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Abstract

Being able to accurately perform Question Dif-
ficulty Estimation (QDE) can improve the ac-
curacy of students’ assessment and better their
learning experience. Traditional approaches
to QDE are either subjective or introduce a
long delay before new questions can be used
to assess students. Thus, recent work pro-
posed machine learning-based approaches to
overcome these limitations. They use ques-
tions of known difficulty to train models ca-
pable of inferring the difficulty of questions
from their text. Once trained, they can be used
to perform QDE of newly created questions.
Existing approaches employ supervised mod-
els which are domain-dependent and require a
large dataset of questions of known difficulty
for training. Therefore, they cannot be used if
such a dataset is not available (e.g. for new
courses on an e-learning platform). In this
work, we experiment with the possibility of
performing QDE from text in an unsupervised
manner. Specifically, we use the uncertainty
of calibrated question answering models as a
proxy of human-perceived difficulty. Our ex-
periments show promising results, suggesting
that model uncertainty could be successfully
leveraged to perform QDE from text, reducing
both costs and elapsed time.

1 Introduction

Question Difficulty Estimation (QDE), also known
as “question calibration”, is a crucial task in edu-
cation. In Computerized Adaptive Testing (Linden
et al., 2000), for instance, students are shown ques-
tions that are suitable for their skill level. When
a question is miscalibrated (i.e. its difficulty has
been erroneously estimated), it can be either too
hard or too easy for a student, which would nega-
tively affect their learning outcome (Wang, 2014).
If the questions are too hard, students might get
frustrated and lose motivation; if they are too easy,

students are not adequately challenged (Papousek
et al., 2016). In either case, their learning experi-
ence is worse than if the questions were of appro-
priate difficulty, which, especially in the context of
large-scale online courses, gives rise to the methods
of automated difficulty estimation.

Traditionally, QDE is performed either i) manu-
ally (Attali et al., 2014) or ii) with pretesting (Lane
et al., 2015). Manual calibration involves one (or
more) human experts labelling the question by se-
lecting a numerical value representing its difficulty,
a method that is subjective and not scalable. Mean-
while, pretesting involves deploying the new ques-
tion in an exam as if it was a standard exam ques-
tion, but without using it to assess students and
without telling them that there is a question un-
der pretesting. The other questions of the exams
are then used to actually assess the students, and
their answers help to calibrate the question under
pretesting. This approach indeed leads to an ac-
curate calibration, but it introduces a long delay
between the time of question creation and when
the new question can be used to assess students.
Besides, it requires the new questions to be shown
to students before being actually used for scoring
them, which is undesirable.

Recent studies tried to address the limitations of
the traditional approaches by performing QDE with
Natural Language Processing (NLP) techniques
(Ha et al., 2019; Qiu et al., 2019; Benedetto et al.,
2020b, 2021; Xue et al., 2020; Huang et al., 2017).
They are all based upon the same general idea: start-
ing from a set of calibrated questions, we train a
supervised machine learning model to infer the dif-
ficulty of questions from their text. Once the model
is trained, it is used to calibrate newly-generated
questions, overcoming (or at least reducing) the
need for pretesting and manual calibration. Al-
though these techniques were proposed to enable
an immediate calibration of new questions, they
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have two major limitations due to their supervised
manner: i) they require thousands of calibrated
questions as a training set, and ii) they cannot per-
form cross-domain QDE. In other words, the train-
ing questions must assess the same topics as the
new questions, which the model will later be used
on, thus limiting its applicability (e.g. when in-
troducing new courses in an e-learning platform).
These limitations are intrinsic to such approaches
and cannot be addressed by improving the accuracy
of the models.

