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Abstract

Temporal commonsense reasoning is a chal-
lenging task as it requires temporal knowledge
usually not explicitly stated in text. In this
work, we propose an ensemble model for tem-
poral commonsense reasoning. Our model re-
lies on pre-trained contextual representations
from transformer-based language models (i.e.,
BERT), and on a variety of training methods
for enhancing model generalization: 1) multi-
step fine-tuning using carefully selected aux-
iliary tasks and datasets, and 2) a specifically
designed temporal task-adaptive pre-trainig
task aimed to capture temporal commonsense
knowledge. Our model greatly outperforms
the standard fine-tuning approach and strong
baselines on the MC-TACO dataset.

1 Introduction

Although recent pre-trained language models such
as BERT (Devlin et al., 2019) have achieved great
success in a wide range of natural language process-
ing (NLP) tasks, these models may still perform
poorly on temporal reasoning scenarios. Ribeiro
et al. (2020) has shown that such models often fail
to make even simple temporal distinctions, for ex-
ample, to distinguish the words before and after,
resulting in degraded performance. An especially
challenging task is temporal commonsense reason-
ing. For instance, given two events “going on a va-
cation” and “going for a walk”, while most humans
would know that a vacation is typically longer and
occurs less often than a walk, computers have diffi-
culty understanding and reasoning about temporal
commonsense (Zhou et al., 2019).

In this paper, we focus on developing a model
for temporal commonsense reasoning. Follow-
ing best practices from recent work on enhancing
model generalization, we propose a model that en-
riches pre-trained contextual representations with
temporal knowledge and general commonsense

knowledge by leveraging carefully selected aux-
iliary datasets in a multi-step fine-tuning setting.
Moreover, we specifically designed a temporal task-
adaptive pre-training task aimed to capture tempo-
ral commonsense knowledge by masking temporal
indicators in text.

We evaluate our model on the challenging Multi-
ple Choice Temporal Common-sense (MC-TACO)
dataset (Zhou et al., 2019). In our experiments, our
model substantially outperforms the standard fine-
tuning approach, as well as other strong baselines.

2 Temporal Commonsense Reasoning
Task

This task entirely focuses on a specific reasoning
capability: temporal commonsense. Zhou et al.
(2019) used crowdsourcing to create the Multi-
ple Choice Temporal Common-sense (MC-TACO)
dataset, which collects the temporal knowledge of
five temporal properties: (1) duration (how long an
event takes), (2) temporal ordering (typical order of
events), (3) typical time (when an event occurs), (4)
frequency (how often an event occurs), and (5) sta-
tionarity (whether a state is maintained for a very
long time or indefinitely). It contains 13k tuples,
each consisting of a sentence, a question, and a can-
didate answer, that should be judged as plausible or
not. The sentences are taken from different sources
such as news, Wikipedia and textbooks. An exam-
ple from the dataset is below. The correct answer
is in bold.

Paragraph: Growing up on a farm near St. Paul,
L. Mark Bailey didn’t dream of becoming a judge.
Question: How many years did it take for Mark
to become a judge?
a) 63 years b) 7 weeks c) 7 years
d) 7 seconds e) 7 hours
Reasoning Type: Duration
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We use the MC-TACO dataset for evaluating the
performance of our model.

3 Model

Our work uses BERT (Devlin et al., 2019) as the
text encoder. It has obtained high performance
on several natural language understanding (NLU)
benchmarks and it is relatively simple to adapt its
architecture to downstream tasks. We focus on
exploring different training techniques using BERT
(Devlin et al., 2019), given its superior performance
on a wide range of NLP tasks. The text encoder
and the training methods used in our model are
detailed below.

3.1 Text Encoder

BERT (Devlin et al., 2019): We use the BERTBASE
model and the BERTLARGE model released by the
authors. The BERTBASE model consists of 12 trans-
former layers, 12 self-attention heads per layer,
and a hidden size of 768. The BERTLARGE model
consists of 24 transformer layers, 16 self-attention
heads per layer, and a hidden size of 1024.

