
Proceedings of the Student Research Workshop associated with RANLP-2021, pages 99–108,
held online, Sep 1–3, 2021.

https://doi.org/10.26615/issn.2603-2821.2021_015

99

Abstract

Multiple-choice questions (MCQs) are
widely used in knowledge assessment in
educational institutions, during work
interviews, in entertainment quizzes and
games. Although the research on the
automatic or semi-automatic generation of
multiple-choice test items has been
conducted since the beginning of this
millennium, most approaches focus on
generating questions from a single
sentence. In this research, a state-of-the-art
method of creating questions based on
multiple sentences is introduced. It was
inspired by semantic similarity matches
used in the translation memory component
of translation management systems. The
performance of two deep learning
algorithms, doc2vec and SBERT, is
compared for the paragraph similarity task.
The experiments are performed on the ad-
hoc corpus within the EU domain. For the
automatic evaluation, a smaller corpus of
manually selected matching paragraphs has
been compiled. The results prove the good
performance of Sentence Embeddings for
the given task.

1 Introduction

The Multiple-choice test items (MCQs) are
frequently used for knowledge assessment, e.g.,
ongoing assessment or during an examination.
They are also used for career-significant
assessment in medical training and certification,
e.g., the Medical College Admission Test (MCAT)
or the United States Medical Licensing
Examination (USMLE) as well as in law schools
and as a part of the Multistate Bar Examination
(MBE). Some employers also use MCQs to
evaluate the knowledge of candidates applying for
a job since it is an easy and fast way to do so. Tests

of this kind are also extremely popular in game
shows like Who Wants to Be a Millionaire? and
alike, in myriads of mobile apps or Facebook
quizzes. Moreover, the Covid-19 pandemic has
already affected significantly the way assessment
is conducted in education institutions switching to
extensive use of technology. MCQs are
recommended to be used for online education, and
many virtual learning environments offer in-built
tools for the composition of such tests (Burnett and
Fuentes, 2020).

For our research, we decided to experiment with
the EU law domain. MCQs are used to assess
knowledge of job seekers applying for positions in
in the European Union institutions. Furthermore,
MCQs are frequently used during exams in law
schools and universities. Therefore, the primary
reason for selecting this domain is our motivation
to assist education professionals and offer a helpful
tool for knowledge assessment. We conduct the
experiments on EU textbooks used in classrooms.

Despite the popularity and extensive use of
multiple-choice tests, their manual creation is a
laborious and time-consuming task (Mitkov and
Ha, 2003; Mitkov et al., 2006). Ambiguously
worded questions, too easy or too difficult
distractors can lead to the poor performance of test-
takers and misleading results.

There have been several attempts to
automatically generate multiple-choice questions
starting from various NLP techniques, including
the use of WordNet, shallow parsing, corpora,
ontologies (Mitkov and Ha, 2003; Papasalouros et
al., 2008). For the last couple of years, researchers
have been experimenting with machine learning
(Guo et al., 2016). In recent papers on this topic,
deep neural networks are successfully applied for
this task (Kumar et al., 2018; Martinez-Gil et al.,
2019).

Paragraph Similarity Matches for Generating Multiple-choice Test Items

Halyna Maslak and Ruslan Mitkov
University of Wolverhampton

Wolverhampton, UK
halyna.maslak@gmail.com

r.mitkov@wlv.ac.uk

100

Furthermore, various strategies have been used
for choosing distractors or testing on various types
of instructive material (such as linguistics (Mitkov
and Ha, 2003) or medical texts (Karamanis et al.,
2006), sports domain (Majumder and Saha, 2015),
as well as Wikipedia articles (Singh et al., 2013).
Most research papers are based on the sentence-
based approach, where questions are generated
from one sentence that contains a key term (Wang
et al., 2018). In recent research, the questions are
based on the whole paragraph with the use of deep
neural models (Zhao et al., 2018).

We aim to evaluate the performance of two
existing deep neural models, doc2vec and SBERT,
for the generation of multiple-choice test items
based on multiple sentences.

Our contributions are as follows:

• Compiling a corpus of MCQs based on
multiple sentences within the EU law
domain. As to our knowledge, no such
corpus exists or is publicly available.

• Providing a state-of-the-art method for
finding semantically similar paragraphs with
the use of paragraph embeddings.

