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Abstract

This study evaluates whether model-based
Collaborative Filtering (CF) algorithms, which
have been extensively studied and widely
used to build recommender systems, can be
used to predict which common nouns a pred-
icate can take as its complement. We find
that, when trained on verb-noun co-occurrence
data drawn from the Corpus of Contempo-
rary American-English (COCA), two popular
model-based CF algorithms, Singular Value
Decomposition and Non-negative Matrix Fac-
torization, perform well on this task, each
achieving an AUROC of at least 0.89 and sur-
passing several different baselines. We then
show that the embedding-vectors for verbs and
nouns learned by the two CF models can be
quantized (via application of k-means clus-
tering) with minimal loss of performance on
the prediction task while only using a small
number of verb and noun clusters (relative to
the number of distinct verbs and nouns). Fi-
nally we evaluate the alignment between the
quantized embedding vectors for verbs and the
Levin verb classes, finding that the alignment
surpassed several randomized baselines. We
conclude by discussing how model-based CF
algorithms might be applied to learning re-
strictions on constituent selection between var-
ious lexical categories and how these (learned)
models could then be used to augment a (rule-
based) constituency grammar.

1 Introduction

In learning a language, a child solves many dif-
ficult puzzles using limited input data (Berwick
et al., 2011; Piattelli-Palmarini and Berwick, 2012;
Lasnik and Lidz, 2017). One such puzzle involves
the child deciding whether a given verb can take a
particular noun as its complement when the child
has never previously observed that verb and that
noun co-occur in a sentence. To illustrate this puz-

zle, let us consider an example - suppose the child
learner has heard the following sentences:
(a) “I lied and and said that I would not smash

the windshield.”
(b) “The robber was not planning to smash every

plate.”
(c) “I want to take this hammer and smash the

precious vase!”
(d) “They are going to shatter the windshield!”
(e) “The boy who was busy staring at his phone

will trip over and shatter his mother’s favorite
plate.”

(f) “Did you shatter the blue vase?”
(g) “She knew that Susan would break her expen-

sive new windshield.”
(h) “I saw the man in the red sweater break the

delicate plate.”
Now suppose that the child learner has never heard
a sentence in which the verb “break” takes the noun
“vase” as its complement. How should the child
decide whether the following production is licit?

(i) “He is going to trip over and break the
vase!”

One strategy that the child might employ is as
follows. First the child observes that the verbs
“smash” and “shatter” behave similarly by noting
that both verbs can select any of the three nouns
“windshield”, “plate” and “vase” as a complement
(see sentences (a-c) for “smash” and sentences (d-f)
for “shatter”). Then the child observes that the verb
“break” appears to be similar to the verbs “smash”
and “shatter” by noting that the three verbs can
select “windshield” and “plate” as complements
(see sentences (a, d, g) for “windshield” and sen-
tences (b, e, h) for “plate”). On the basis of these
observations, the child may decide that if the verb
“break” really is similar (semantically) to “smash”
and “shatter”, then “break” should also be able
to select “vase” as a complement, just as “smash”
and “shatter” can. Likewise, the child observes



630

that the nouns “windshield” and “plate” behave
similarly, as they can both be taken as comple-
ments by the three verbs “smash”, “shatter” and
“break”, and that the noun “vase” appears similar
to “windshield” and “plate” in so far as the three
nouns can be taken as the complement by the two
verbs “smash” and “shatter”. This is a second line
of observations that the child may use to support
their conclusion that sentence (i) is a licit produc-
tion. The strategy outlined above is a simplified
illustration of how a Collaborative Filtering (CF)
algorithm (reviewed in §2), which uses evidence of
how related verbs and related nouns behave, can be
used to infer whether a given verb can take a given
noun as a complement.

The goal of the present study is to evaluate
whether CF algorithms, a widely used method in
artificial intelligence for developing recommender
systems (Cacheda et al., 2011; Jalili et al., 2018),
can be used to accurately model argument selection
based on co-occurrence data obtained from a large
English corpus (see §3 for details). The results of
the experiments presented in this study (see §4)
suggest that model-based CF algorithms perform
well on the task of recommending which nouns a
given verb can or cannot select as a complement,
achieving AUROC of between 0.89 and 0.90 and
surpassing a number of different baselines; notably,
we found during model selection that the number
of latent factors (and thus the size of the embedding
vectors learned by these CF algorithms) was rela-
tively small (at most 6 latent factors) as compared
to the number of distinct verbs and nouns appearing
in the analyzed co-occurrence data. Furthermore,
we found that when we used k-means clustering to
quantize the (per-verb and per-noun) embedding
vectors learned by these CF algorithms, using the
cluster of a particular verb or noun as a proxy for
the verb or noun itself (as opposed to a distinct
embedding vector per verb or per noun) yielded
minimal loss of performance (< 1%) even when
we used a relatively small number of verb and noun
clusters. (See §5 for details) Finally, our results
suggest that model-based CF algorithms should be
considered for use in modeling the inferences a lan-
guage learner makes when considering problems
of argument selection (see §6 for discussion).

