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Abstract 

Translation Memory (TM) system, a major 
component of computer-assisted 
translation (CAT), is widely used to 
improve human translators’ productivity by 
making effective use of previously 
translated resource. We propose a method 
to achieve high-speed retrieval from a large 
translation memory by means of similarity 
evaluation based on vector model, and 
present the experimental result. Through 
our experiment using Lucene, an open 
source information retrieval search engine, 
we conclude that it is possible to achieve 
real-time retrieval speed of about tens of 
microseconds even for a large translation 
memory with 5 million segment pairs. 

1 Introduction 

Translation memory technique is a key 
functionality being widely used in the field of CAT. 
Translation Memories (TMs) are “structured 
archives of past translations” which store pairs of 
corresponding text segments in source and target 
languages known as “translation units” (Simard, 
2020).  The size of translation memories and the 
quality of their contents are major impact factors 
crucial to the effectivity of the translation memory 
system which uses them. Due to the importance of 
translation memories, there has been done lots of 
research work for building large TMs on world-
wide scale, not just in individual countries 
(Steinberger et al. 2012).   

What plays an important role for TM system is 
also the similarity evaluation between the input 
sentence to be translated and the source segment in 
the TM. The main task of TM system is to get a 
translation unit whose source segment is the most 
similar to the input sentence out of TM. There are 
two possible solutions in performing the task: One 
solution is to adopt an intelligent TM matching 

mechanism which is able to correctly calculate the 
similarity between the input sentence and the 
source segment in the translation memory. The 
other solution is to increase the size of TM by 
collecting translated resources as much as possible. 
No matter how intelligent the TM matching 
mechanism is, small-size TM cannot afford rich 
performance. Of course, the choice of TM 
matching method is important for improving the 
effectivity of TM system. But what is no less 
important than any TM matching method is to use 
a reasonable size TM. The larger the TM, the 
higher the possibility to get a translation unit whose 
source segment is very similar to the input sentence 
out of the TM. In general, the main value of a TM 
consists in the number of segments - its size. 
However, large TMs automatically lead to slow 
response times. A slow TM might actually slow 
down a translator, so that fast response time is an 
essential characteristic of any TM. Many research 
works have been reported to improve TM 
matching and retrieval, but the majority of those 
approaches were just evaluated on relatively small 
TMs. To our best knowledge, the largest TM tested 
so far in previous research works is the first five 
parts of the 2013 DGT-TM (which consisted of 
305,324 segment pairs) used in (Weitz 2017) and 
the 2018 Volume 1 of the DGT-TM (which had 
230,000 segment pairs) used in (Ranasinghe et al. 
2020). 

The main problem we are going to solve in this 
paper is to provide a TM retrieval mechanism to 
ensure real-time performance on very large TMs, 
e.g. with millions of segment pairs. We propose a 
TM retrieval method based on Vector Model (VM), 
which is widely used in information retrieval (IR), 
and implement our proposal using Lucene, an open 
source IR search engine. The rest of the paper is 
organized as follows: Section 2 briefly reviews 
previous research works related to TM matching 
and retrieval.  Section 3 describes TM retrieval 
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method based on VM, and Section 4 presents 
experiment result. Finally, Section 5 discusses the 
result and draws a conclusion. 

2 Previous Work on Translation 
Memory Matching and Retrieval 

2.1 Research Work to Improve Translation 
Memory Matching 

The mission of TM matching is to evaluate how 
similar the source segment in the TM is to the input 
sentence to be translated. Hence most of research 
work on TM matching focuses on how to calculate 
the similarity between the input sentence and the 
source segment in the TM.  

(Planas and Furuse 2000) introduces edit 
distance based similarity vector whose coordinates 
refer to the levels of analysis of the segments. Their 
Multi-level Similar Segment Matching (MSSM) 
algorithm uses 3 different levels of data (surface 
words, lemmas, parts of speech (POS)) in a 
combined and uniform way.  

There are studies for improving TM matching 
by segmenting source sentences. It is less likely for 
exact matches to be found in most text types, and 
even less so for complex sentences. MetaMorpho 
TM (Hodász and Pohl 2005) also divides sentences 
into smaller chunks. Moreover, it uses a multi-level 
linguistic features (surface form, lemma, and word 
class) to determine similarity between two source-
language segments, especially for morphologically 
rich languages like Hungarian. The so-called 
‘second generation’ TM system SIMILIS (Planas 
2005) performs chunking to split sentences into 
syntagmas to allow sub-sentence matching. 
(Timonera and Mitkov 2015) suggests improving 
translation memory matching by performing 
clause splitting on the source segment as a pre-
processing step for TM match retrieval, since 
clauses both contain a subject and a verb, hence a 
“complete thought”, and therefore clause matches 
are more likely to be in context and to be actually 
used by the translator.  