In this work, we explore an approach that is
a total shift in the paradigm of QDE from text
and which could potentially overcome both lim-
itations. The intuition is to build an end-to-end
Question Answering (QA) model that answers Mul-
tiple Choice Questions (MCQs) and use its uncer-
tainty (which can be interpreted as representing
the machine-perceived difficulty) as a proxy for
human-perceived difficulty, which is the final tar-
get of the estimation. Previous research already
hypothesized that there might be a relation be-
tween human-perceived difficulty and machine-
perceived difficulty (Ha et al., 2019), but leveraged
the machine-perceived difficulty as a feature for a
supervised model, thus facing the same limitations
as the approaches to QDE from text mentioned
above. On the contrary, the approach we propose
here performs QDE by leveraging the confidence of
a trained QA model: specifically, we compute the
variance of the probability distribution over the pos-
sible answer choices of the MCQ under calibration.
Crucially, this approach is model agnostic and can
be used on any QA model that outputs scores for
the possible choices of an MCQ. Architecture-wise,
in this study, we experiment with Transformers
(Vaswani et al., 2017) for QA. In order to under-
stand how well the proposed approach performs
with different QA models, we use three different
Transformers: BERT (Devlin et al., 2019), Distil-
BERT (Sanh et al., 2019), and XLNet (Yang et al.,
2019). We choose them because they offer vari-
ety and differ in sizes, and were all demonstrated
to perform well in several language understanding
tasks.

However, large neural classification models tend
to be overconfident in their predictions (Desai and
Durrett, 2020), which might hinder the possibility
of using their uncertainty as a proxy for question
difficulty. In order to understand whether this is
really an issue for unsupervised QDE from text

and to explore possible solutions, we also exper-
iment with calibrated QA models. Calibrating a
model involves aligning the posterior probabilities
with the empirical likelihoods (Guo et al., 2017).
For instance, if we consider all the predictions for
which a model has the confidence of 75%, the true
accuracy must be 75% if the model is perfectly cal-
ibrated. We remark here that calibration and accu-
racy are not directly related: in fact, a model might
be accurate but not calibrated or, on the other hand,
not very accurate but well-calibrated. Calibration
can be intuitively interpreted as the “awareness” of
the model of its capabilities. In practice, several
techniques can be used for calibrating neural mod-
els, and they will be discussed in Section 3. For
simplicity and computational reasons, we use the
ensembling technique.

We experiment on the large question-answering
dataset RACE (Lai et al., 2017) to assess the QDE
capabilities of the proposed approach. Specifically,
we evaluate it on the task of pairwise difficulty
prediction: given a pair of questions from RACE,
the objective is to indicate which question of the
pair is more difficult. As the gold standard for the
difficulty, we use i) the difficulty level available
in RACE and ii) additional human labels obtained
with crowd-sourcing. The experimental results are
promising and suggest that the proposed approach
could be used to perform QDE from text in an
unsupervised manner leveraging the uncertainty
of QA models. We also show that choosing the
underlying QA model is not straightforward, and
the best results are obtained leveraging models that
are both accurate and calibrated.

Our contributions are as follows: i) we propose
an unsupervised way for QDE from text that does
not require answer logs or question difficulty labels,
only the text of the MCQ and the possible choices,
ii) we experiment with modern Transformer-based
architectures to demonstrate the viability of the
proposed approach.

We share our code publicly1.

2 Related Work

The earliest research about QDE from text focused
on MCQs, using bag-of-words and the similari-
ties between question, correct choice, and distrac-
tors (incorrect choices) for the estimation (Alsubait
et al., 2013; Ha and Yaneva, 2018; Kurdi et al.,
2016; V and Puligundla, 2015). However, they are

1https://bit.ly/3b4tPLN
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generally outperformed by the more recent models,
which are based on machine learning techniques.

Ha et al. (2019) introduced a model to estimate
from a question text its correctness, which is de-
fined as the fraction of students who correctly an-
swered the question. This model was trained using
question texts and a large dataset of medical doc-
uments (i.e. books, papers). Similarly, the model
proposed by Qiu et al. (2019) is trained on a dataset
of medical documents and question texts to esti-
mate the wrongness of newly generated questions.
Benedetto et al. (2020b,a) proposed R2DE, a model
that estimates the difficulty of newly generated
MCQs, using as input only the text of the ques-
tions and the text of the possible choices, without
any additional data. Xue et al. (2020) explored
the effects of transfer learning for question calibra-
tion from text. Specifically, the authors fine-tune
pre-trained ELMo embeddings (Peters et al., 2018)
for the task of response time prediction and subse-
quently perform a second fine-tuning for the task of
QDE. Lastly, Huang et al. (2017) propose a neural
model for the estimation of the difficulty of reading
comprehension questions.