The MCQ corpus is needed for the experiments.
It should contain the question-answer (QA) pair
and the paragraph on which the question is based.
In addition, we aim to create the corpus that can
be used for knowledge assessment of EU law.
Therefore, the QAs should follow the criteria of
MCQs used in classroom, i.e. they should not
focus on too narrow topics or specific cases. In
addition, we want to expand this research in the
future by generating distractors automatically.
That is why the answer should be concise. The
requirements of MCQ corpus design are listed in
Section 3.1. More detailed description of the
corpus and experiments can be found in the
master’s dissertation (Maslak, 2021).

2 Related Work

Early research was focused on the use of
traditional natural language processing methods
for generating questions and distractors
automatically. For example, Mitkov and Ha
(2003), who were the pioneers in generating MCQs
automatically, used such NLP techniques as term
extraction, parsing, a corpus, and WordNet. Their
system-generated test questions and distractors
based on a linguistics textbook. A few years later,

Karamanis et al. (2006) generated Multiple-Choice
Test Items from medical text using Rapid Item
Generation (RIG) and the UMLS thesaurus. A
medical textbook served as the source texts, while
a much more extensive collection of MEDLINE
texts was used as the reference corpus. In another
research, Mitkov et al. (2006) employed various
NLP techniques such as automatic term extraction,
shallow parsing, sentence transformation and
computing of semantic distance as well as corpora
and ontologies. In contrast to the methodologies
that highly depend on the used domain,
Papasalouros et al.’s (2008) approach is domain-
independent as they employed specific ontology-
based strategies and OWL.

Singh Bhatia et al. (2013) proposed selecting
sentences using existing test items in the Web as
well as presented a technique for creating named
entity distractors from Wikipedia. Alsubait et al.
(2014) used OWL ontologies to generate multiple-
choice test items and proposed a psychologically-
based theory to control the question difficulty.

Afzal and Mitkov (2014) suggested an
unsupervised dependency-based approach to
identify the most important named entities and
terms and define semantic relations between them.
This approach did not use any prior knowledge
about the semantic types of the relations but was
based on a dependency tree model. The results
were evaluated in respect of their readability,
usefulness of semantic relations, relevance,
acceptability of questions and distractors and
general usability of multiple-choice test items.

A couple of years ago, the focus of the research
community shifted towards the use of neural
networks for natural language processing tasks.
For example, Liang et al. (2018) investigated how
machine-learning models, in particular feature-
based and neural net (NN) based ranking models,
can be used for distractor selection. Gao et al.
(2019) proposed a hierarchical encoder-decoder
framework to generate question items for reading
comprehension questions from real examinations.
Susanti et al. (2018) investigated methods for
automatically generating distractors for multiple-
choice questions on English vocabulary and used
semantic similarity and collocation information.
Shin et al. (2019) used a topic modeling procedure,
machine learning, and natural language processing
to generate distractors based on students'
misconceptions.

101

In the aforementioned words, various
approaches were used to generate questions or
distractors automatically. Mostly, the questions
were generated on the basis of a single sentence. In
our research, we do not create questions
automatically. Instead, we employ the most recent
methods of semantic textual similarity matching to
find similar paragraphs in the reference corpus.
The question-answer pair attached to the incoming
paragraph that is fed to the model is transferred to
the newly found paragraph and then post-edited to
create a new question-answer pair. This approach
aims at reducing the teachers’ effort to create new
test items from scratch.

3 Methodology

This research was inspired by translation memory
(TM) matching used in computer-assisted
translation (CAT) tools. TM consists of aligned on
the sentence level source-and-target pairs (Sikes,
2007). These are the previous translations done by
a human translator on the same or similar topic.
Basically, after the source text is segmented
according to segmentation rules, usually according
to sentence-closing punctuation marks, the source
sentence is searched in the translation memory.
When a similar sentence in the source language is
found, its translation is suggested for the target
segment. The translation memory matches are
retrieved according to a certain threshold chosen
by a translator based on how similar the segments
are. This score is normally presented in a
percentage value. Totally exact segments constitute
a 100% match, while exact segments within the
same context, i.e., the same sentences or phrases
before and after this segment, are called 101%
matches or context-matches. The other matches
below the 100% score are referred to as fuzzy
matches.