(Vanallemeersch and Vandeghinste, 2014) also 
proposes a method which performs matching at 
level of syntactic trees. The authors notice that tree 
matching method is “prohibitively slow”. 

(Pekar and Mitkov 2007) proposes the ‘third-
generation translation memory’ which introduces 
the concept of semantic matching. They employ 
syntactic and semantic analysis of segments stored 
in a TM to produce a generalized representation of 

segments which reduces equivalent lexical, 
syntactic and lexicosyntactic constructions into a 
single representation. Then, a retrieval mechanism 
operating on these generalized representations is 
used to search for useful previous translations in 
the TM. 

(Chatzitheodorou 2015) presents an approach to 
match sentences having different words but the 
same meaning. They use NooJ to create 
paraphrases of Support Verb Constructions (SVC) 
of all source translation units to expand the fuzzy 
matching capabilities when searching in the 
translation memory. 

(Ranasinghe et al. 2020) introduces a TM 
matching and retrieval method based on Universal 
Sentence Encoder. They argue that their method is 
an effective and efficient solution to replace edit 
distance based algorithms. 

2.2 Research Work to Improve Translation 
Memory Matching 

The mission of translation unit retrieval is to filter 
translation units out of TM which are to be 
matched against the input sentence.  In general, the 
time consumed for translation unit retrieval is 
linear to the size of TM. Levenshtein distance, 
which is widely being used and one of the simplest 
means for TM matching, can be computed with 
dynamic programming in O(mn) time, where m is 
the length of the input sentence, and n the length of 
the source segment of a translation unit in the 
translation memory. However, in case of a large 
TM with more than tens of millions of segment 
pairs, computing edit distance against the whole 
TM is too slow for real-time use. This is why the 
preliminary retrieval is necessary. 

(Dandapat et al. 2012) uses an open-source IR 
engine SMART to retrieve a potential set of 
candidate sentences (likely to contain the closest 
match sentence) from the example base. Unigrams 
extracted from the sentences of the example-base 
are indexed using the language model and 
complete sentences are considered as retrievable 
units. They reported that finding a set of candidate 
sentences took only 0.3 seconds and 116 seconds, 
respectively, for 414 and 10,000 example input 
sentences given 20k and 250k sentence example 
base on a 3GHz Core 2 Duo machine with 4GB 
RAM. In order to find the closest matching 
sentences efficiently, (Dandapat et al. 2012) also 
proposes a heuristic-based grouping method which 
divides the example-base into bins based on 
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sentence length and considers only the segments 
which has comparable length to the length of the 
input sentence.  

(Wäschle and Riezler 2015) uses MinHash 
signatures, an efficient way to estimate the 
similarity of two documents, to efficiently 
approximate the n-gram overlap of the input 
sentence and the source segment by representing 
each sentence as a set of n-grams in that n-gram 
overlap is a good predictor of TM match quality.  

In order to reduce the search space size for 
Korean-Chinese TM retrieval, (Ryang 2018) builds 
a structured index using as features the sentence 
length and the sequence of Korean particles which 
is included in the sentence. 

3 Vector Model-based Similarity 
Evaluation for Translation Memory 
Retrieval

3.1 Primary and Secondary Retrieval of 
Translation Memory 

When retrieving from a large TM, it is common 
and reasonable to use the two-stage approach in 
which the TM system, firstly, filters candidates 
likely to be related to the input sentence for TM 
matching and then finds the most similar segments 
by fine-grained matching. The filtering is referred 
to the primary retrieval and the fine-grained 
finding is referred to the secondary retrieval. 
(Figure 1) 

The primary retrieval is intended to filter 
translation units whose source segment is likely to 
be close matched with the input sentence. The 
secondary retrieval returns as reference translation 

the target segments of the translation units whose 
source segment is best matched with the input 
sentence. The main difference between the primary 
and secondary retrieval lies in the fact that the 
secondary retrieval uses a certain similarity 
threshold, 𝜇 , and the count of the secondary 
retrieval output should be much smaller than the 
primary one, because the secondary retrieval 
output is for human. The primary and secondary 
retrieval can be formulated respectively as follows: 

