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Abstract

The wide reach of social media platforms,
such as Twitter, have enabled many users to
share their thoughts, opinions and emotions
on various topics online. The ability to de-
tect these emotions automatically would allow
social scientists, as well as, businesses to bet-
ter understand responses from nations and cos-
tumers. In this study we introduce a dataset of
30,000 Persian Tweets labeled with Ekman’s
six basic emotions (Anger, Fear, Happiness,
Sadness, Hatred, and Wonder). This is the first
publicly available emotion dataset in the Per-
sian language. In this paper, we explain the
data collection and labeling scheme used for
the creation of this dataset. We also analyze
the created dataset, showing the different fea-
tures and characteristics of the data. Among
other things, we investigate co-occurrence of
different emotions in the dataset, and the re-
lationship between sentiment and emotion of
textual instances. The dataset is publicly avail-
able at https://github.com/nazaninsb
r/Persian-Emotion-Detection.

1 Introduction

As humans communicate emotions through text
(Alm et al., 2005), the creation of text-based emo-
tion detection models are a necessity for the analy-
sis and understanding of the content posted online,
more-natural speech generation, and better human-
computer interaction tasks which are categorized
as affective computing !. The lack of any other
signals for emotions within text (i.e., facial expres-
sions or body language) and the subjective nature
of emotions, makes this task a challenging one.

Despite the availability of a number of studies on
the topic of emotion recognition in NLP, they have
been predominantly conducted in the English lan-
guage. The unavailability of annotated data in the

l“computing that relates to, arises from, or deliberately
influences emotion” (Picard, 1999)
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Persian language hinders the study of emotions in
this language. As a result, in this study, we intro-
duce a dataset of 30K Persian Tweets labeled with
Ekman’s six basic emotions (Ekman, 1999). To
the best of our knowledge this is the first publicly
available emotion-labeled dataset in the Persian lan-
guage, which we believe will allow Persian NLP to
progress and start the study of emotions.

The rest of this paper is structured as follows: in
Section 2 we provide a brief review of studies on
emotions and the automatic detection of emotions.
We additionally point to other datasets available
on the topic in other languages. Next, we discuss
our data collection and labeling methods in Section
3. The statistics and properties of our datasets are
presented in Section 4. Finally, we conclude the
study in Section 5.

2 Related Work

Even though a significant body of work is available
on the topic of emotions, a commonly agreed-upon
definition is still lacking (Mulligan and Scherer,
2012). The American Psychology Association
(APA) defines emotion as “a complex reaction pat-
tern, involving experiential, behavioral, and physi-
ological elements, by which an individual attempts
to deal with a personally significant matter or event”
(apa, (accessed December 1, 2020). The three key
components of emotions, stated in the aforemen-
tioned definition, are subjective experience, physi-
ological response, and behavioral response (Hock-
enbury and Hockenbury, 2010). Subjective expe-
rience has been explored in studies looking at the
effects of culture, age, and gender on the emo-
tions people feel (Barrett et al., 2007; Shaver et al.,
1992; Fischer et al., 2004; Ekman et al., 1987; Kun-
zmann and Griihn, 2005). The physiological re-
sponse to emotions could range from sweaty palms
to a churning stomach. For instance, (Ferndandez
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et al., 2012) shows that heart rate is significantly
increased when people watch movies conveying
fear or anger, (Waldstein et al., 2000) also explores
frontal EEG activation in response to anger and
happiness, and (LeDoux, 1995) reviews studies
on the neurological aspects of emotion, focusing
mostly on fear. In part one of (Philippot et al.,
2004), the physiological processes during emotion
regulation are discussed. Additionally, (Dalgleish,
2004) offers a comprehensive historical overview
of studies on the neural bases of emotions. Lastly,
behavioral responses could include smiling, sigh-
ing, and crying. These responses are found to of-
ten depend on societal norms and individual dif-
ferences (Krys et al., 2016; Gross and Levenson,
1997; Van Hemert et al., 2011).