In this work, an analogous method is used for
finding similar paragraphs. However, there are
several differences. Firstly, only one language,
English, is used in the experiments. Moreover, the
segmentation rules are different. Instead of
sentences, paragraphs are used. A paragraph is
defined as a sequence of characters ending with
closing punctuation marks, i.e., a full stop,
exclamation mark, question mark, followed by a
new line symbol. Moreover, in the case of lists,
such as the text presented in the form of bullet
points, additional rules apply. If colons and
semicolons are followed by a new line symbol, the

new line is removed so that such phrases comprise
a part of a larger paragraph. Otherwise, if left
unchanged, each new bullet point phrase would
make a separate paragraph. The paragraph
consisting of a few words is not useful for this
research.

To imitate the translation memory matches, two
corpora are needed. The Paragraph cell in the
above-mentioned MCQ corpus serves as a source
text segmented into individual characters. A
paragraph is searched for in the huge reference
corpus that represents the translation memory.
When a similar paragraph is found, it is suggested
to a user. The question, anchor, and distractors
attached to the source paragraph are used now for
the target paragraph. They can be post-edited to
reflect the contents of the new paragraph better.
Although the reference corpus used in this research
does not include any translations, for the simplicity
of explaining the mechanism behind the research
idea, it is called the translation memory, or TM
corpus.

3.1 MCQ Corpus Compilation

For the purposes of this research, a corpus of
MCQs is required. It is needed for the experiments
to find similar paragraphs in another textbook.
Such a corpus is manually compiled and consists
of the following elements:

• The paragraph from a chosen book on
which the question is based.

• The question referring to the
corresponding paragraph.

• The answer.

Such question answering datasets as The Natural
Questions corpus (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017), HotpotQA (Yang et
al., 2018), QuAC (Choi et al., 2018), QASPER
(Dasigi et al., 2021), CaseHOLD (Zheng et al.,
2021), OpenBookQA (Mihaylov et al., 2018),
SQuAD (Rajpurkar et al., 2016), and MultiRC
(Khashabi et al., 2018) were revised to determine
whether they can be used in this research. Due to
the fact that most of them contain question-
answer pairs derived from Wikipedia articles, we
did not find them suitable. Instead, we focus on
textbooks and other teaching materials for the
experiments to imitate real-life in-classroom
applications. Moreover, in some cases, it is not

102

possible to create the reference corpus for the
above-mentioned QA pairs since it is not clear
what materials were used for those datasets. In
addition, in some cases, the questions were not
based on multiple sentences. Therefore, it would
not be reasonable to use such datasets while we
aim to work with the European Union law domain
and with questions based on a whole paragraph.
Consequently, it was decided to develop a new
corpus of multiple-choice test items that is based
on the selected principles of design.

The criteria for choosing a book for the MCQ
corpus were the following:

• The contents of the book cover general
information about the European Union,
particularly the history of its creation, the
founding treaties, the four freedoms, the
sources of law, and other basic concepts
and legislation. The book should not
include any specific details regarding
specialised legislation cases. For
instance, home affairs law, EU
immigration and asylum law, commerce
or terrorism are too narrow topics and
were not touched upon in the corpus.

• The information presented in the book
should mostly be written in full
paragraphs rather than in bullet points or
stored in tables.

• It should be possible to copy the text
easily from the book. Otherwise, retyping
the paragraphs would take too much time.
Moreover, it is easier to have typos or
other errors in this case. Thus, not being
able to copy directly from the book
constitutes a challenge in terms of both
time and human effort.

The chosen book consists of sixteen chapters and
covers the following topics from the history and
legislation of the European Union: the origins and
character of EU law; the development from
Community to Union; the political and legal
institutions of the European Union; the sources of
EU law; the legislative process; enforcement of
EU law; Article 267 of the Treaty on the
Functioning of the European Union (TFEU); the
relationship between EU law and national law –
supremacy; the relationship between EU law and
national law – direct effect; the Internal Market;
citizenship of the Union; the free movement of

workers; freedom of establishment and the
freedom to provide and receive services under
Articles 49 and 56 TFEU; the free movement of
goods and Articles 34 and 35 TFEU; Article 28
TFEU and customs tariffs and Article 110 TFEU
and discriminatory internal taxation; EU
competition law; social policy; discrimination law
and Article 157; the wider social influence of the
EU. All of these topics are mentioned in the MCQ
corpus.