𝑇𝑀(𝑆0,𝐾1) = argmax
𝑡𝑚⊂𝑇𝑀
|𝑡𝑚|=𝐾1

∑ 𝐹𝑀𝑆1(𝑆0, 𝑆𝑖)(𝑆𝑖,𝑇𝑖)∈𝑡𝑚

𝑇𝑀𝜇(𝑆0,𝐾2) = argmax
𝑡𝑚⊂𝑇𝑀(𝑆0,𝐾1)

|𝑡𝑚|≤𝐾2

∑ 𝐹𝑀𝑆2(𝑆0, 𝑆𝑖)
(𝑆𝑖,𝑇𝑖)∈𝑡𝑚

𝐹𝑀𝑆2(𝑆0,𝑆𝑖)≥𝜇

where 

𝐹𝑀𝑆1(𝑆0, 𝑆𝑖): similarity score of the input sentence
𝑆0 and the source segment 𝑆𝑖, used in the primary

retrieval 

𝐹𝑀𝑆2(𝑆0, 𝑆𝑖): similarity score of the input sentence
𝑆0 and the source segment 𝑆𝑖, used in the secondary

retrieval 

𝑇𝑀 = {(𝑆𝑖 ,𝑇𝑖)|𝑖 = 1,𝑁}: Translation Memory

(𝑆𝑖 ,𝑇𝑖): Translation Unit,
𝑆𝑖: Source Segment, 𝑇𝑖:Target Segment

𝑁: the number of translation units in the translation 
memory 

𝐾1,𝐾2: the limit count of the primary/secondary
retrieval output 

One of the essential requirements which the 
similarity measure should meet for the primary 
retrieval of TM is to allow partial match. A useful 
solution to this requirement is to use vector model 

Figure 1:  Two-stage Translation Memory Retrieval 
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by representing as vectors the input sentence and 
the source segments in the translation memory. We 
adopt vector model based similarity evaluation for 
the primary retrieval of TM. 

3.2 Primary and Secondary Retrieval of 
Translation Memory 

For the vector representation of the input sentence 
and the source segments in the TM, we use word-
sentence relation matrix which is widely used in IR. 
Let 𝑊 be the set of words occurring in the source 
segments. 

𝑊 = {𝑤𝑖|𝑖 = 1,𝑇}, 𝑇: The total number of words
occurring in the source segments 

Let 𝑉  be the word-sentence relation matrix. 
Then 𝑉 is a 𝑁 × 𝑇  dimensional matrix: 

𝑉 = (

𝑣11 𝑣12 … 𝑣1𝑇
𝑣21 𝑣22 … 𝑣2𝑇
… … … … … …
𝑣𝑁1 𝑣𝑁2 … 𝑣𝑁𝑇

) 

The i-th row of 𝑉  is a vector representing the 
source segment, 𝑆𝑖:

𝑉𝑆𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑇)

𝑣𝑖𝑗: The weight indicating how important the word

𝑤𝑗 ∈ 𝑊 is for the source segment 𝑆𝑖

Let 𝑈𝑆0  be the vector of the input sentence 𝑆0:

𝑈𝑆0 = (𝑢1,𝑢2, … ,𝑢𝑇)

𝑢𝑗: The weight indicating how important the word

𝑤𝑗 ∈ 𝑊 is for the input sentence 𝑆0

Given two vectors, 𝑉𝑆𝑖  and 𝑈𝑆0  , the similarity
score of the input sentence 𝑆0  and the source
segment 𝑆𝑖  used for the primary retrieval can be
defined as follows: 

𝐹𝑀𝑆1(𝑆0, 𝑆𝑖) =
𝑈𝑆0 ∙  𝑉𝑆𝑖

‖𝑈𝑆0‖ ‖𝑉𝑆𝑖‖

𝑈𝑆0 ∙  𝑉𝑆𝑖: Dot product of two vectors, 𝑈𝑆0  and  𝑉𝑆𝑖

‖𝑈𝑆0‖: Euclidean norm of the vector  𝑈𝑆0

‖𝑉𝑆𝑖‖: Euclidean norm of the vector 𝑉𝑆𝑖

We suggest using TF-IDF weight of the words, 
which is commonly used feature for IR. But there 
is one problem in using TF-IDF weight for TM 
retrieval. 

