
Proceedings of the Student Research Workshop associated with RANLP-2021, pages 85–93,
held online, Sep 1–3, 2021.

https://doi.org/10.26615/issn.2603-2821.2021_013

85

Text Preprocessing and its Implications in a Digital Humanities Project

Maria Kunilovskaya
University of Wolverhampton, UK

University of Tyumen, Russia
maria.kunilovskaya@wlv.ac.uk

Alistair Plum
RGCL

University of Wolverhampton, UK
a.j.plum@wlv.ac.uk

Abstract

This paper focuses on data cleaning as part
of a preprocessing procedure applied to text
data retrieved from the web. Although the
importance of this early stage in a project us-
ing NLP methods is often highlighted by re-
searchers, the details, general principles and
techniques are usually left out due to consider-
ation of space. At best, they are dismissed with
a comment “The usual data cleaning and pre-
processing procedures were applied”. More
coverage is usually given to automatic text an-
notation such as lemmatisation, part-of-speech
tagging and parsing, which is often included in
preprocessing. In the literature, the term ‘pre-
processing’ is used to refer to a wide range of
procedures, from filtering and cleaning to data
transformation such as stemming and numeric
representation, which might create confusion.
We argue that text preprocessing might skew
original data distribution with regard to the
metadata, such as types, locations and times
of registered datapoints. In this paper we de-
scribe a systematic approach to cleaning text
data mined by a data-providing company for
a Digital Humanities (DH) project focused on
cultural analytics. We reveal the types and
amount of noise in the data coming from var-
ious web sources and estimate the changes in
the size of the data associated with preprocess-
ing. We also compare the results of a text clas-
sification experiment run on the raw and pre-
processed data. We hope that our experience
and approaches will help the DH community
to diagnose the quality of textual data collected
from the web and prepare it for further natural
language processing.

1 Introduction

In this paper we discuss our experience of pre-
processing textual descriptions of cultural events
collected from a number of diverse web sources
for a DH project. The problems that we faced

demonstrate that there is a big difference between
the amount of raw data scraped from the web and
the amount of data distilled from it through pre-
processing for further application of natural lan-
guage processing (NLP) methods. The web is a
unique source of available information that, to an
extent, reflects social and cultural trends, and it
is increasingly used in sociological and cultural
studies. However, it seems that preprocessing and
filtering, necessary to ensure reliability of auto-
matic analyses, creates an additional refraction of
the original signal registered by the web. This pa-
per offers a description of the data preprocessing
stage in a DH project and reports its effects on
the quality of text classification on the one hand,
and on the size of data available for the analysis as
compared to the original web-scraping results on
the other hand. We used pre-trained ELMO (Em-
beddings from Language Model) models for text
representation in the classification task. We aim to
find a reasonable trade-off between quantity and
quality, and try to salvage as many text instances
as possible without compromising the performance
of NLP methods.

Our specific tasks include:

1. description of a preprocessing pipeline and its
application to the data at hand;

2. evaluation of the impact of preprocessing on
text classification results;

3. estimation of the impact of preprocessing on
the dataset integrity.

The data underlying this project includes texts
in at least five languages, with a lot of cases of
code-switching. However, for the purposes of the
paper we focus on English and Russian subsets of
the data.

86

2 Related work

The term ‘data preprocessing’ is used as an um-
brella term to refer to a wide range of procedures,
including cleaning, filtering, normalising, annotat-
ing and transforming raw data. It is not always
clear which operations from this list are referred
to in a particular description. For example, func-
tions included in a Keras preprocessing module
convert files in a tree of folders into the Keras inter-
nal dataset format by creating batches of texts and
linking texts to labels, and possibly truncating text
to a pre-set maximum length. It assumes that the
text files in folders are already suitably prepared
for machine learning experiments. In this paper,
we focus on the steps that precede this sort of data
transformation and have to do with ensuring struc-
tural completeness of the data, its cleaning and
normalisation.

The link between the quality of the data and the
reliability of the research outcomes is well known.
It is reflected in the popular ‘garbage in, garbage
out’ wisdom shared by the research communities in
data science and NLP. It was famously formulated
by John Sinclair, a widely-recognised authority in
corpus building and corpus linguistics: “the be-
ginning of any corpus study is the creation of the
corpus itself ... The results are only as good as the
corpus” (Sinclair, 1991).