3.2 Training Methods

Multi-Step Fine-Tuning: Multi-step fine-tuning
works by performing a second stage of pre-training
with data-rich related supervised tasks. It has been
shown to improve model robustness and perfor-
mance, especially for data-constrained scenarios
(Phang et al., 2018; Camburu et al., 2019). We
first fine-tune BERT on carefully selected auxiliary
tasks and datasets. This model’s parameters are
further refined by fine-tuning on the MC-TACO
dataset. The auxiliary tasks and datasets we use are
detailed below:

Event Duration Prediction Task: This task in-
volves predicting the duration of an event in a span
of text. We use TimeML (Saurı́ et al., 2006; Pan
et al., 2006), a dataset with event duration anno-
tated as lower and upper bounds. The task is to
decide whether a given event has a duration longer
or shorter than a day. An example of a sentence
with an event (in bold) that has a duration shorter
than a day is shown below:

In Singapore, stocks hit a five year low.

Event Ordering Prediction Task: This task in-
volves predicting the temporal relationship between
a pair of input events in a span of text. In our work,
we use the MATRES dataset (Ning et al., 2018).

It originally contains 13,577 pairs of events anno-
tated with a temporal relation (BEFORE, AFTER,
EQUAL, VAGUE). The temporal annotations are
performed on 256 English documents (and 20 more
for evaluation) from the TimeBank (Pustejovsky
et al., 2003), AQUAINT (Graff, 2002) and Plat-
inum (UzZaman et al., 2013) datasets. An example
of a sentence with two events (in bold) that hold
the BEFORE relation:

At one point , when it (e1:became) clear
controllers could not contact the plane,
someone (e2:said) a prayer.

Commonsense Reasoning Task: We propose to
enrich the temporal commonsense reasoning task
training by leveraging data from general common-
sense knowledge task. Since the commonsense
reasoning task commonly also involves reasoning
about temporal events, e.g. what event(s) might
happen before or after the current event, we hy-
pothesize that temporal reasoning might benefit
from it. In our experiments, we use the CosmosQA
(Huang et al., 2019) and the SWAG (Zellers et al.,
2018) datasets. An example from the CosmosQA
dataset is below. The task is to choose the correct
answer among four options. The correct answer is
in bold.

Paragraph: Did some errands today. My
prime objectives were to get textbooks,
find computer lab, find career services,
get some groceries, turn in payment plan
application, and find out when KEES
money kicks in. I think it acts as a refund
at the end of the semester at Murray, but
I would be quite happy if it would work
now.

Question: What happens after I get the
refund?

Option 1: I can pay my bills.
Option 2: I can relax.
Option 3: I can sleep.
Option 4: None of the above choices.

An example from the SWAG dataset is below.
The task is to choose the correct ending among four
options. The correct answer is in bold.

Question: On stage, a woman takes a
seat at the piano. She

Option 1: sits on a bench as her sister
plays with the doll.
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Option 2: smiles with someone as the
music plays.

Option 3: is in the crowd, watching the
dancers.

Option 4: nervously sets her fingers on
the keys.

We also experimented with task-adaptive pre-
training on the MC-TACO dataset followed by
fine-tuning on MC-TACO. The task-adaptive pre-
training method is explained below.

Task-Adaptive Pre-Training (TAPT): Although
BERT achieves good performance on only fine-
tuning it on the target task, there might be a distribu-
tional mismatch between the pre-trained model and
the target dataset. To alleviate this issue, perform-
ing continual pre-training using the target dataset
can be useful to adapt the pre-trained model to the
target task (Gururangan et al., 2020). In this setting,
we perform continual pre-training on BERT using
the MC-TACO dataset. More specifically, we con-
duct the masked language modeling and the next
sentence prediction tasks on BERT using the MC-
TACO dataset. The masked language modeling
task randomly replaces a subset of tokens by a spe-
cial token (e.g., [MASK]), and asks the model to
predict them. The next sentence prediction task is
a binary classification task that for a given sentence
pair determines whether one follows the other in
the original text (Liu et al., 2020). In addition, we
also experimented with masking only the tokens
that have a high TF-IDF score.