The following criteria for the corpus were
selected:

• Paragraphs have to be included for all the
questions. Since the research is based on
paragraph similarity matching, without
the relevant paragraph the question
cannot be used for the purposes of this
task. In the context of this research, a
paragraph refers to either an actual
paragraph from the book or a couple of
sentences on which the question is based.
The Paragraph cell should contain only
those sentences that are necessary to
answer the question. Therefore,
sometimes the actual paragraph from the
book has to be cut or shortened to include
only the sentences needed to answer the
question. It is possible to add sentences
from different paragraphs as long as they
make sense and the text in the Paragraph
cell is 2-5 sentences long. The length of
the paragraphs may vary. It is worth
underlying that only one sentence cannot
constitute a paragraph for this research no
matter its size. The number of sentences
in the paragraph highly depends on the
asked question and the answer. Although
it is possible to include longer paragraphs
in the MCQ corpus, it is rather
challenging to make a question that is
based on the information in all the
sentences in a large paragraph.

• All the questions in the MCQ corpus
should be based on the information in all
the sentences in the Paragraph cell.
Yes/No or True/False questions are not
possible. The questions should be worded
as actual questions rather than incomplete
statements.

• The answer should consist of one or a few
words rather than a long phrase. The

103

answer cannot consist of a whole
sentence. It is of paramount importance
for the automatic generation of
distractors. Although the distractors are
not generated for this study, they will be
used in future research. In order to
retrieve good quality distractors, the
anchor should be concise, ideally consist
of a couple of words or a number.
However, the MCQ corpus is aimed to be
easy to use in classrooms. Therefore, the
above-mentioned rule about the length of
the anchor can be neglected in some cases
for the sake of a good multiple-choice test
item that can be used unchanged.

In total, the MCQ corpus consists of 200
paragraphs and question-answer pairs. The corpus
was checked with a writing tool Grammarly to
spot grammar and spelling mistakes, typos, extra
spaces and other issues. Furthermore, all the
questions were revised by a native speaker of
English who is a professional proofreader and
qualified linguist. Unfortunately, due to the lack
of time and resources, the MCQ corpus was not
revised by an expert in EU law. It is an area of
further research and developments.

3.2 The reference corpus (TM corpus)

The preparation of the TM corpus started with
choosing the relevant book. A procedure similar to
choosing the book for the MCQ corpus was used.
Overall, the book had to cover the same topics in
the EU law and be available in a machine-readable
or easy-to-process format. The information should
be presented in text in paragraphs rather than in
diagrams, charts, tables or images. In contrast to
the MCQ corpus, the TM corpus should be of a
considerably larger size. While looking for such a
book, we encountered several problems. Many
books on the EU law are available in hard copies
but do not have the copies in the electronic format.
In many cases, if it is available in the PDF format,
the printed book is scanned. Therefore, even with
the use of the optical character recognition (OCR)
software, the processed output would be of very
low quality and will require a significant amount of
time and human resources to be revised manually.

The selected book consists of 1,198 pages and
includes similar chapters as the one used for the
MCQ corpus. The PDF is processed with a Python
program in order to write the text into a text file.
The information unrelated to the contents of the

relevant paragraphs is omitted. For example, the
table of contents, page numbers, headings, headers,
footnotes, the list of references as well as any tables
or images are not included in the TM corpus file.

Moreover, in the original file, the words at the
end of the line are hyphenated. It is a typographical
hyphen that has to be removed from the corpus. If
it is not done, a substantial amount of information
can be lost since for the machine, the same word
written with or without a hyphen constitutes
different words. Besides, a new line character
follows this typographical hyphen, so the word is
split into two parts. The hyphens followed by a new
line character were deleted, and the parts of the
word were glued together. All the hyphenated
words with a new line character inside were
checked in the Enchant module. It is a spell-
checking library for Python. After the new line
symbol is deleted, if a hyphenated word is found in
the library, it is left untouched. Otherwise, it is
glued together.

The other issues with processing the file
included the following ones: many chapters
include quotes that constitute a large paragraph.
They should not be included in the TM corpus
since the MCQ corpus can contain the same
quotations. For the purposes of this research, we
want to retrieve fuzzy matches instead of the exact
matches. Therefore, we do not want to have exactly
the same paragraphs in both corpora. Since such
quotes are written in a different font and size, it was
possible for the Python program to omit them.