There is some debate on what basic emotions are
and what we really mean by “basic”. (Ortony and
Turner, 1990) discusses this issue at length. The pa-
per refutes the claim that there exist basic emotions
out of which all other emotions are built. (Ekman
and Cordaro, 2011) disagrees and offers a concrete
list of characteristics that basic emotions have. Nev-
ertheless, multiple classifications of emotions have
been introduced in the literature. One categoriza-
tion, offered by Paul Ekman, suggests basic emo-
tions to be: anger, disgust, fear, happiness, sadness
and surprise (Ekman, 1999, 1992). Later on, how-
ever, Ekman does name other emotions that could
potentially be proven to be basic (Ekman and Cor-
daro, 2011). Another well-known classification,
offered by Plutchik, introduces 8 basic emotions
composed of anger, fear, disgust, sadness, surprise,
anticipation, trust, and joy (Plutchik, 1980).

With the growth of social media platforms, the
automatic detection of emotions through text has
come into focus in recent years. Several surveys of
studies on emotion detection from text have been
conducted, one in 2014 (Canales and Martinez-
Barco, 2014), and two others in 2018 (Seyeditabari
et al., 2018; Sailunaz et al., 2018). As a result, in
our review, we will mainly focus on newer studies.
In 2019, a shared task on the detection of emotions
in textual dialogue was organized (emo, (accessed
December 1, 2020; Chatterjee et al., 2019), which
resulted in a wave of studies on the topic. The
best model on the task achieves an Fl-score of
0.79, however the best two models on the task did
not submit system description papers (Chatterjee
et al., 2019). The third ranking model on the task
(Agrawal and Suri, 2019), uses lexical features such
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as emotional intensity, valence-arousal-dominance
scores (Warriner et al., 2013), and sentiment clas-
sifiers’ scores to train a Light-GBM tree (Ke et al.,
2017) model which achieves a micro-averaged F1
score of 0.77. (Basile et al., 2019) which was
ranked fourth, uses a neural ensemble system made
up of 4 neural models. The most used embedding-
model among the top systems, was reported to be
GloVe (Pennington et al., 2014). It is important to
keep in mind that achieving the same level of accu-
racy on our dataset will be harder for two reasons:
(1) our dataset does not include context for each
Tweet which was available in the aforementioned
task, and (2) Persian language is a low-resource
language, thus some of the features that the partici-
pants used are not in our disposal.

Another shared-task in WASSA-2021 Workshop
(Tafreshi et al., 2021) required participants to pre-
dict emotional tags (Ekman’s six basic emotions)
and empathy of news stories. The highest accuracy
on the task was reported to be 0.62 with a corre-
sponding F1 of 0.55 (Mundra et al., 2021). This
result was obtained through data augmentation and
fine-tuning of the ELECTRA (Clark et al., 2020)
model. (Butala et al., 2021), another participant
of the task, compares different conditional genera-
tion models (TS5 (Raffel et al., 2019) and pegasus
(Jingqing et al., 2019)) and pre-trained contextual
embeddings (BERT (Devlin et al., 2019) and Al-
BERT (Lan et al., 2019)) and reports AIBERT to
outperform BERT (Macro-F1 of 0.47 vs. 0.37).
However, T5 is reported to have the best perfor-
mance with a Macro-F1 of 0.57.

There are a number of studies unrelated to the
shared-tasks as well. (Hasan et al., 2019) explores
using a soft-classification model that assigns proba-
bilities to each emotion. (Shoeb and de Melo, 2020)
creates a dataset and introduces a method to find
the correspondence between emojis and particular
emotions. (Ishiwatari et al., 2020) tries to detect
emotions in conversation. The authors incorporate
speaker dependency into the model using graph
attention networks (Velickovic et al., 2017) as well
as introducing a novel relational position encod-
ing which is shown to improve the accuracy of the
model. (Polignano et al., 2019) introduces a model
made up of CNN, BiLSTM, and self-attention com-
ponents, and compare different word-embeddings,
finding that FastText vector spaces (Bojanowski
et al., 2016) better capture the information they
want. (Gollapalli et al., 2020) introduces an unsu-