From a high-level perspective, all these models
are based on the same idea: the real question dif-
ficulty (obtained either with pretesting or manual
calibration) is used as the target value for training a
supervised machine learning model that performs
QDE from text for newly generated questions. The
downside of this approach is that it can work only
as long as the new questions belong to the same
domain as the training questions. Moreover, such
models need a large number of calibrated questions
for training, which might be too costly to obtain, es-
pecially for smaller institutions. (Wang et al., 2014)
employs a pairwise difficulty comparison scheme
similar to the one we will, but they still require the
user responses for the algorithm to work, same as
(Narayanan et al., 2017).

Motivated by this, in this work, we explore the
possibility of completely shifting the paradigm
for the task of QDE from text. The proposed ap-
proach leverages the uncertainty of a QA model as
a proxy for question difficulty and uses this model-
perceived difficulty to calibrate newly generated
questions. This unsupervised approach does not
require ground truth difficulty labels, but only the
text of the questions and, in the case of MCQs, of
the possible answer choices.

3 Calibration of Neural Models

Several techniques exist to calibrate neural net-
work classifiers. The most popular ones are the
following: i) vanilla: maximum softmax proba-
bility, which usually does not lead to calibrated
classifiers (Hendrycks and Gimpel, 2017). ii) Tem-
perature scaling: a posterior calibration technique
using a validation set (Guo et al., 2017; Desai and
Durrett, 2020). iii) Bayesian deep learning, which
requires alterations to the training procedure and
is computationally expensive. iv) Ensembles: con-
sists in independently training M models on the
entire dataset using different random initializations
(Lakshminarayanan et al., 2017) or dropout (Gal
and Ghahramani, 2016; Srivastava et al., 2015) and
averaging their predictions.

Focusing on pre-trained Transformers, previous
research (Desai and Durrett, 2020) showed that
pre-trained BERT is fairly well-calibrated for in-
domain tasks, but it is miscalibrated for out-of-
domain tasks. To the best of our knowledge, no
previous research experimented with the calibra-
tion of DistilBERT and XLNet.

In this work, we use deep ensembles with M
equal to 3, since we observed that this approach led
to fairly well-calibrated models for all the Trans-
former architectures under evaluation. Addition-
ally, we also experimented with ensembles made
of the combination of models with different archi-
tectures (e.g. BERT with XLNet, etc.).

Considering the metrics existing to evaluate
model calibration, one of the most commonly used
approaches is the Expected Calibration Error (ECE)
(Naeini et al., 2015), which compares the confi-
dence and the accuracy of the model. More pre-
cisely, it defines miscalibration as the difference
in expectation between confidence and accuracy.
Thus, ECE approximates the miscalibration by par-
titioning the predictions in a number M of bins and
averaging the difference between the accuracy and
confidence obtained in each bin.

4 Models

The approach proposed in this paper leverages the
confidence of a QA model to perform QDE for
MCQs in an unsupervised manner. Specifically, it
leverages the output scores, one for each possible
answer choice, produced by the model for each
question, and the only requirement is that such
output scores represent a probability distribution
(i.e. they sum to 1, such as the softmax scores of
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a neural network). We experiment here on MCQ
with four possible choices, but the approach can
be easily scaled to MCQ with different numbers
of answer choices. It is important to note that this
approach to unsupervised QDE from text is “QA
model agnostic”, in the sense that it does not need
any information about the underlying model but
only the scores produced by it. We leverage the
softmax scores produced by the underlying QA
model to measure the model-perceived question
difficulty, which is considered a proxy for human-
perceived difficulty. In practice, we convert the
raw softmax scores of each question into a single
numerical value by computing their variance. We
assume that larger values of variance indicate easier
questions (since it means that the model is more
certain in the estimation).