3.3 Comparison of the MCQ and TM
corpora

As mentioned above, the method for finding
similar paragraphs resembles the one used for
retrieving translation memory matches in a
translation management system. Since the MCQ
corpus represents a source text, and the reference
(TM) corpus embodies the translation memory, it
is essential that those corpora have many features
in common. Hence, a comprehensive contrastive
analysis of both corpora was conducted.

The corpora are compared in terms of the word
count, the number of unique words, the average
number of words per paragraph, most common
words. As previously stated, the MCQ corpus
includes 200 multiple-choice test items together
with the referencing paragraphs. It estimates to
12,754 words. A word in this context is a sequence
of alphanumeric characters split by a space.

104

Conversely, the reference corpus equals to 399,196
words. It encompasses more than a thousand pages
of the processed text. Thus, it is more than 31 times
larger than the multiple-choice questions corpus.

The average number of words in a paragraph in
the MCQ corpus is 63 words. Likewise, for the TM
corpus the number is 57 words.

4 Experiments

Experimenting with semantic textual similarity has
been within the scope of recent research in natural
language processing. For example, Ranashinghe et
al. (2019a) evaluated the implications contextual
word embeddings have on unsupervised semantic
textual similarity methods. They carried out their
experiments with several dataset including the
SICK dataset and bio-medical dataset for English
as well as the dataset in Spanish. Such methods as
cosine similarity using average vectors, Word
Mover’s Distance and cosine similarity using
Smooth Inverse Frequency with contextualised
word embeddings were evaluated to calculate
semantic similarity between pairs of texts. They
came to a conclusion that contextual word
embeddings can be employed for various
languages and domains for unsupervised machine
learning tasks.

Ranasinghe et al. (2019b) experiment with
Siamese neural networks (Bromley et al., 1993) for
semantic textual similarity. They mention that
“Siamese networks contain two or more identical
sub-networks. The networks are identical in the
sense that they have the same configuration with
the same parameters and weights. In addition,
parameter updating is mirrored across these sub-
networks”. The authors state that this type of neural
networks performs well for finding similarity or a
relationship between two comparable things, e.g.,
signature verification, face verification, image
similarity as well as sentence similarity. In this
research, we will use sentence transformers for the
paragraph similarity tasks that also use Siamese
and triplet network structures.

In Ranasinghe et al. (2020), sentence encoders
are used to improve the matching and retrieving
process in Translation Memories systems. In our
research, we use a similar approach while
experimenting with paragraph encoders.

4.1 Doc2vec model

In our experiments, we use a similar technique as
in Řehůřek (2014) and Shperber (2017). We use
Gensim, a free Python library for topic modelling
(Rehurek and Sojka, 2010). It is helpful for training
large-scale semantic natural language processing
models; representing text as semantic vectors; and
finding semantically related documents. It allows
to train vector embeddings fast, can be run on any
operating system as well as any other platform that
supports Python and NumPy. The library is also
open-source.

For each paragraph from the MCQ corpus, we
retrieve two similar paragraphs from the TM
corpus. We also calculate the similarity score for
each match.

4.2 Sentence-BERT

Transformer models like BERT are the state-of-
the-art nowadays in semantic textual similarity and
are salient in natural language processing in
general. They are widely used in machine
translation and time series prediction; document
summarization; document generation; named
entity recognition; image processing; video
understanding and other tasks. Sentence-BERT
(SBERT) is “a modification of the pretrained
BERT network that use Siamese and triplet
network structures to derive semantically
meaningful sentence embeddings that can be
compared using cosine-similarity” (Reimers and
Gurevych, 2019). It was presented as an
advancement of BERT, which requires a lot of
computational power and is very slow. For
example, BERT needed 65 hours to find the most
similar pair in a collection of 10,000 sentences,
while SBERT did the same task in five seconds.
Although the authors claim that SBERT is very fast
and computationally efficient, such speed and
performance requires the use of a GPU. For this
research, the experiments were conducted on a
regular laptop using a CPU only. Therefore, our
results are far from such small numbers in terms of
speed. The motivation behind the approach of
using a CPU only for this research is explained by
the fact that the aims of this research is to help
education professionals and reduce the teachers’
effort in preparing the assessment materials.
Therefore, if the used methods require very
powerful computers and a lot of computational
power with the use of a GPU, it will not be feasible

105

to replicate this method in a real-life classroom
setting.

The procedure for finding the similar paragraphs
in this research is analogous to the one used with
doc2vec. Particularly, for each paragraph from the
small ad-hoc corpus of multiple-choice test items,
two matching paragraphs are found in the large
reference corpus. The similarity scores are also
calculated for all the retrieved paragraphs.