In IR, the length of a query is very short than 
documents. However, in case of TM retrieval, the 
lengths of the input sentence and the source 
segment, two objects to be compared, don’t make 

such contrastive difference as in the relationship 
between the query and document in IR. It can 
rather be assumed that the length of the input 
sentence is similar to the source segment in the TM. 
Even when the length of the input sentence is short 
than the source segment, as in IR, if a word occurs 
only once in the input sentence, it is not true that a 
source segment, in which that word occurs two or 
three times, is more similar to the input sentence 
than any other source segment in which that word 
occurs once.  When a word occurs twice in the 
input sentence, it can be assumed that a source 
segment, in which that word occurs twice, is more 
similar than any other source segment in which that 
word occurs once. Based on this consideration, we 
define the elements of the vectors 𝑈𝑆0  and  𝑉𝑆𝑖 as:

𝑣𝑖𝑗 = min {𝑡𝑓(𝑤𝑗 , 𝑆0), 𝑡𝑓(𝑤𝑗 , 𝑆𝑖)}

𝑢𝑗 = {
𝑖𝑑𝑓(𝑤𝑗), 𝑤𝑗 ∈ 𝑆0

 0      , 𝑤𝑗 ∉ 𝑆0

Consequently, the similarity score of the input 
sentence 𝑆0 and the source segment 𝑆𝑖becomes:

𝐹𝑀𝑆1(𝑆0, 𝑆𝑖) =

=
∑ min  {𝑡𝑓(𝑤𝑗 , 𝑆0), 𝑡𝑓(𝑤𝑗 , 𝑆𝑖)} × 𝑖𝑑𝑓(𝑤𝑗)𝑤𝑗∈𝑆0

‖𝑈𝑆0‖  ‖𝑉𝑆𝑖‖

In the calculation of the above similarity score 
function, the elimination of the term ‖𝑈𝑆0‖  from
the denominator doesn’t affect the final result. So 
the practical similarity score function can be 
written as: 

𝐹𝑀𝑆1(𝑆0, 𝑆𝑖) =

=
∑ min  {𝑡𝑓(𝑤𝑗 , 𝑆0), 𝑡𝑓(𝑤𝑗 , 𝑆𝑖)} × 𝑖𝑑𝑓(𝑤𝑗)𝑤𝑗∈𝑆0

‖𝑉𝑆𝑖‖

3.3 Semantic Similarity for the Primary 
Retrieval of TM 

There are many previous research works taking 
into account semantic similarity for TM matching. 
For example, given two sentences, “What is the 
actual aim of this practice?” and “What is the real 
goal of this mission?”, it is possible to judge that 
these two sentences are very similar, based on the 
linguistic analysis that the words “actual” and 
“goal” are similar to the words “real” and “aim,” 
respectively. When implementing two-stage TM 
retrieval which consists of primary and secondary 
retrieval for a large TM, it is very important to 
ensure that the output of the primary retrieval 
might contain the segments likely to be 
semantically similar to the input sentence for any 
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semantic similarity measure to be applied at the 
secondary retrieval stage. We are going to use 
linguistic knowledge like synonym for 
accommodating semantic similarity evaluation in 
the primary retrieval of TM. 

Our solution to evaluate semantic similarity 
taking into account the synonym knowledge in the 
primary retrieval of TM, is to change the input 
sentence 𝑆0  into a pseudo sentence 𝑆0

′   which
includes all the words of 𝑆0 and also their synonym
words, and then calculate the similarity score of the 
pseudo sentence 𝑆0

′  and the source segments of TM. 
The pseudo expansion of the input sentence and the 
similarity score calculation is trivial since the 
vector representation is based on TF-IDF weights. 
The similarity score of the pseudo sentence 𝑆0

′  and 
the source segment 𝑆𝑖 is:

𝐹𝑀𝑆1(𝑆0
′ ,  𝑆𝑖)

=
∑ min (𝑡𝑓(𝑤𝑗 , 𝑆0

′), 𝑡𝑓(𝑤𝑗 , 𝑆𝑖)) × 𝑖𝑑𝑓(𝑤𝑗)𝑤𝑗∈𝑆0
′

‖𝑉𝑆𝑖‖

where 

𝑡𝑓(𝑤𝑗 , 𝑆0
′) =

= {
𝑡𝑓(𝑤𝑗 , 𝑆0),                    𝑤𝑗 ∈ 𝑆0

 𝛼,   𝑤𝑗 ∉ 𝑆0 ∧  ∃𝑘,𝑤𝑘 ∈ 𝑆0  ∧ 𝑤𝑗 ∈ 𝑆𝑌𝑁(𝑤𝑘)
 0,           𝑤𝑗 ∉ 𝑆0  ∧  𝑤𝑗 ∉ 𝑆𝑌𝑁(𝑆0)       