Temporal Task-Adaptive Pre-Training (Tempo-
ral TAPT): In this setting, instead of randomly
mask words in the masked language modeling
task, we mask time-related words. Those words
include numbers, adverbs, adjectives, prepositions
(before/after, every, often, etc.), and units of time
(hours, years, etc.).

3.3 Ensemble Model

Ensemble of deep learning models has proven ef-
fective in improving test accuracy (Allen-Zhu and
Li, 2020). We built different ensemble models by
taking a majority vote of the outputs of a few in-
dependently trained models. Each single model
was trained on standard fine-tuning, multi-step
fine-tuning, task-adaptive pre-Training, or temporal
task-adaptive pre-Training using BERT.

4 Experiments

4.1 Datasets

In this paper, we use MC-TACO as the training and
evaluation dataset. In addition, we use the TimeML,
MATRES, CosmosQA, and SWAG datasets as aux-
iliary datasets in the multi-step fine-tuning setting,
as detailed in Section 3.2. The summary of the
datasets is shown in Table 1.

train val test
MC-TACO - 3,783 9,442
TimeML 1,248 - 1,003
MATRES 12,716 - 838

CosmosQA 25,588 3,000 7,000
SWAG 73,546 20,006 20,005

Table 1: Summary of the datasets used in our experi-
ments.

4.2 Implementation Details

For the multi-step fine-tuning experiments, the
maximum sequence length, batch size, number of
epochs, and the learning rate settings are shown
in Table 2. For hyperparameter tuning, the param-
eters with the best accuracy on performing cross-
validation on the MC-TACO evaluation set are cho-
sen. In all experiments, we use BERTBASE as the
text encoder unless stated otherwise.

max # learning
seq len batch size epochs rate

MC-TACO 128 {32,16} {3,4,5} {1e-5,2e-5}
TimeML 128 {32,16} {3,4,5} {1e-5,2e-5}
MATRES 128 {32,16} {3,4,5} {1e-5,2e-5}
TimeML + 128 {32,16} {3,4,5} {1e-5,2e-5}MATRES
CosmosQA 256 32 {1,3,5} {1e-5,2e-5}
SWAG 256 32 {1,2,3} {1e-5,2e-5}

Table 2: Hyperparameter settings for the multi-step
fine-tuning experiments. The parameters with best per-
formance are shown in bold.

The maximum sequence length, batch size, num-
ber of epochs, and the learning rate settings for the
TAPT and Temporal TAPT experiments are set to
128, 32, 3, and 3e-5, respectively.

We use the exact match (EM) and F1-score as
the evaluation metrics. EM measures how many
questions a system correctly labeled all candidate
answers, while F1-score measures the average over-
lap between one’s predictions and the ground truth.
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4.3 Results
Multi-Step Fine-Tuning: The results of the
multi-step fine-tuning experiments are shown in
Table 3. We used BERTBASE as the text encoder.

fine-tuned on EM [%] F1 [%]
MC-TACO 40.9 (42.1) 69.9 (68.2)
TimeML→MC-TACO 41.3 (40.2) 70.3 (67.1)
MATRES→MC-TACO 39.6 (42.0) 69.2 (69.4)
TimeML + MATRES 40.2 (40.9) 70.2 (67.7)→MC-TACO
CosmosQA→MC-TACO 42.2 (41.7) 70.4 (68.9)
SWAG→MC-TACO 43.0 (42.0) 71.7 (67.8)

Table 3: Test results on multi-step fine-tuning using
BERTBASE. The cross-validation results are shown in
parenthesis.

The MC-TACO model denotes the model that
uses standard single-stage fine-tuning using MC-
TACO, and the TimeML→MC-TACO, TimeML +
MATRES, the CosmosQA→MC-TACO, and the
SWAG→MC-TACO models denote the models that
use multi-step fine-tuning using other datasets as
the first stage fine-tuning and MC-TACO as the
second-stage fine-tuning. The TimeML + MA-
TRES →MC-TACO model denotes the model that
combined the TimeML and MATRES datasets for
the first stage of fine-tuning. We can observe that
multi-step fine-tuning improved the overall accu-
racy, although there were some differences depend-
ing on the dataset used. The best results were
obtained when we fine-tune on SWAG followed
by MC-TACO (SWAG→MC-TACO model). This
indicates that enriching training with general com-
monsense knowledge is beneficial.