We also experimented with some alternatives,
but they were generally outperformed by using the
score variance (although the difference was not
major). Specifically, we also experimented with:
i) keeping only the highest softmax score, and ii)
computing the difference between the highest and
the second-highest softmax score.

In order to understand how the proposed ap-
proach performs with softmax scores from differ-
ent underlying QA models, we experiment with
three Transformer models: i) BERT (Devlin et al.,
2019), ii) DistilBERT (Sanh et al., 2019), and iii)
XLNet (Yang et al., 2019). The details of each
architecture are beyond the scope of this research;
we refer to the original papers for their descrip-
tion. For our study, it is essential to know that they
are all publicly available neural network models,
which are pre-trained on several language under-
standing tasks, and that they can be fine-tuned for
different downstream tasks with minimal changes
to the architecture. Precisely, in this study, we add
a multiple-choice classification layer on top of each
original model, which is a common task in the lit-
erature. The three models have diverse sizes and
architectures, even though DistilBERT is strongly
related to BERT since it is obtained from it by us-
ing knowledge distillation (Hinton et al., 2015) to
reduce the number of hidden layers.

We implement all the models with the Hugging-
Face transformers library (Wolf et al., 2019), using
in all cases the pre-trained base-cased version. We
fine-tune them using Google Colab GPUs. The pa-
rameter configuration for the QA models is taken
from the literature; the specific values are shown

Parameter BERT DistilBERT XLNet
input text len. 256 512 256
learning rate 2e-5 5e-5 2e-5
Adam epsilon 1e-6 1e-8 1e-6
weight decay 0.05 0.05 0.01
n. epochs 2 3 2

Table 1: Training configuration of the QA models.

in Table 1. The table also shows, for each model,
the accuracy we obtain in the QA task on RACE,
which is in line with previously reported results.

As suggested by (Lakshminarayanan et al.,
2017), we ensemble models to reduce miscalibra-
tion. In practice, we proceed as follows. First, we i)
train five instances for each architecture (i.e. BERT,
DistilBERT, XLNet), and each instance is trained
on the entire training dataset (randomly shuffled),
with a different random initialization. Then, we ii)
pick the three best performing instances of each
architecture, considering the test accuracy on the
QA task. Lastly, we iii) build the ensembles by
averaging (separately for each test question) the
softmax scores produced by the three instances of
each architecture so that each of the four answer op-
tions is assigned a single score from 0 to 1. These
scores indicate the probability (according to the
model) of each option being correct. In addition
to building an ensemble for each architecture, we
also build “hybrid” ensembles in the same way but
averaging the predictions of instances of different
architectures.

5 Data

In this study, we use the reading comprehension
RACE dataset2 and two datasets derived from it,
which contain pairs of questions and a label indi-
cating which question of the pair is more difficult.
The entire RACE dataset is used to train the QA
models, while the two other datasets are used for
the experiments on QDE from text.

5.1 RACE

The original RACE dataset contains 25,000 pas-
sages in English from middle and high school read-
ing comprehension exams, with four MCQ associ-
ated with each text (100,000 questions in total). All
the questions are MCQ with four possible choices
(see an example in Figure 1). The questions are

2www.cs.cmu.edu/˜glai1/data/race/

www.cs.cmu.edu/~glai1/data/race/
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Figure 1: An example question from RACE.

designed to require more extensive reasoning skills
than other QA datasets such as SQuaD (Rajpurkar
et al., 2016) and differ in reasoning types required
to answer them. For example, they cover passage
summarization and attitude analysis, which means
that the answer cannot always be extracted directly
from the passage. As a result, neural methods have
a significant performance gap compared to humans:
66.7% (with XLNet-base) and 94.5% accuracy, re-
spectively. The questions can be separated into two
types based on their syntax: interrogative or cloze.
Interrogative questions are the ones that end with a
question mark, while cloze questions contain a gap
that has to be filled in.