Data collection and preprocessing is not only an
important stage in a research project, it is also the
most tedious and time-consuming step. A popular
belief is that it claims up to 80% of the research
time. According to a report by Anaconda “2020
State of Data Science: Moving From Hype Toward
Maturity”, based on a survey, which attracted a to-
tal of 2,360 responses from researchers from over
100 countries says that “on average 45% of their
time is spent getting data ready (loading and cleans-
ing)”. 1 Based on the previous research, there is no
getting away from this chore, especially if using
bag-of-words representations.

Preprocessing is always dependent on the data
and task at hand, and it is often so specific to a
project that it is not described in detail. Neverthe-
less, there have been numerous attempts at eval-
uating the effects of different preprocessing steps
for different types of data and NLP tasks. Sub-
ramaniam et al. (2009) present a survey of differ-
ent sources of noise in texts and how these types
of noise can be handled. The survey cites tech-

1https://www.anaconda.com/state-of-data-science-2020

niques such as automatic speech recognition, opti-
cal character recognition and machine translation
to be the biggest culprits in terms of introducing
noise. Kathiravan and Haridoss (2018) go into
detail about preprocessing techniques used specifi-
cally for information extraction (IE) and informa-
tion retrieval (IR). While this study utilises all the
techniques mentioned previously, it focuses on dif-
ferent stemming approaches, as it is said to be one
of the most beneficial preprocessing steps in terms
of performance.

In Sergienko et al. (2016) ‘text preprocessing’
refers to data handling operations such as stop-
words filtering with stemming, feature selection,
feature transformation and a novel transformation
method based on classes of terms. The study
proves that using the novel feature transforma-
tion method and ensembles of term weighting
methods yields good classification results even
with very small amounts of features. Similarly,
Gonçalves and Quaresma (2005) reports the im-
pact of non-relevant word removal and lemmatisa-
tion/stemming in conjunction with data transforma-
tion steps in the context of text classification for
two languages. Using a Support Vector Machine
(SVM) classifier to represent Portuguese data from
the law domain as well as English Reuters texts,
experiments were carried out on feature reduction
and construction, feature subset selection and term
weighting. In terms of feature reduction, three
configurations were tested including different com-
binations of non-relevant word removal (including
articles, pronouns, adverbs and prepositions), as
well as lemmatisation and stemming. Crucially,
the authors found that for Portuguese stop-word
removal did yield better results, while for English
stemming had to also be included to attain better
results. Kadhim (2018) propose similar methods
for tf-idf based text classification, but also include
the removal of HTML tags.

More recently, HaCohen-Kerner et al. (2020)
performed an extensive evaluation of common pre-
processing steps before text classification. Explor-
ing the impact of all possible combinations of five
to six basic preprocessing methods on four bench-
mark text corpora, the study tested three machine
learning methods. The preprocessing methods in-
cluded spelling correction, conversion to lower
case, HTML tag removal, punctuation removal,
stop-words removal and reduction of replicated
characters. Overall, it is determined that the best

87

results could be achieved with a combination of pre-
processing methods, while stop word removal to be
the most effective preprocessing method that signif-
icantly improved text classification. However, the
exact combination of methods is said to vary sig-
nificantly across datasets, leading to the conclusion
that every dataset has to be treated accordingly.

The impact of noise on the outcomes of NLP
tasks, implemented using BERT-based deep learn-
ing methods, such as offensive language identifica-
tion, informativeness identification and sentiment
analysis, is explored in Al Sharou et al. (2021). In
line with the above studies, they limit the concept of
noise to non-standard appearance of language units
(casing, hashtags, code-switching, emoji, URL and
punctuation). They found that for some tasks these
types of noise are actually useful, and filtering them
out results in lower classification results.

Most of the related work is focused on han-
dling text representations such as feature reduction
and selection, with some emphases on stop-words
removal and lemmatisation/stemming. However,
most researchers worked with available datasets
that have undergone some sort of preprocessing.
In our setting, we dealt the immediate results of
crawling and had to extract raw text from it.