pervised emotion detection method which is built
upon word co-occurrences and word associations.
Some emotion datasets include: (Sosea and
Caragea, 2020) from an English online health com-
munity with a focus on cancer, (Demszky et al.,
2020) from English Reddit comments, (Liu et al.,
2019) from long-form narratives in English, (Ku-
mar et al., 2019) from Hindi stories, and (Almah-
dawi and Teahan, 2019) an Arabic dataset from
Facebook posts written in the Iraqi dialect. While
(Khosravi et al., 2019) uses machine learning mod-
els to detect emotions of Persian news texts, the
dataset has not been published. Additionally, to
the best of our knowledge, the dataset presented as
part of this study is the first emotion dataset on the
Persian social media texts. As social media content
and formally-written news articles are structured
differently, we believe that this dataset is of great
value for the study of user-created content in social
networks.

3 Data Collection and Labeling

In this section, we begin by going over the data
collection method (3.1), continuing on to explain-
ing the labeling and validation process (3.2). The
statistics of our dataset are explained in Section 4.
The data is publicly available on GitHub?.

3.1 Collection

The data presented as part of this study was col-
lected using Twitter’s official developer API (twi,
(accessed December 2, 2020). To make sure our
data is not biased by any topic or the discussions
of a particular time we take two measures:

(1) we collect tweets using different keywords
including articles and prepositions which are
not specific to any particular topic and thus
make sure no bias is introduced.

(2) the data is sampled from Tweets posted since
the mid-2019 up until mid-2020, making sure
to include at least some Tweets from each
time period. As a result no time-specific issue

dominates our dataset.

After the data has been collected we randomly
sample 30,000 instances of the Tweets with a mini-
mum character length of 20 (the minimum length is
placed to ensure the Tweet is long enough to poten-
tially reflect emotions). To preserve the anonymity

https://github.com/nazaninsbr/Persia
n-Emotion-Detection
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of the Tweets, we replace any user mentions with
@USERNAME and any link with www.LINK.com
before the data has been inputted for labeling. In
this manner we make sure to indicate there was
a link or mention but that it was removed for
anonymity purposes.

3.2 Labeling

We use iToll (ito, (accessed January 2, 2021), a Per-
sian crowd-sourcing website to label the texts in
our dataset. The labeling is done through Yes/No
questions, where the user is shown the text and
asked if emotion X is present in the text. This ques-
tion is then repeated for all 6 basic emotions. Each
question is shown to 5 different individuals and the
final result is calculated through max voting?.

To make certain the labels are valid, after the
first round of labeling has been completed, any
user whom more than 50% of their votes contra-
dict the majority vote are considered to be unreli-
able user and his/her votes are removed from the
dataset. These votes are then replaced with new
votes by asking the questions from other individ-
uals. A similar method of labeling was used by
(Sosea and Caragea, 2020) and was shown to ob-
tain satisfactory results. However, it is important to
keep in mind that the perception of emotions can
be quite subjective. Additionally since no context
is available for each text, each user might read and
perceive a text with a different attitude/tone. These
differences could all lead to difficulties when it
comes to labeling emotions.

4 Dataset Statistics

4.1 Instances of Each Emotion

As previously mentioned, our dataset is made up
of 30,000 Tweets, labeled with six different emo-
tion labels. Figure 1 shows the number of tweets
in our dataset that are simultaneously labeled with
N different emotions. We can see that 80% of the
data does not have any emotion label at all, and less
than 5% have 3 or more emotion labels. The large
proportion of Tweets that do not have any emo-
tion, make the task of automatic emotion detection,

3In the published dataset the vote counts have been pro-
vided. These numbers are in the range of [0, 5]. As a result, to
ascertain whether or not an emotion is present (a binary classi-
fication), the user must check if the number is more than 2 (in
other words if more than 2 people out of 5 have voted YES
for that emotion). Should you want more certain labels (with
less room for annotation errors), you could select a higher
threshold for each emotion.
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difficult. Figure 2 displays the number of Tweets
with each emotion. We can see sadness is the most
observed emotion, followed by anger and hatred.
Fear is the least observed emotion, with only 690
instances among our data (closely followed by Hap-
piness with only 692 positive instances).