5.2 PairRACE HM

For constructing this dataset, we use the level la-
bel available in RACE, which indicates the level
of examination (high or middle) of each question.
Specifically, we use level as an indication of ques-
tion difficulty and prepare 2,062,096 pairs of ques-
tion, such that each pair contains one middle ques-
tion and one high question (related to different pas-
sages). This dataset is then used to evaluate the
proposed approach in the task of pairwise difficulty
estimation: basically, given a pair of question, we
check whether the proposed approach labels the
high question as being the more difficult one.

5.3 PairRACE CS

The level label does not contain a numerical esti-
mation of question difficulty, and there is no way
of knowing how much harder the high questions
are. Therefore, we also build a dataset to evalu-
ate how well the proposed approach performs at
a more focused level difficulty estimation, which
differentiates the difficulty of the question within
the middle level and within the high level. Such
fine-grained information about the difficulty is not

available in RACE; thus we manually annotate a
subset of the question pairs by crowd-sourcing on
the Amazon Mechanical Turk platform.

First, 80 pairs of questions from the test set were
randomly chosen (both questions in each pair have
the same level and correspond to the same passage,
with 77 unique passages used in total). An anno-
tator was then presented with a passage and a pair
of questions, along with their answer options, and
asked to identify the more difficult question. Each
question was first labelled by two of the authors
(with Cohen’s kappa of 0.30) and then passed to
turkers. The only condition imposed on turkers
was to be native English speakers. Each question
was answered by one crowd-worker; thus, in com-
bination with our labels, we obtained three labels
per question pair. To encourage a thoughtful ap-
proach, we added an obligatory field in which we
asked the turkers to provide a brief motivation for
their choice. An example reasoning is the follow-
ing: “Question 1 requires you to think beyond the
passage content, to extrapolate and predict the next
step, while 2 just asks to give a title to the con-
tent.” There were multiple recurring indicators
of how humans estimate difficulty. As expected,
the questions which require searching for a named
entity or finding a simple fact statement are con-
sidered simpler, while summarising information
or giving a title is more challenging. The text’s
location contributes as well – it is easier to answer
the question if the cue can be found in the first
or the last sentences of the passage. Ultimately,
the Fleiss’ kappa3 agreement was 0.21, which is
“fair”, according to guidelines by (Landis and Koch,
1977). Still, we recognise the possible issues with a
relatively low agreement, and, in the experimental
evaluation, we separately consider the performance
on the question pairs with full agreement.

6 Experiments

The goal of our experiments is to perform unsuper-
vised QDE from text, using only the softmax scores
produced by QA models. More precisely, we do
not estimate directly question difficulty but evalu-
ate the proposed approach on the task of pairwise
difficulty prediction: given a pair of questions, the
task consists in identifying the one that is more dif-
ficult. The manual labels are obtained, also within
the pairwise comparison framework. This way,

3is used when the annotators are drawn from a random
distribution
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QA Accuracy ECE
Model eval test test
BERT (0) 0.64 0.62 0.15
BERT (3) 0.64 0.62 0.14
BERT (42) 0.64 0.62 0.14
DistilBERT (1) 0.48 0.46 0.03
DistilBERT (3) 0.44 0.42 0.02
DistilBERT (42) 0.50 0.48 0.14
XLNet (2) 0.66 0.65 0.15
XLNet (3) 0.66 0.66 0.15
XLNet (4) 0.67 0.65 0.15
BERT (E) 0.66 0.63 0.10
DistilBERT (E) 0.49 0.47 0.07
XLNet (E) 0.68 0.66 0.11
BERT-DB (E) 0.64 0.62 0.05
BERT-XLNet (E) 0.48 0.47 0.09
DB-XLNet (E) 0.33 0.32 0.21
BERT-DB-XLNet (E) 0.56 0.55 0.06

Table 2: Evaluation of QA accuracy and calibration of
the underlying models used for QDE from text, both
single instances and ensembles. In the hybrid ensem-
bles, “DB” means “DistilBERT”.

we investigate i) whether the machine uncertainty
leads to a notion of difficulty that aligns well with
the human one – which is represented by the level
and the crowdsourced labels – and ii) whether it
can be useful in practical applications when logs
of answers or calibrated questions are not available
for training.