3 Data origins and structure

The textual data underlying this study is part of a
dataset contracted by a research group for a DH
project and collected by a data company follow-
ing a technical assignment. The dataset includes
tables, where each row represents a cultural event
announced at one of the seven web services ag-
gregating news about cultural life in various loca-
tions across the globe. The project is set within
comparative cultural studies and focuses on the
types of events advertised in Russia and elsewhere
in the world. That is why the sources of data in-
clude both international and national publishing
platforms, social networks and distributors of infor-
mation regarding cultural events. A cultural event
is understood broadly as any social (public) activ-
ity in the spheres of contemporary arts, education,
sports, music, theatre, including social activities ar-
ranged by restaurants, computer clubs, and private
enthusiasts (yoga classes, guided tours, etc). There
is an understandable imbalance between the num-
ber of cultural events coming from international
and Russian sources (see Table 1.

Table 1 has the names and links to these re-

sources as well as the number of raw data points
acquired from each website. The content of the
web pages was either scraped (e.g. e-flux, Theo-
ries and Practice), or accessed through the official
API (e.g. Behance, Timepad), or downloaded using
open data service (Russian Ministry of Culture).

Data collection did not target any particular time
period, but acquired all available announcements.
Most of the platform’s archives date back to 2003-
2004. The data was collected up to mid-2019.

The records of events obtained from these web
resources included city and date of the event and
its textual description. Besides, each event was
characterised by the name of the website section,
where it was published, if available (e.g. ‘business’,
‘graphic design’, ‘lectures’). This raw data was
supplemented with additional information about
event locations. The diverging thematic groups of
events from the websites were manually mapped
into seven major categories. The enhanced data
tables have 24 columns, which store objective prop-
erties of each location: unique event identifier, date,
city, synthetic and raw semantic categories, geo-
graphic coordinates, country, region, population,
social and economic development parameters of the
area (GDP, human development index, economic
complexity index).

4 Preprocessing Methodology

4.1 Structural Completeness

The first obvious step to take is to ensure the
overall structural sanity of the dataset. It makes
sense to see whether there are empty values in
the columns that are of primary importance for
the subsequent analysis. Our project is centered
around analysis of descriptions in the ‘text’ col-
umn in conjunction with ‘date’ and ‘city’. Work-
ing in pandas, one of the most versatile Python
libraries for tabled data, we collected the counts
of NaN values in each column i: (counts =
df[i].isnull().sum()) into a dictionary
keyed on the column names and determined the
ratio of NaN per column. It turned out that the text
column had 1.67% of empty values (75,918 data-
points). These need to be dropped to avoid further
errors in processing.

Similarly, the data stored in text column can
be all numbers and contain no alphabetic char-
acters. In this case, this content is hardly of
value for subsequent semantic analysis. We found
the indices of rows with this issue in ‘text’ col-

88

Source Description Region Data points
Behance
api.behance.net/v2/
users/X/projects

Adobe’s social media,
advertising, architecture,
fashion, industrial design

international
user profiles

1,184,509

e-flux
www.e-flux.com/
announcements

a publishing platform and
archive, artist projects fo-
cused on visual arts, inc.
education

North America,
Europe

10,280

Meetup
www.meetup.com/api/
general

a social media platform for
building local communi-
ties and discovering what
is happening nearby

international,
user information

2,635,724

Ministry of Culture
opendata.mkrf.
ru/opendata/
7705851331-events

a monitoring archive of
cultural events registered
by companies and individ-
uals

Russia 84,222

TED
www.ted.com/tedx/
events

announcements of TED-
style local events

international 26,001

Timepad
afisha.timepad.ru/

a online service which
helps to manage, promote
and attend events

Russia 524,432

Theories and Practice
theoryandpractice.ru/
seminars

announcements for semi-
nars, courses, workshops,
master classes

Russia 70,379

Total 4,535,547

Table 1: Sources of cultural data and their coverage

umn with idx=df[‘text’].str.contains(pat=‘[a-zA-
ZА-Яа-я]’, regex=True) and sliced the dataframe
on this index to lose additional 18,243 instances
(0.4% of the original data size). This also filters out
texts entirely in scripts other than Latin or Cyrillic.