In this research, we took the SBERT approach
to obtain paragraph vectors. We used the
paraphrase-MiniLM-L12-v2 model.

5 Evaluation

In this study, a simple method of automatic
evaluation is used. Specifically, the paragraphs
from the MCQ corpus are fed to the algorithms.
With the help of either doc2vec or SBERT,
semantically similar paragraphs are found in the
reference corpus. The results are written to a file
together with the paragraphs similarity score and
the paragraph manually found as a gold standard.
Paragraph similarity scores resemble fuzzy
matches in translation memory systems. After that,
the number of identical matches, i.e., paragraphs
produced by the algorithms and the paragraphs
from the evaluation corpus, is calculated. The
performance of the algorithms is presented in the
percentage of correct matches out of 50
paragraphs.

For the purposes of evaluation, a small corpus
of fifty paragraphs was made. It consists of a
Paragraph column with the paragraphs from the
MCQ corpus; a Question column with the
questions attached to those paragraphs; and a
Match column with the paragraphs similar to the
ones in column 1. All the matches are selected
manually. In order to do so, the reference corpus is
searched for key words manually identified in the
paragraph from the MCQ corpus. It is done with
the Find option. After that, the found results are
checked in terms of their content and size. The
paragraph from the MCQ corpus and its match
from the reference corpus should talk about the
same thing and include the same key words.
Moreover, it is important that the question from the
MCQ corpus attached to one paragraph can be
answered if shown only the paragraph from the
reference corpus. In addition, the correct answer
(anchor) for this question should also be included
in the new match. It was required that the length of

both paragraphs was roughly similar where
possible.

5.1 Evaluation Results

It was calculated that the performance of
doc2vec during the automatic evaluation was 0%,
i.e. zero matches out of fifty paragraphs in the
evaluation corpus were found. In contrast, in 44%
of the cases, SBERT found the correct matches
from the evaluation corpus. More rigorous human
evaluation is required to check to what extent the
automatically obtained paragraphs are similar to
the ones in the MCQ corpus. It is assumed that
some of the question answer pairs could be post-
edited and used in the in-classroom environment.
It was also noticed that in some cases, SBERT
outperformed human judgement and found the
paragraphs with higher similarity scores. In terms
of efficiency, SBERT was rather slow when used
on a CPU, which is its main drawback.

Table 1 below includes the paragraph similarity
scores for both models. It is evident that the
difference in performance of the two algorithms is
rather significant. The highest score of doc2vec is
roughly the same as the lowest score of SBERT.
Moreover, the average score of SBERT is higher
than any of the results of doc2vec.

doc2vec SBERT

10 highest scores

0.58 0.86

0.57 0.86

0.57 0.85

0.57 0.85

0.57 0.85

0.57 0.83

0.57 0.83

0.56 0.83

0.56 0.82

0.56 0.82

Highest score

0.58 0.86

Lowest score

0.37 0.57

Average score

0.51 0.70

Table 1: Similarity scores for doc2vec and SBERT

Furthermore, the efficiency of both algorithms
was compared in terms of time needed to perform
the task. The time in seconds was recorded for each
found match with the help of the Python module

106

Timeit(). After that, the average time needed to find
a single match was calculated. The results for the
two algorithms are as follows: doc2vec – 46
seconds; SBERT – 268 seconds (4.4 minutes).

It is worth mentioning that usually the
experiments with SBERT are conducted on a GPU.
It was done deliberately to check the efficiency of
the algorithms under the typical conditions
teachers face at schools and non-technical
departments in universities. Therefore, although
SBERT demonstrated impressive results and even
outperformed human judgement, it is very slow
without using a GPU.

6 Conclusion and Future Work

In this research, the ways to automatically generate
multiple-choice test items from a whole paragraph
are investigated. In particular, it was inspired by
translation memory matches in modern translation
management systems.

The experiments are conducted within the
European Union law domain. A small corpus of
200 multiple-choice test items together with the
corresponding paragraphs is manually created
from scratch. The larger reference corpus (TM
corpus) that consists of 1,000+ pages of processed
text from a textbook on the same topic was also
created.