We also conducted experiments using
BERTLARGE, where we can observe similar
tendency in the results compared to BERTBASE.
The results are shown in Table 4.

fine-tuned on EM [%] F1 [%]
MC-TACO 42.6 (42.9) 70.9 (71.0)
TimeML→MC-TACO 44.8 (43.7) 72.8 (70.8)
CosmosQA→MC-TACO 46.3 (43.6) 73.4 (70.7)
SWAG→MC-TACO 46.2 (44.7) 73.6 (72.6)

Table 4: Test results on multi-step fine-tuning using
BERTLARGE. The cross-validation results are shown in
parenthesis.

Task-Adaptive Pre-Training (TAPT): Table 5
shows the Task-Adaptive Pre-Training (TAPT) re-
sults where we randomly mask a subset of tokens.
In order to check if we could further reduce the mis-
match between the pre-trained model and the target

task dataset, we also experimented with masking
rates higher than BERT’s default masking rate of
15%. However, the best accuracy was obtained
with the 15% masking probability.

Masking Probability [%] EM [%] F1 [%]
15 44.5 (45.2) 71.9 (72.4)
30 43.5 (44.3) 71.9 (71.3)
60 42.8 (44.6) 71.1 (69.9)

Table 5: Task-Adaptive Pre-Training (TAPT) results
when masking words randomly. The cross-validation
results are shown in parenthesis.

We also experimented with masking the tokens
that have a high TF-IDF score. For each sentence,
the candidate words for masking are the top-half
words with the highest TF-IDF score. We also
remove the stopwords when computing the TF-IDF.
We experimented with two stopwords lists: nltk
stopwords list 1 and sklearn stopwords list 2. The
results are shown in Table 6. Overall, using the
nltk’ stopwords achieved the best results.

stopwords = nltk
Masking Probability [%] EM [%] F1 [%]

15 43.3 (43.9) 71.7 (69.4)
30 43.5 (44.3) 71.7 (70.9)
45 44.4 (42.4) 72.3 (69.6)
60 43.5 (44.3) 71.7 (71.0)

stopwords = sklearn
Masking Probability [%] EM [%] F1 [%]

15 42.0 (43.6) 70.9 (71.4)
30 43.0 (45.3) 71.0 (71.2)
45 43.0 (46.0) 71.4 (72.5)
60 41.7 (45.8) 70.7 (71.4)

Table 6: Task-Adaptive Pre-Training (TAPT) results
when masking words with a high TF-IDF score. The
cross-validation results are shown in parenthesis.

Since the accuracy differs between using nltk’s
stopwords and sklearn’s stopwords, we looked at
the contents of each stopword and found that the
stopwords from sklearn contained words related to
time (i.e. numbers, prepositions such as before and
after, adverbs, etc.) that ended up being removed,
and not being masking candidate words. Therefore,
we conducted a similar experiment in which we
manually removed the time-related words from the
sklearn stopwords. The results of the experiment
are shown in Table 7.

As we can observe, the accuracy is higher com-
pared to when using the original sklearn’s stop-

1https://www.nltk.org/nltk data/
2https://scikit-learn.org/stable/modules/feature extraction.html#stop-

words
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Masking Probability [%] EM [%] F1 [%]
15 42.6 (42.4) 70.6 (69.9)
30 43.2 (43.5) 71.2 (69.9)
45 44.1 (43.8) 71.8 (71.3)
60 43.3 (44.3) 71.5 (71.1)

Table 7: Task-Adaptive Pre-Training (TAPT) results
when masking words with a high TF-IDF score. The
cross-validation results are shown in parenthesis. Here,
we use the sklearn’s stopwords without the time-related
words.

words, indicating that it is not optimal to exclude
words related to time from the calculation of TF-
IDF. The accuracy of the TF-IDF experiment is
about the same as that of randomly selecting words
to be masked.