6.1 Evaluating QA accuracy and calibration

Before actually evaluating the proposed approach
on the task of pairwise difficulty prediction, we
evaluate the QA accuracy and the calibration of
the underlying models to explore the relations be-
tween these and the accuracy in the task of pairwise
difficulty prediction. Results are shown in Table 2.

For QA, we use accuracy as a metric (the higher,
the better), while for calibration, we use Expected
Calibration Error4 (ECE, the lower, the better).
It should be noted that ECE is used to diagnose
whether the model’s confidence can be a reliable
proxy for difficulty or not.

For each underlying model (i.e. BERT, Distil-
BERT, XLNet), we present the results for three
single instances and the calibrated ensemble. The
single instances are identified by a number, which

4calculated with pypi.org/project/
netcal/netcal

is the random seed used during training. While the
specific value of the random seed is not meaningful
in itself for this analysis, we use it to distinguish be-
tween different instances of the same architecture.
Ensembles are indicated by “E”.

As for the QA accuracy, we can see that, con-
sidering the same architecture (e.g. BERT) the
accuracy of the ensembles is generally better than
the single models, both on the eval dataset and
the test dataset. However, this is not true for the
“hybrid” ensembles, which perform worse than the
model they are obtained from.

Similar results can also be seen for model calibra-
tion: ensembles generally have lower ECE, mean-
ing that they are better calibrated. Indeed, BERT
(E) has an ECE of 0.10, while the average of the sin-
gle models is over 0.14, and XLNet (E) has an ECE
of 0.11, the average of the single instances being
0.15. This trend is not as visible for DistilBERT,
as the ensemble model has an ECE only slightly
higher than the average of the single instances (0.07
compared to 0.06).

6.2 Pairwise difficulty prediction

Given as input a question pair, the unsupervised
pairwise difficulty prediction task consists of pre-
dicting which question of the pair is more difficult.
We evaluate the proposed approach using differ-
ent underlying models (both single instances and
calibrated ensembles), and compare it with three
baselines based on ELMo (Peters et al., 2018). It
should be noted that internally there is no difference
indicated between comprehension and knowledge
questions and each model is thus evaluated on the
same subset.

i) ELMoC (comprehension): we calculate the
cosine distance between the ELMo embeddings of
the question and of the passage; the question with
the larger distance is labelled as more difficult.

ii) ELMoK (knowledge): we calculate the aver-
age distance between the correct answer option and
the distractors; the more difficult question has the
lowest distance. This is a standard approach in the
literature (Alsubait et al., 2013; Kurdi et al., 2016).

iii) ELMoQA: a QA model built upon ELMo.
Given a passage and an MCQ, it selects the answer
by picking the choice which has the lowest cosine
distance to the passage. It produces one score for
each possible choice, and we use our approach
directly on these scores (after normalization).

As introduced in Section 4, the proposed ap-

pypi.org/project/netcal/
pypi.org/project/netcal/
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PairRACE HM PairRACE CS
All (n=2M) CA All (n=80) TA (n=37) TA & CA