The performance and efficiency of two deep
learning models, doc2vec and SBERT, was tested.
Both algorithms provide paragraph vectors used to
find semantically similar paragraphs. Although
doc2vec was almost six times faster than sentence
transformers when run on a regular computer with
a CPU, it failed to produce the desired results. In
fact, the performance of doc2vec was 0% when
evaluated automatically. In contrast, SBERT
achieved 44% performance in the same automatic
evaluation task. Moreover, in some cases, it
outperformed human judgement and found the
paragraphs with higher similarity scores than those
selected manually. Nevertheless, the fact that
SBERT is not computationally efficient when used
on a regular laptop remains its main drawback.

In the future, this research can be broadened to
include automatic generation of distractors and
their evaluation. Moreover, the corpus of multiple-
choice test items can be extended. It would also be
beneficial to have this corpus revised by an expert
on the European Union law. Moreover, in-
classroom experiments with the students of law
and teachers are needed to fully evaluate the

quality of produced multiple-choice test items and
to test whether the suggested method truly reduces
the teachers’ effort in performing knowledge
assessment.

References

Naveed Afzal and Ruslan Mitkov. 2014. Automatic
generation of multiple choice questions using
dependency-based semantic relations. In Soft
Computing 18.7, pages 1269-1281.

Tahani Alsubait, Bijan Parsia, and Uli Sattler. 2014.
Generating Multiple Choice Questions From
Ontologies: Lessons Learnt. In OWLED, pages 73-
84.

Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
Sackinger, and Roopak Shah. 1993. Signature
verification using a siamese time delay neural
network. In IJPRAI, 7, pages 669–688.

Tim Burnett and Stefania Paredes Fuentes. 2020.
Assessment in the Time of Pandemic: A Panic-free
Guide. In The Economics Network.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke
Zettlemoyer. 2018. Quac: Question answering in
context, arXiv preprint arXiv:1808.07036.
https://doi.org/10.18653/v1/D18-1241

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A Dataset
of Information-Seeking Questions and Answers
Anchored in Research Papers, arXiv preprint
arXiv:2105.03011.
https://doi.org/10.18653/v1/2021.naacl-main.365

Yifan Gao, Lidong Bing, Piji Li, Irwin King, and
Michael R. Lyu. 2019. Generating distractors for
reading comprehension questions from real
examinations. In Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 33. No.
01. 2019, pages 6423-6430.

Qi Guo, Chinmay Kulkarni, Aniket Kittur, Jeffrey P.
Bigham, and Emma Brunskill. 2016. Questimator:
Generating knowledge assessments for arbitrary
topics. In IJCAI-16: Proceedings of the AAAI
Twenty-Fifth International Joint Conference on
Artificial Intelligence.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading
comprehension. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 1601–
1611. https://doi.org/10.18653/v1/P17-1147

107

Nikiforos Karamanis and Ruslan Mitkov. 2006.
Generating multiple-choice test items from medical
text: A pilot study. In Proceedings of the fourth
international natural language generation
conference, pages 111-113.
https://aclanthology.org/W06-1416

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
Beyond the Surface: A Challenge Set for Reading
Comprehension over Multiple Sentences. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 252-
262. https://doi.org/10.18653/v1/N18-1023

Vishwajeet Kumar, Ganesh Ramakrishnan, and Yuan-
Fang Li. 2018. A framework for automatic question
generation from text using deep reinforcement
learning, arXiv preprint arXiv:1808.04961.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia
Rhinehart, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Matthew
Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
Toutanova, Llion Jones, Ming-Wei Chang, Andrew
Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov.
2019. Natural questions: a benchmark for question
answering research. In Transactions of the
Association of Computational Linguistics.
https://doi.org/10.1162/tacl_a_00276

Chen Liang, Xiao Yang, Neisarg Dave, Drew Wham,
Bart Pursel, and C. Lee Giles. 2018. Distractor
generation for multiple choice questions using
learning to rank. In Proceedings of the thirteenth
workshop on innovative use of NLP for building
educational applications, pages 284-290.
https://doi.org/10.18653/v1/W18-0533

Mukta Majumder and Sujan Kumar Saha. 2015. A
system for generating multiple choice questions:
With a novel approach for sentence selection. In
Proceedings of the 2nd workshop on natural
language processing techniques for educational
applications, pages 64-72.
https://doi.org/10.18653/v1/W15-4410

Jorge Martinez-Gil, Bernhard Freudenthaler, and A.
Min Tjoa. 2019. Multiple choice question
answering in the legal domain using reinforced co-
occurrence. In International Conference on
Database and Expert Systems Applications, pages
138-148.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a Suit of Armor Conduct
Electricity? A New Dataset for Open Book Question
Answering, arXiv preprint arXiv:1809.02789.
https://doi.org/10.18653/v1/D18-1260

Halyna Maslak. 2021. Automatic generation of
multiple-choice test items with deep learning
(Unpublished master's dissertation). University of
Wolverhampton, Wolverhampton, United Kingdom.