Next, we set a threshold value and try to mask
words where TF-IDF exceeds this value. We set
different threshold values based on the percentage
of the total number of words that will be masked,
and we treat them as a hyperparameter. For the
stopwords, we use the nltk’s stopwords and the
sklearn’s stopwords excluding the words related to
time. The results are shown in Table 8.

TF-IDF Masking EM [%] F1 [%]Threshold Probability [%]
stopwords = nltk

0.35 19.3 41.8 (42.5) 70.4 (69.2)
0.3 28.5 42.5 (40.9) 71.0 (69.5)

0.25 45.6 41.8 (42.8) 70.7 (69.0)
stopwords = sklearn - time

0.35 22.6 42.5 (43.2) 71.2 (68.8)
0.3 31.2 42.0 (40.9) 70.3 (68.1)

0.25 43.2 42.5 (44.6) 71.0 (70.3)

Table 8: Task-Adaptive Pre-Training (TAPT) results
when masking words with a high TF-IDF score. The
cross-validation results are shown in parenthesis. Here,
we mask all words that exceed a TF-IDF threshold
value.

We found that if we masked all the words where
TF-IDF exceeded the threshold, the accuracy de-
creases. Therefore, we randomly select tokens to
mask from the words that exceed the threshold
value. The results for this setting are shown in Ta-
ble 9. In some cases, the accuracy was improved
over the default case where the tokens are randomly
masked. On the other hand, it is difficult to find
regularities in the threshold setting and the percent-
age of masking, thus masking focusing on TF-IDF
may not be effective.

Temporal Task-Adaptive Pre-Training (Tempo-
ral TAPT): Here, time-related words (numbers,

TF-IDF Masking EM [%] F1 [%]Threshold Probability [%]
stopwords = nltk

0.35

15 43.0 (44.0) 71.2 (71.0)
30 43.6 (44.6) 71.2 (70.8)
45 43.5 (44.1) 71.3 (71.4)
60 44.2 (43.1) 72.8 (70.3)

0.3

15 43.1 (44.9) 71.0 (71.1)
30 43.5 (44.7) 71.6 (71.5)
45 43.2 (44.1) 71.8 (71.2)
60 44.1 (44.3) 71.8 (71.6)

0.25

15 43.6 (43.2) 71.4 (70.6)
30 43.8 (44.7) 71.0 (72.8)
45 42.8 (44.2) 72.0 (70.8)
60 42.0 (44.7) 71.0 (70.3)

stopwords = sklearn - time

0.35

15 42.3 (44.3) 71.3 (71.8)
30 45.0 (45.8) 72.1 (70.9)
45 42.9 (44.8) 70.9 (72.1)
60 45.0 (42.6) 71.9 (68.3)

0.3

15 44.7 (43.6) 72.5 (71.0)
30 42.6 (44.8) 71.1 (71.9)
45 42.8 (42.5) 70.8 (70.1)
60 43.1 (44.8) 71.3 (70.9)

0.25

15 42.9 (43.6) 71.3 (70.7)
30 43.4 (43.8) 71.6 (71.0)
45 42.9 (45.6) 71.3 (70.6)
60 43.7 (43.3) 71.7 (68.8)

Table 9: Task-Adaptive Pre-Training (TAPT) results
when masking words with a high TF-IDF score. The
cross-validation results are shown in parenthesis. Here,
we randomly select tokens to mask from the words that
exceed the threshold value.

before/after, every, hour, etc.) have a higher mask-
ing probability than the other words. The results are
shown in Table 10. Different form the TAPT exper-
imentes, here, masking rates higher than BERT’s
default masking rate of 15% improves the perfor-
mance, indicating that masking temporal indicators
with a higher masking rate further helps the model
to acquire temporal knowledge. Moreover, we
found that if we masked all the time-related words
(100% masking probability ), the accuracy would
decrease, but if we left a few words unmasked, the
accuracy improves.

Ensemble Model: We built different ensemble
models by taking a majority vote of the outputs of
a few independently trained models. Each single
model was trained on standard fine-tuning, multi-
step fine-tuning, Task-Adaptive Pre-Training, or
Temporal Task-Adaptive Pre-Training using BERT.
The results are shown in Table 11.