Model Acc. n Acc. Acc. Acc. n Acc.
Random 0.50 - - 0.50 0.50 - -
ELMoC 0.57 - - 0.65 0.76 - -
ELMoK 0.57 - - 0.50 0.57 - -
ELMoQA 0.55 0.2M 0.57 0.45 0.41 3 -
BERT (0) 0.60 0.8M 0.62 0.55 0.54 20 0.50
BERT (3) 0.60 0.8M 0.61 0.60 0.65 19 0.63
BERT (42) 0.62 0.8M 0.62 0.57 0.59 15 0.53
DistilBERT (1) 0.60 0.5M 0.59 0.51 0.46 6 -
DistilBERT (3) 0.56 0.4M 0.58 0.52 0.51 5 -
DistilBERT (42) 0.60 0.5M 0.61 0.49 0.46 9 -
XLNet (2) 0.57 0.9M 0.60 0.62 0.65 20 0.60
XLNet (3) 0.58 0.9M 0.60 0.60 0.65 21 0.71
XLNet (4) 0.57 0.9M 0.59 0.62 0.68 19 0.68
BERT (E) 0.60 0.9M 0.61 0.59 0.65 19 0.63
DistilBERT (E) 0.58 0.5M 0.58 0.49 0.51 5 -
XLNet (E) 0.57 0.9M 0.60 0.61 0.65 19 0.68
BERT-DistilBERT (E) 0.59 0.9M 0.60 0.49 0.54 19 0.63
BERT-XLNet (E) 0.57 0.5M 0.55 0.57 0.41 8 -
DistilBERT-XLNet (E) 0.56 0.2M 0.55 0.56 0.46 2 -
BERT-DistilBERT-XLNet (E) 0.58 0.7M 0.56 0.56 0.43 8 -

Table 3: Evaluation of pairwise difficulty prediction on PairRACE HM and PairRACE CS. For PairRACE HM
we separately present the accuracy i) on the whole dataset (2M pairs of questions), and ii) on the questions which
were Correctly Answered (CA) by each model, showing the number of question pairs (n). For PairRACE CS we
separately present the accuracy i) on the whole dataset (80 pairs of questions), ii) on the question pairs with Total
Agreement (TA) between the human annotators (37 pairs of questions), and iii) on the question pairs with Total
Agreement which were Correctly Answered by each model (TA & CA).

proach consists of converting the raw softmax
scores of the QA models into a unique value that
can be used for pairwise difficulty prediction. This
is done by computing the variance of the raw soft-
max scores and assuming that the question with the
lower variance is the more difficult one.

Table 3 presents the results obtained on Pair-
RACE HM and PairRACE CS, using accuracy as
evaluation metric. Each row shows the results for a
different model, and we can identify three groups:
the baselines, the single instances, and the ensem-
bles.

6.2.1 High vs middle (PairRACE HM)
The columns on the left present the results obtained
using the level label as ground truth difficulty. We
separately present the accuracy i) on all the ques-
tion pairs and ii) on the pairs in which both ques-
tions were Correctly Answered (CA) by the QA
models; n is the number of question pairs.

Considering all the pairs, we can see that the

proposed approach consistently performs at least
as well as the baselines, both when using the single
models and when using the ensembles, although
the improvement is not major. The only exceptions
are DistilBERT (3) and DistilBERT-XLNet (E).

Interestingly, if we compare Table 3 and Table
2, we can see that there is no clear correspondence
between the accuracy in the QA task and the ac-
curacy in pairwise difficulty prediction or between
the ECE and the accuracy in pairwise difficulty
prediction. For instance, DistilBERT (3) has the
lowest (i.e. best) ECE, but it is outperformed by
all the ensembles (except the hybrid ones) in the
pairwise difficulty prediction task. This suggests
that the calibration of the QA model is not the only
factor to take into consideration when using its un-
certainty for QDE and that its QA accuracy also
has an important role.

Comparing the accuracy of the ensembles and
the single models, we observe that there is no appar-
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ent improvement in using calibrated ensembles. It
is especially noticeable when considering only the
questions that the models correctly answered. How-
ever, in a real-world unsupervised scenario, the true
difficulty labels are not available for choosing the
best performing model with cross-validation, and
neither the accuracy in the QA task nor the ECE is
sufficient to pick the best performing model. There-
fore, we argue that the usage of calibrated ensem-
bles is a better solution as it allows to avoid the
oscillations of single instances (e.g. from 0.56 to
0.60 of the single DistilBERT models against the
0.58 of the ensemble). However, this is true only
for ensembles of models with the same architec-
ture. Hybrid ensembles did not lead to better per-
formance; thus, we argue that they should not be
used for the task of unsupervised QDE from text.