𝑆𝑌𝑁(𝑆0) = ⋃ 𝑆𝑌𝑁(𝑤𝑖)𝑤𝑖∈𝑆0 , 𝑆𝑌𝑁(𝑤𝑖): The set of

synonym words of 𝑤𝑖

In the above expression, 𝛼  is a real number 
between 0 and 1, which is introduced as a weight 
of the synonym word added into the pseudo input 
sentence 𝑆0

′ . 
The knowledge database for synonym are not 

always available for every language, and even if 
available, they are qualitatively and quantitatively 
different from each other. For English, WordNet 
developed by Princeton University is a useful 
knowledge database for finding synonym. 

As a matter of fact, it is not quite easy to find 
correctly the synonym of any word in the input 
sentence. To speed up the primary retrieval on a 
large TM while avoiding complex linguistic 
analysis, we establish the following principle for 
building synonym dictionary which will be used in 
the similarity evaluation for TM retrieval. 

First, for any word 𝑤𝑖  which has only one part-
of-speech (POS), its all synonym words will be 
included in the synonym dictionary 𝑆𝑌𝑁(𝑊). 

1 (http://wordnetcode.princeton.edu/3.0/WNprolog-

Second, when the word 𝑤𝑖 has several POSes,
only if 𝑤𝑖  doesn’t have verb POS, its synonym
words will be included in the synonym dictionary 
𝑆𝑌𝑁(𝑊). 

Third, if the word 𝑤𝑖 has both general synonym
and special synonym, only the general synonym 
words with more high frequency will be included 
in the synonym dictionary 𝑆𝑌𝑁(𝑊). 

Our principles are based on the linguistic 
consideration that the synonym of any word can be 
discussed only when its POS is determined, that 
there exist two categories of synonym, absolute 
synonym and relative synonym, and that there are 
also general synonym and special synonym in 
terms of use frequency. 

We don’t use synonym of multi-POS words with 
verb POS, because a verb is the core of the 
statement unit which can determine the meaning of 
a sentence from a linguistic point of view and 
linguistic analysis like POS tagging is not applied 
in the primary retrieval of TM. 

According to our analysis on WordNet 3.01, it 
has a total of 117,659 senses with 147,306 words 
related to each other. Among those words, there are 
49,754 words which does not have any synonym at 
all. Using above-mentioned principles for 
synonym selection, we selected 36,185 senses with 
90,258 words related to each other to build an 
English synonym dictionary for TM retrieval. 

4 Experimental Result 

We use Lucene, an open source IR engine in Java, 
to implement the TM retrieval system using the 
vector model based similarity evaluation we 
proposed. As the data structure of a translation unit 
of TM, the Document class of Lucene is used 
which has two fields corresponding to the source 
and target segment of TM, respectively. The 
version number of Lucene used is 8.5.1. 
Levenshtein Distance based similarity score is 
applied for the secondary retrieval of TM. The TM 
used for the evaluation of the proposed TM 
retrieval system is an English-to-Korean TM 
which is made of about 5,000,000 English 
segments and their automatic Korean translation 
by English-to-Korean machine translator 
“Ryongnamsan” 2.0. In the experiment, we use 
parameter settings for the primary search of TM 
such that 𝐾1 = 100 , and  𝛼 = 0.5 . All
measurement was carried out on a desktop PC with 

3.0.tar.gz) 



689

Intel® Core™ i3-3240 CPU @ 3.40GHz and 2GB 
of RAM. The operating system installed is 
Windows 7, 64bit. 

4.1 Evaluation Method of Retrieval 
Performance 

First of all, the retrieval performance on the 
English-to-Korean TM using Lucene can be 
evaluated with the retrieval time on varying size of 
TM. We randomly selected 1,000 sentences which 
are not included in the English-to-Korean TM, and 
then measured the total time consumed for 
retrieving all those sentences on different size of 
TM. The time consumed for retrieving was 
measured 5 times, and the fastest, slowest and 
averaged time were all recorded. Next, the 
relevance of retrieval result was automatically 
tested. Finally, we compare the retrieving 
performance of our proposal with the retrieving 
performance when using MongoDB’s full text 
search API. 

4.2 Result 

– Relation between the size of TM and the
retrieving time

. 
Figure 2 shows the relation between the size of 

TM and the retrieving time. 
As the size of TM increases, so does the 

retrieving time on the TM. 
– Relation between the length of the input
sentence and the retrieving time

We also investigate the influence of the length 
of the input sentence on the retrieving time on TM. 