The experimental results show that ensembling
improves accuracy. In particular, pattern 4, which
uses three models: multi-step fine-tuning with Cos-
mosQA, multi-step fine-tuning with SWAG, and



83

Masking Masking

EM [%] F1 [%]Probability Probability
(time-related (others)
words) [%] [%]

100 0 42.7 (46.6) 71.0 (71.7)
90 10 44.1 (43.3) 71.6 (70.1)
80 20 45.1 (44.3) 72.7 (70.7)
70 30 42.9 (42.6) 71.9 (69.5)

Table 10: Temporal Task-Adaptive Pre-Training (Tem-
poral TAPT) results. The cross-validation results are
shown in parenthesis. Here, time-related words (num-
bers, before/after, every, hour, etc.) are masked with
higher probability than the other words.

model pattern1 pattern2 pattern3 pattern4

MC-TACO !
TimeML

!→MC-TACO
CosmosQA

! ! ! !→MC-TACO
SWAG

! ! ! !→MC-TACO
TAPT(random) !

Temporal TAPT !
EM [%] 45.0 45.6 44.4 46.5
F1 [%] 72.9 73.2 72.0 73.9

Table 11: Ensemble Model results.

Temporal Task-Adaptive Pre-Training obtained the
best performance, with an EM score of 46.5% and
an F1-score of 73.9%.

This model also outperformed the model from
Zhou et al. (2019): a BERT model with stan-
dard fine-tuning, and a time unit normalized BERT
model, where the authors further add unit normal-
ization to temporal expressions in candidate an-
swers and fine-tune on the MC-TACO dataset. Ta-
ble 12 shows the results.

model EM [%] F1 [%]
BERT 39.6 66.1

BERT + unit 42.7 69.9normalization
Ours 46.5 73.9

Human 75.8 87.1

Table 12: Comparison of our best ensemble model with
the model from Zhou et al. (2019).

We also compared our best ensemble model
with TACOLM, proposed by Zhou et al. (2020).
TACOLM is a BERT model pre-trained on explicit
and implicit mentions of temporal commonsense,
extracted from a large corpus using pattern rules.
The results are shown in Table 13. As we can
observe, the accuracy of all the five temporal prop-
erties was improved by our model.

class BERT TACOLM Ours
Duration 33.4 34.6 36.9
Ordering 36.5 35.1 46.0

Stationarity 57.6 57.9 59.3
Frequency 43.3 45.1 49.3

Typical Time 39.5 40.9 46.2

Table 13: Comparison of our best ensemble model with
TACOLM (Zhou et al., 2020).

4.4 Discussion
In our experiments, we could observe that multi-
step fine-tuning outperforms standard single-stage
fine-tuning. Also, fine-tuning BERT in the first
stage using Temporal TAPT followed by fine-
tuning on MC-TACO obtained the best perfor-
mance among all single models. This indicates
that a careful choice of the words to be masked has
an impact on the performance. On the other hand,
when all the words related to time were masked, the
accuracy deteriorated. We hypothesize this is be-
cause if all the words were masked, the information
about time would disappear from the context, and
inferences about temporal common sense would be
difficult.

In the TAPT experiments with TF-IDF, we found
it difficult to find a regularity regarding the thresh-
old and the ratio of masking, and it is hard to claim
that masking based on TF-IDF is effective. In this
study, we focus on the temporal commonsense task,
and since the data contains more words related to
time than other tasks, the value of IDF becomes
smaller, and it may be said that TF-IDF might not
be optimal.

5 Conclusion
In this paper, we proposed a model for temporal
commonsense reasoning. We specifically designed
a temporal masked language model task aimed
to capture temporal commonsense knowledge by
masking temporal indicators in text and used it in a
multi-step fine-tuning setting. Moreover, we found
out that an ensemble of this model with other mod-
els achieves the best results, outperforming other
state-of-the-art models. In order to improve our
model, we plan to conduct attention and saliency
analysis.
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