6.2.2 Crowdsourced labels (PairRACE CS)
Moving to the right side of the table, we consider
the crowdsourced difficulty as ground truth, and
we present the results separately for i) the whole
dataset, ii) the pairs of questions with Total Agree-
ment between human annotators (TA), and iii) the
pairs of questions with Total Agreement and Cor-
rectly Answered by each model (TA & CA).

The most crucial difference is that the best per-
forming model, in this case, is ELMOC. It means
that leveraging the similarity between the provided
document and the questions might be a good alter-
native to using the uncertainty of the QA models
for comprehension MCQ. This is reasonable since
the goal of comprehension questions is to find the
answer to the question in the accompanying pas-
sage. However, this is not in agreement with the
results obtained on PairRACE HM. Also, we have
to consider that PairRACE CS is made of only
80 question pairs (37 when considering only the
ones with total agreement) while PairRACE HM
contains 2M pairs; therefore the performance of
ELMOC is worth of further exploration. More-
over, BERT (E) and XLNet (E) clearly outperform
ELMOK and ELMOQA, suggesting that indeed the
uncertainty of accurate and calibrated QA models
can be beneficial for QDE of knowledge questions
(which are not provided with an accompanying pas-
sage that contains the answer).

Differently from the previous experiment, the
performance of DistilBERT (E) here is clearly
worse than the other ensembles (it is even worse
than random), thus suggesting that – being a
smaller model – they are not capable of modelling

the questions as well as BERT (E) and XLNet (E).
Except for these two differences, the rest of the

findings is fairly similar to PairRACE HM, and
the ensembles generally outperform the single in-
stances of the same architecture. Crucially, the
accuracy of all ensemble models (except the hybrid
ones) is higher for pairs with the total agreement,
thus supporting the claim that the uncertainty of
QA models could really be used for unsupervised
QDE from text. It is also interesting to remark that
this is not always the case for the single instances of
Transformers, which sometimes have worse accu-
racy on the pairs with total agreement. This, once
again, suggests that calibrated ensembles are more
suitable for unsupervised QDE from text.

Considering the pairs with the total agreement
and containing questions correctly answered by the
QA models (shown in column TA & CA5), we can
see that the correctness of the QA model does not
seem to have a significant impact on the accuracy.
However, there are only a few question pairs of
this type; therefore we cannot perform any relevant
observations.

7 Conclusions

The results of this research support the idea that it
is possible to estimate the human-perceived diffi-
culty of exam questions via the uncertainty scores
produced by Question Answering (QA) neural net-
works. The advantage of the approach we propose
is that it is possible to predict the relative difficulty
of questions across different domains without need-
ing any calibrated questions or logs of students’
answers. For training the QA model, it is sufficient
to have access to i) the corpus of questions and
(possibly) ii) the learning materials.

As a practical guideline, both the QA accuracy
and the calibration seem to impact the accuracy of
QDE. Therefore we believe that it is better to use
calibrated models which are powerful enough to
reach decent performance in the QA task (e.g. the
BERT and XLNet ensembles used here).

Future work will focus on exploring whether
improving the calibration of the QA models (e.g.
increasing the number of models in the ensemble
or using Bayesian neural networks) would lead to
improved results in unsupervised QDE from text
and will analyze the effects of combining raw soft-
max scores with different techniques. Weighing the

5We do not show the accuracy unless there are at least 10
question pairs correctly answered
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scores by the accuracy of each intervening model
is a way to explore whether hybrid ensembles can
still improve the performance, but we leave the
implementation of this approach for another study.

Another natural progression of this work is to
leverage question-specific information, such as the
reasoning type required to answer it, or the question
format (e.g. cloze items vs interrogative items). Us-
ing the text of the possible choices might improve
the accuracy, which makes it an interesting modifi-
cation to explore in future studies. Further exper-
imental investigations are also needed to use the
proposed approach for creating a difficulty ranking
of questions.
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