For 1,000 input sentences being tested, the 
retrieving time for each sentence on the largest TM 
with 5,000,000 segments was measured and 
averaged according to the length of those sentences. 
Figure 3 and Figure 4 show the sentence length-
frequency distribution on the test sentences and the 
average retrieving time according to the sentence 
length, respectively. 

The result shows that the longer the input 
sentence, the longer its retrieving time of TM. 

Figure 2: Retrieving time according to the size of
TM 

Figure 3:  Sentence frequency according to its 
length 

Figure 4:  Average retrieving time according to the 
sentence length 
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1 2 3 4 5 

50 14,289 6,284 6,349 6,379 6,284 

100 25,506 8,703 8,659 8,551 8,767 

150 33,215 10,581 10,481 10,578 10,470 

200 42,523 12,526 12,433 12,306 12,447 

250 47,191 14,914 14,899 14,851 14,743 

300 59,027 17,375 17,379 17,473 17,459 

350 72,304 18,998 19,077 19,063 18,940 

400 78,106 21,199 21,408 21,231 21,214 

450 85,019 23,479 23,446 23,211 23,290 

500 96,876 27,112 25,414 25,448 25,411 

Table 1: Retrieving time according to the size of 
TM 
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– Relevance of the primary retrieval result of
TM

For evaluating the relevance of the primary 
retrieval result of TM, we checked the ranking 
result of the primary retrieval when retrieving 
1,000 English sentences randomly selected from 
the largest TM of 5,000,000 segments. According 
to an automatic checking of the ranking result, the 
translation unit whose source segment is the input 
sentence ranked at the first place all the time. This 
implies that the proposed primary retrieval of TM 
is relevant for exact match of TM. 

The relevance of the primary retrieval result for 
the sentences which is not included in the TM is 
impossible to automatically evaluate, and is also 
related to the secondary retrieval of TM. We did a 
small manual test but the result was not fully 
reliable, so we didn’t present the result here. 
– Comparison with the retrieving performance
of TM using MongoDB

MongoDB, a NoSQL database management 
system, supports textual data indexing and 
searching which allows partial matching. For 
comparison with our proposal, we implemented a 
TM retrieval module using the full text search API 
of MongoDB, and evaluated its performance on a 
desktop PC with Intel® Core™ i7-7700 CPU @ 
3.6 GHz and 16 GB of RAM. The version of 
MongoDB used is 4.4. It took about 18 minutes to 
insert into the MongoDB collection the English-to-
Korean TM of 5 million segment pairs. It also took 
about 5 minutes to index the source language field 
and about 1 hour and 38 minutes to retrieve a set of 
candidate sentences for the same 1,000 English 
sentences as in the previous experiment. The size 
of the set of candidate sentences was limited to 10. 
By automatically checking the relevance of the 
retrieval result, the translation unit whose source 
segment is the input sentence ranked at the first 
place all the time, too. Obviously, the retrieving 
speed when using Lucene is incomparably superior 
to when using MongoDB. 

5 Conclusion and Future Work 

Through a series of experiments on the primary 
retrieval of English-to-Korean TM using vector 
model based similarity evaluation, we conclude 
that: 

 The time and space complexity of
indexing the TM increases linear to the
size of the TM. The indexing time

consumed for a large-scale English-to-
Korean TM with about 5,000,000 
segments is about 5 minutes, and the 
indexed data size is 1.84 GB with an 
increase of about 29 % compared to the 
text file size of the TM. 

 The time complexity of the primary
retrieval of TM increases linear to the size
of the TM and the length of the input
length. The fact that the retrieving time of
TM is in linear proportion to the size of
the TM and the length of the input
sentence fully accords with Lucene’s
inverted indexing principle and the
ranking process of our vector model
based similarity evaluation.

 When there is a translation unit whose
source segment is the same as the input
sentence, the translation unit ranks at the
first place in the primary retrieval result
of TM. The automatic checking result of
the source segments included in the TM
shows that Lucene is an effective means
for exact match, as well as fuzzy
matching.

The effect of the vector model based similarity 
evaluation for the primary retrieval of TM wholly 
depends on the correctness of the morphological 
analysis and the richness of the synonym 
knowledge. Since the difficulty of the 
morphological analysis and the availability of the 
synonym knowledge like WordNet is all different 
for each language, we plan to do more research 
work on these aspects. Furthermore, we also plan 
to evaluate more comprehensively the relevance of 
the primary retrieval of TM. 
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