Ruslan Mitkov. 2003. Computer-aided generation of
multiple-choice tests. In Proceedings of the HLT-
NAACL 03 workshop on Building educational
applications using natural language processing,
pages 17-22. https://aclanthology.org/W03-0203

Ruslan Mitkov, Le An Ha, and Nikiforos Karamanis.
2006. A computer-aided environment for generating
multiple-choice test items. In Natural language
engineering 12(2), pages 177-194.

Andreas Papasalouros, Konstantinos Kanaris, and
Konstantinos Kotis. 2008. Automatic Generation Of
Multiple Choice Questions From Domain
Ontologies. In e-Learning, pages 427-434.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. 2016. SQuAD: 100,000+
Questions for Machine Comprehension of Text,
arXiv preprint arXiv:1606.05250.
https://doi.org/10.18653/v1/D16-1264

Tharindu Ranashinghe, Constantin Orasan, and Ruslan
Mitkov. 2019a. Enhancing unsupervised sentence
similarity methods with deep contextualised word
representations. In RANLP.
https://doi.org/10.26615/978-954-452-056-4_115

Tharindu Ranasinghe, Constantin Orǎsan, and Ruslan
Mitkov. 2019b. Semantic textual similarity with
siamese neural networks. In Proceedings of the
International Conference on Recent Advances in
Natural Language Processing (RANLP 2019).
https://doi.org/10.26615/978-954-452-056-4_116

Tharindu Ranasinghe, Constantin Orasan, and Ruslan
Mitkov. 2020. Intelligent Translation Memory
Matching and Retrieval with Sentence Encoders,
arXiv preprint arXiv:2004.12894.
https://aclanthology.org/2020.eamt-1.19

Radim Rehurek. 2014. Doc2vec tutorial.

Radim Rehurek and Petr Sojka. 2010. Software
framework for topic modelling with large corpora.
In Proceedings of the LREC 2010 workshop on new
challenges for NLP frameworks, pages 45-50.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks, arXiv preprint arXiv:1908.10084.
https://doi.org/10.18653/v1/D19-1410

Jinnie Shin, Qi Guo, and Mark J. Gierl. 2019. Multiple-
choice item distractor development using topic
modeling approaches. In Frontiers in psychology
10: 825.

Gidi Shperber. 2017. A gentle introduction to
Doc2Vec.

108

Richard Sikes. 2007. Fuzzy Matching in Theory and
Practice. In Multilingual, 18(6), pages 39–43.

Arjun Singh Bhatia, Manas Kirti, and Sujan Kumar
Saha. 2013. Automatic generation of multiple
choice questions using wikipedia. In International
conference on pattern recognition and machine
intelligence, pages 733-738.

Yuni Susanti, Takenobu Tokunaga, Hitoshi Nishikawa,
and Hiroyuki Obari. 2018. Automatic distractor
generation for multiple-choice English vocabulary
questions. In Research and practice in technology
enhanced learning 13.1, pages 1-16.

Yuanlong Wang, Ru Li, Hu Zhang, Hongyan Tan, and
Qinghua Chai. 2018. Using Sentence-Level Neural
Network Models for Multiple-Choice Reading
Comprehension Tasks. In Wireless Communications
and Mobile Computing 2018.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua
Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. 2018. Hotpotqa: A
dataset for diverse, explainable multi-hop question
answering, arXiv preprint arXiv:1809.09600.
https://doi.org/10.18653/v1/D18-1259

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question
generation with maxout pointer and gated self-
attention networks. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 3901-3910.
https://doi.org/10.18653/v1/D18-1424

Lucia Zheng, Neel Guha, Brandon R. Anderson, Peter
Henderson, and Daniel E. Ho. 2021. When Does
Pretraining Help? Assessing Self-Supervised
Learning for Law and the CaseHOLD Dataset. In
Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Law,
pages 159-168.