Finally, in most cases automatically col-
lected web data is known to carry dupli-
cates, which can unfairly inflate counts of
some items. One way to retain only the
unique entries is to run duplicated =
df[~df.duplicated(keep=‘first’)].
A more rigorous approach is to drop
rows that have duplicates in the fo-
cused column (‘text’ in our case):
texted.drop_duplicates(‘text’,
inplace=True).

All preprocessing decisions need to be taken
with the view of the main research tasks. For ex-
ample, it can be important to retain duplicate an-
nouncements that appeared on several platforms or
on several dates. They indicate re-current events or
events with enhanced visibility.

These operations can be computationally

demanding, with less powerful computers getting
stuck, if all data is fed to one CPU in one
processing thread. It makes more sense to partition
big datasets and process them in parallel. Our
data was naturally split by source, i.e. by the web
resource of data origin. Keeping these datasets
apart instead of collecting them into one massive
file was useful to understand the quality of the
data coming from various sources. The overall
size of our data was 4.6 GiB uncompressed,
with one of the files accounting for 3.8 GiB and
throwing out-of-memory error. We split it into 5
files for easier processing. Besides, we found it
helpful to perform each preprocessing step as a
separate process with its own intermediary output.
It gives better control over the preprocessing
workflow and allows to fall back to the output
of the previous step as a contingency measure
in case of errors, instead of running the whole
preprocessing pipeline from scratch. For example,
we found that some preprocessing libraries require
switching to earlier versions of Python than our
standard setup. At the time of writing, ‘contraction’

api.behance.net/v2/users/X/projects
api.behance.net/v2/users/X/projects
www.e-flux.com/announcements
www.e-flux.com/announcements
www.meetup.com/api/general
www.meetup.com/api/general
opendata.mkrf.ru/opendata/7705851331-events
opendata.mkrf.ru/opendata/7705851331-events
opendata.mkrf.ru/opendata/7705851331-events
www.ted.com/tedx/events
www.ted.com/tedx/events
afisha.timepad.ru/
theoryandpractice.ru/seminars
theoryandpractice.ru/seminars

89

is available for up to Python3.6 and ‘unidecode’
up to Python3.7. Additionally, to save disk
space we suggest working with single-member
archives for each input file. In pandas, it is loaded
and saved by adding the keyworded argument
(compression=‘gzip’) to the standard commands:
df = pd.read_csv(data1.tsv.gz,
compression=‘gzip’) and
df.to_csv(‘data1.tsv.gz’,
compression=‘gzip’).

After this initial clean-up step, which is a neces-
sary minimum preprocessing required regardless
of the input language, our data shrank by 19% of
the original data size.

4.2 Cleaning and Noise Reduction

Language modeling and analysis by NLP tech-
niques require some type of numeric representation
of texts. This includes indexing, one-hot repre-
sentations, frequency-based approaches (e.g. tf-
idf), vectorisation based on co-occurrence statis-
tics, which exploits the distributional hypothesis
in lexical semantics. We assume that some NLP
methods work better when the input text is free of
extraneous artefacts, such as HTML tags, encoding
errors, literal renditions of Unicode characters such
as \xe2\x80\x93 and \r\n\t. They appear in
the top of a sorted frequency dictionary built from
the raw text and may affect the quality of lemmati-
sation, which was shown to be useful for automatic
semantic analysis in previous work. Although URL
and email addresses can be useful for some tasks,
we treated them as organisational information, ex-
ternal to the text, and removed them using regular
expressions.

The sequence of the operations aimed at remov-
ing or reducing noise can be important both for
safety and efficiency of the process. For example,
if you are prepared to drop texts, shorter than five
tokens, it makes sense to run this command for
the first time early on in the stack of preprocessing
operations to exclude these instances from further
processing. Each web resource selected for scrap-
ing together with the scraping settings is likely to
produce individual types of noise that can be de-
tected by looking at the top of the reverse-ordered
frequency dictionaries generated after each proce-
dure or preprocessing step. As a result of several
attempts and recursive iterations, we developed a
preprocessing pipeline, which includes the follow-
ing operations:

• insert a space (i) before a capital, following
a lowercase character and (ii) after a set of
punctuation marks (both are usually a sign
of a missing delimiter, such as a newline, e.g.
What we’ll doGoogle Cloud Study Jams What
to bringLaptop);

• drop recurrent commenting phrases typical for
some websites (e.g. ‘Meeting description’ and
square-bracketed content (e.g. [masked]);

• drop unnaturally long tokens (over 15 charac-
ters), usually a sign of malformed content;

• normalise double and single quotes, dashes,
hyphens, tildes, dots, apostrophes;

• remove multiple spaces and all characters, ex-
cept an allowed set to filter out incorrectly
decoded Unicode (e.g. ÄéÊÉÖÂ±ÂÖ) (us-
ing a function adapted from the processing
pipeline developed by Shavrina and Shapoval-
ova (2017);

• remove tokens that contain no alphanumeric
characters, usually noise and orphaned punc-
tuation marks;

• fix literal renditions of HTML entities such as
\>, \';

• fix spaced or mostly spaced strings (e.g. E S
H K O L O T F E S T I V A L);

• remove unmotivated repetitions of characters
and words;

• weed out items with unmotivated high fre-
quencies unique for each web resource.

It makes sense to finish this stage of language-
independent preprocessing with running a language
detection module and storing its output in a new
attribute (column) to be used at the lemmatisation
stage. One major problem with language detection
is that some texts in our dataset include mixed code,
i.e. they have words written in several languages
(e.g. ‘Илья Чёрт в The Right Place’, ‘New Year
Mylene Farmer Fan-Club Party в ночном клубе
“Jack Jan”). This can be an issue for any automatic
language detection. We used an additional heuristic
(checking whether any characters are Cyrillic) to
correct the prediction of the automatic language
detection for mixed code samples, produced by

90

fasttext language detection model 2. Following
language identification we dropped all observations
in languages other than English and Russian. The
number of texts in other languages (Italian, French,
Spanish) was disproportional to the bulk of the data,
and cumulatively accounted for about 7%.

4.3 Text Normalisation

Machine learning algorithms and lemmatisation
pipelines perform better, if the textual data is stan-
dardised, e.g. spelling variants are replaced with a
one unified convention. Typically, this is done for
quotation symbol styles, English contracted forms,
and Russian ë. When choosing a specific type of
normalisation, it is good to have in mind the require-
ments to the input at the next stage of data process-
ing, particularly, which linguistic annotation tool
(e.g. for lemmatisation) and which numeric rep-
resentation method is planned for the main study.
For example, the Russian model learnt on SynTa-
gRus treebank (Droganova et al., 2018) does not
recognise «», one of the double quotes styles, used
in Russian texts. We have taken care of quotes at
the previous step. In this project, language-specific
normalisation concerned expanding English con-
tractions (admittedly an optional task, given the
subsequent use of UDpipe, which can process con-
tractions) and normalisation of Russian ë. In cases
when lemmatisation does not follow, normalisation
measures can include bringing all words to lower
case, and stop-words and punctuation removal. Fi-
nally, at this stage we filtered out all datapoints
with the textual attribute shorter that 5 tokens.

4.4 Automatic Lemmatisation and Filtering

For lemmatisation, we relied on Universal De-
pendencies (UD) framework using UDPipe mod-
ule (v1, Straka and Straková, 2017), with the Rus-
sian model trained on SynTagRus treebank (v2.5,
Droganova et al., 2018). All tokens in our texts
were replaced with their lemmas identified by the
parsing pipeline. UD-annotations were also used to
produce and store lists of lemmas of content words
(tagged as NOUN, ADJ or VERB) from each text
to be used in solving the main research task, i.e.
grouping events by category in an unsupervised
machine learning setting. Content lemmas were
filtered with stop-words lists 3. At the time of anno-

2https://fasttext.cc/docs/en/
language-identification.html

3https://github.com/Alir3z4/
python-stop-words

tation we discarded instances that had no content
words.

