheim, Beth &
Day, David & Ferro, Lisa & Lazo, Marcia. (2003).
The TimeBank corpus. Proceedings of Corpus
Linguistics.

Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. (2016) “SQuAD: 100,000+
Questions for Machine Comprehension of Text.”
ArXiv:1606.05250 [Cs], October 10, 2016.

Saquete, Estela, Jose Luis Vicedo, Patricio Martínez-
Barco, Rafael Muñoz, and Hector Llorens. (2009)
“Enhancing QA Systems with Complex Temporal
Question Processing Capabilities.” Journal of
Artificial Intelligence Research 35 (August 28,
2009): 775–811.

Verhagen, Marc & Gaizauskas, Rob & Schilder, Frank
& Hepple, M. & Moszkowicz, Jessica &
Pustejovsky, James. (2009). The tempEval
challenge: Identifying temporal relations in text.
Language Resources and Evaluation. 43. 161-179.

Weischedel, Ralph & Hovy, Eduard & Marcus,
Mitchell & Palmer, Martha & Belvin, Robert &
Pradhan, Sameer & Ramshaw, Lance & Xue,
Nianwen. (2011). OntoNotes: A Large Training
Corpus for Enhanced Processing.