2
Number of emotions the Tweet has

Figure 1: Number of Tweets in our dataset with
zero to at most five labeled emotions
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Figure 2: Number of Tweets with each emotion

4.2 Co-occurrence of Emotions

Co-occurrence of emotions is another issue we in-

vestigate in Figure 3. The value in each cell rep-
€2

€2
the emotions on the row or column). We can see

that positive and negative emotions are very un-
likely to be labeled in the same text, further proving
the validity of our labeling scheme.

. er N
resents the proportion (where e; represent
e

4.3 Agreement on the Existence of Emotions

Next we explored whether there is more agreement
on the availability of some emotions compared to
others. To answer this question, we begin by defin-
ing the following metric for each emotion:

55 — nio)|

M
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(1)

In Equation 1, M represents the number of texts
in our dataset (M = 30, 000) and anfe)s is the num-
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Figure 3: Emotion Co-occurrences, normalized by
the total number of instances in the dataset

ber of positive votes for Tweet ¢. The closer the
metric is to 1, there is more agreement on existence
of the emotion. The results are presented in Table
1. We observe that the most agreement is on happi-
ness and the least agreement is on the presence of
sadness.

H Emotion  Value of Equation 1 H

Anger 0.67
Sadness 0.65
Hatred 0.69
Happiness 0.75
Wonder 0.71
Fear 0.73

Table 1: Average agreement for different emotions
on the sentences available in our dataset

4.4 Tweet Length

Next, we look into the average character length of
instances of each emotion. The results are shown
in Table 2. As Twitter allows 280 characters for
each Tweet (twi), the average lengths are small.
However this is not a phenomena limited to our
dataset as (twi) also reports that only 1% of Tweets
reach the limit.

4.5 Emojis, and Hashtags

Looking at the emojis used in the dataset, we see
that 90% of sentences in the dataset do not have
any emojis. Hashtags are also only observed in
19.3% of the data.



H Emotion  Avg. Char. Len. # Instances H

Anger 133.3 1,632

Sadness 129.6 1,770

Hatred 132.6 1,256
Happiness 110.1 692
Wonder 124.1 986
Fear 140.5 690

Table 2: Average character length of sentences in
our dataset

4.6 Sentiment vs. Emotion

To understand how the sentiment of each sentence
relates to its emotion, we use Quecst (Jung et al.,
2020), an online tool which labels texts with their
sentiment score. We were able to detect the senti-
ment of 21,485 texts (71%) in our dataset. Figure 4
depicts these sentiment values. 0 means a negative
sentiment and / refers to a positive one. We can see
there are high number of tweets for both negative
and positive extremes. Additionally, the majority of
the data (45%) is shown to have a positive (> 0.5)
sentiment. While neutral sentiment (= 0.5) makes
up 17% and negative sentiment (< 0.5) makes up
37% of the data.
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Figure 4: Histogram of sentiment scores of the
tweets in our dataset

We further explore the distribution of sentiment
scores for each emotion as shown in Figure 5.
While some plausible relationships can be seen (for
instance the availability of more positive tweets
with the “happiness” label), no clear relationship
can be observed between most other emotions
(such as “anger”) and the sentiment values.

5 Conclusion

In this study we presented a dataset of Emotion-
labeled Persian Tweets and discussed the properties
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Figure 5: Distribution of sentiment scores for each
emotion

of the dataset. We believe this dataset is a valuable
resource for future studies in Persian NLP. Future
work could investigate models for the task of emo-
tion detection and investigate emotions surrounding
various topics on social media platforms.
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