5 Results and Discussion

To demonstrate the impact of preprocessing and
annotation on the outcomes of the experiments, we
compared the results of automatic classification on
the texts at different stages of preprocessing (raw
tokens, clean tokens, all lemmas, content lemmas).
To this end, we selected a subset of 600 event de-
scriptions (in Russian) registered in Tyumen (a big
city in Western Siberia, Russia). These datapoints
were labelled with the names of the website sec-
tions where the respective event was announced
(Timepad and Ministry of Culture). The six cat-
egories used as class labels were ‘theatre’, ‘psy-
chology and self-development’, ‘business’, ‘sport’,
‘concerts’, ‘kids events’ and had at least 30 obser-
vations in each category. The texts are represented
using available ELMO models (Kutuzov and Kuz-
menko, 2017), pre-trained on raw and lemmatised
corpora matching the types of preprocessing we
have in our data. Each text received an averaged
vector for all words in it. The ELMO vectors (size
1024) were then transformed into 32-dimensional
vectors with Autoencoder module from the Keras
library for Python. These representations were clas-
sified with a SVM algorithm with the default scikit-
learn parameters. The evaluation is performed in 5-
fold cross-validation setting. Given the imbalance
in our data, we used stratified folds and weight-
ing for underrepresented classes. Table 2 reports
accuracy and macro F1-score for each of the pre-
processing variants.

accuracy F-score
raw input 76% 0.72
cleaned tokens 76% 0.72
lemmatised text 80% 0.76
content lemmas 82% 0.78

Table 2: Classification results on versions of input

As can be seen from Table 2, there is no dif-
ference between the classifier performance on raw
and cleaned tokens, but lemmatisation definitely
helps. It is not clear whether preprocessing proce-
dures like those described in Sections 4.2 and 4.3
improve the quality of lemmatisation, but it seems
that vectorisation effectively coped with raw text.
Frustratingly, all the tedious cleaning procedures
did not pay off. One explanation for this counter-

https://fasttext.cc/docs/en/language-identification.html
https://fasttext.cc/docs/en/language-identification.html
https://github.com/Alir3z4/python-stop-words
https://github.com/Alir3z4/python-stop-words

91

Figure 1: Distributions of events across categories before and after preprocessing

intuitive result is that the Russian data in part was
downloaded from an official government-curated
archive. The quality of these texts was higher in
comparison to the typical user-generated content
seen on other web resources.

Another alarming aspect of preprocessing is the
portion of the original dataset that gets discarded
during preprocessing. Overall, for the dataset at
hand, preprocessing claimed 45% of the original
size in terms of the number of observations. Im-
portantly, preprocessing affected the ratio of events
assigned to various categories. The diverging inven-
tories of categories used for sectioning on the web-
sites were manually mapped into seven thematic
groups shown in Figure 1. Figure 1 demonstrates
the impact of preprocessing on the distribution of
records across the seven thematic categories from
all seven web resources. It can be seen that pre-
processing resulted in a significant reduction in the
‘art’ and ‘politics’ categories (62.7 and 57.4% of
registered events lost, respectively). Most of the
items lost in the ‘arts’ category had a link to a media
object such as a picture in the ‘text’ field. It raises a
question whether any multi-modal processing can
be employed as a contingency measure.

The top three web resources that lost most of the
records in preprocessing were Behance, Timepad

and TED, which were reduced by 81.9, 54.1 and
55.3% respectively. The highest integrity was char-
acteristic for e-flux and Ministry of Culture; they
had little noise and hardly lost any datapoints. Note
that in terms of absolute number of datapoints,
Meetup remained the biggest source of data, dwarf-
ing e-flux into insignificance (with only 10,280 raw
records and 10,081 after pre-processing, it is shown
as a dot in Figure 2.

For the Tyumen sample, we are left with less
than 50% (992 events) of the original number of
observations (1864 events), given the preprocess-
ing described above. The number of observations
for Manchester (for example) dropped by 35%.
Most of the datapoints are discarded due to the lack
or insufficiency of text attributes associated with
recorded events. Interestingly, in another experi-
ment we set the text lengths threshold to 10 words
(as opposed to 5 here) and achieved the classifica-
tion accuracy of over 90% on just 452 observations,
represented as content lemmas, in the same experi-
mental setup. On the one hand, it seems to indicate
that a smaller, but higher-quality data returns better
results, but on the other hand, can we claim that the
results pertain to the original dataset? If half of the
datapoints end up in the garbage bin, how can we
say that the results reflect the content of the web

92

Figure 2: Number of records from seven web resources before and after preprocessing

sources used? Our observations raise issues with
the selection of web resources and data collection
techniques. We have seen that some websites are
more suitable as sources of textual data than others.

6 Conclusion

The paper contains a detailed description of pre-
processing steps that were taken to prepare tex-
tual data collected from seven web aggregators of
cultural information for automatic analysis using
NLP methods. We followed the best practices in
the field, and expected that cleaner data with 15-
40% smaller vocabulary would yield gains in the
classifier performance proportional to the efforts
invested. However, it seems that these efforts fall
with the 80% of work that generates only 20% of
profits, following the famous Pareto principle. In
the future, we plan to explore the interrelations
between types of preprocessing and actual gains
seen for different types of language representations,
particularly embeddings and classification setups.
What is the impact of preprocessing on parsing?
Which types of noise can actually be tolerated?
One take-away from this project is that selection of
web resources is important: some of them return
cleaner data than others. It is true that data prepro-
cessing takes most of the research time, too. When

reporting the results, in addition to the inaccura-
cies of analysis, two caveats have to be made with
regard to the amount of observations (datapoints)
discarded during preprocessing.

Acknowledgements

This work has been partly supported by the Rus-
sian Foundation for Basic Research within Project
Cultural Trends in the Tyumen Region in the Na-
tional and Global Contexts No. 20-411-720010
p_a_Tyumen region.

References
Khetam Al Sharou, Zhenhao Li, and Lucia Specia.

2021. Towards a Better Understanding of Noise
in Natural Language Processing. In RANLP-2021,
page in print.

Kira Droganova, Olga Lyashevskaya, and Daniel Ze-
man. 2018. Data conversion and consistency of
monolingual corpora: Russian ud treebanks. In Pro-
ceedings of the 17th international workshop on tree-
banks and linguistic theories (tlt 2018), volume 155,
pages 53–66.

Teresa Gonçalves and Paulo Quaresma. 2005. Evaluat-
ing preprocessing techniques in a text classification
problem. São Leopoldo, RS, Brasil: SBC-Sociedade
Brasileira de Computação.

93

Yaakov HaCohen-Kerner, Daniel Miller, and Yair Yi-
gal. 2020. The influence of preprocessing on text
classification using a bag-of-words representation.
PloS one, 15(5):e0232525.

Ammar Ismael Kadhim. 2018. An evaluation of pre-
processing techniques for text classification. Inter-
national Journal of Computer Science and Informa-
tion Security (IJCSIS), 16(6):22–32.

Periasamy Kathiravan and N Haridoss. 2018. Prepro-
cessing for mining the textual data: A review. vol,
7:5–8.

Andrey Kutuzov and Elizaveta Kuzmenko. 2017. We-
bVectors: A Toolkit for Building Web Interfaces for
Vector Semantic Models, pages 155–161. Springer
International Publishing, Cham.

Roman Sergienko, Muhammad Shan, and Wolfgang
Minker. 2016. A comparative study of text prepro-
cessing approaches for topic detection of user utter-
ances. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC’16), pages 1826–1831.

Tatiana Shavrina and Olga Shapovalova. 2017. To
the methodology of corpus construction for machine
learning:«taiga» syntax tree corpus and parser. In
Proceedings of the “Corpora, pages 78–84.

John Sinclair. 1991. Corpus, Concordance, Colloca-
tion. Oxford University Press.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS Tagging, Lemmatizing and Parsing UD 2.0
with UDPipe. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 88–99.

Venkata Subramaniam, Shourya Roy, Tanveer
Faruquie, and Sumit Negi. 2009. A survey of types
of text noise and techniques to handle noisy text. In
Proceedings of The Third Workshop on Analytics
for Noisy Unstructured Text Data, pages 115–122.

https://doi.org/10.1007/978-3-319-52920-2_15
https://doi.org/10.1007/978-3-319-52920-2_15
https://doi.org/10.1007/978-3-319-52920-2_15
http://www.aclweb.org/anthology/K17-3009
http://www.aclweb.org/anthology/K17-3009
http://www.aclweb.org/anthology/K17-3009