2 A Review of Collaborative Filtering

Given a (finite) set of users, a (finite) set of items,
and information about the ratings assigned by users

to items (encoded in a user-item rating matrix), the
task of a recommender system is to predict whether
a given user would select a given item, or what rat-
ing the user would assign to the given item - these
predictions can then be used to generate a list of
recommended items for the given user (Bobadilla
et al., 2013). This study takes the users to be pred-
icates (i.e. lexical verbs) and the items to be the
arguments (i.e. common nouns) that a predicate
may select as its complement (i.e. object).

Content-based recommendation algorithms ex-
ploit similarities between the features associated
with each item - e.g. a content-based recommen-
dation algorithm would predict which arguments
a given predicate can select by evaluating the se-
mantic and syntactic features associated with the
argument (Balabanović and Shoham, 1997; Lops
et al., 2011). In the case that we do not have ac-
cess to features associated with the items, we may
employ Collaborative Filtering (CF) recommenda-
tion algorithms, which consider both similarities
between the users and/or similarities between the
items.1 CF algorithms are traditionally divided
into two groups, memory-based CF algorithms and
model-based CF algorithms, which we will now
describe.

Memory-based CF algorithms assume that
similar users select similar items and assign sim-
ilar ratings, with two users considered to be sim-
ilar if they tend to assign similar ratings to items.
Memory-based CF algorithms work by identifying
a set of users who are similar to the target user –
e.g. via the k-Nearest-Neighbor (KNN) algorithm,
using the Pearson correlation coefficient as a simi-
larity measure – and then predicting the rating the
target user would assign to a given item by consid-
ering the ratings assigned by similar users, respec-
tively weighted by the degree-of-similarity of each
user to the target user (Schafer et al., 2007).2

Although Memory-based CF algorithms are
widely used in practice, they face difficulty with
respect to: (a) scaling as the sets of users and items
grow, and (b) dealing with a sparse user-item inter-
action matrix (Adomavicius and Tuzhilin, 2005).

1See (Herlocker et al., 2004) and (Su and Khoshgoftaar,
2009) for surveys that review Collaborative Filtering algo-
rithms; see (Burke, 2002, 2007) for a review of hybrid recom-
mendation algorithms that combine aspects of content-based
and CF algorithms.

2Memory-based CF algorithms can work to identify simi-
lar users, referred to as user-based collaborative filtering, or
alternatively, work to identify similar items, which is referred
to as item-based collaborative filtering (Sarwar et al., 2001).
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Model-based CF algorithms, in which a predic-
tive model is learned, address the aforementioned
difficulties of Memory-based models. In particular,
latent factor models such as Singular Value Decom-
position (SVD) and Non-negative Matrix Factor-
ization (NMF) employ dimensionality-reduction
in which user and item profiles (i.e. the rows and
columns of the user-item rating matrix) are em-
bedded in a lower-dimensional space in which la-
tent relationships between users and items become
more explicit (Hofmann, 2004; Koren et al., 2009;
Lü et al., 2012). In this way, latent factor mod-
els address two weaknesses of memory-based CF
algorithms, scalability and sparsity, and for this
reason the present study employs (latent factor)
model-based CF algorithms.

3 Deriving a Verb-Noun Rating Matrix
from Corpus Data

This study employs an English corpus, the Corpus
of Contemporary American English. The COCA is
a 385 million word corpus of (late 20th century and
early 21st century) English derived from several
domains including spoken language, fiction, maga-
zines, newspapers, and academic articles (Davies,
2009, 2010).

The corpus was preprocessed as follows. First,
we tokenized and segmented the corpus text into
sentences. We then annotated the tokens in each
sentence with Part-of-Speech (POS) tags.3 Sen-
tences without at least one verb and one common
noun were then discarded. Finally we lemmatized
the tokens in each sentence using the TextBlob
python library. After preprocessing the COCA cor-
pus, the text consisted of 75584272 words (not
counting punctuation markers or numbers) seg-
mented into 10087753 sentences, with 43429 dis-
tinct verb lemmas (derived from 60693 distinct
lexical verbs) and 89541 distinct noun lemmas (de-
rived from 105957 distinct common nouns).

Next, we derived a verb-noun co-occurrence ma-
trix from the processed corpus as follows. The set
of distinct (lexical) verb lemmas and the set of dis-
tinct (common) noun lemmas were indexed (using
lexicographic ordering) as {v1, v2, v3, ..., vs} and
{n1, n2, ..., nt} respectively. Then the entry at row
i and column j in the verb-noun co-occurrence ma-
trix has value equal to the number of sentences in
the (processed) corpus in which the (lemmatized)

3We used the POS-tags employed in annotating the Pen-
nTreebank.

verb vi and the (lemmatized) noun nj co-occur,
subject to the following constraints:

1. no other noun or verb appears between vi and
nj ;

2. the verb vi must appear in the WordNet4 verb
database (Fellbaum, 1998);

3. the noun ni must appear in the WordNet noun
database (Miller, 1990, 1998);

4. for a sentence to be counted: (a) the verb vi
and the noun ni must be the last verb and
the last noun (respectively) in the sentence,
with the verb preceding the noun; (b) neither
a pronoun, a punctuation marker (e.g. comma,
quotation mark, parenthesis) nor any of the
tokens {who,what, that, by} may appear be-
tween the verb and the noun.

To compensate for noise in the data, we required
that a (verb, noun) pair must appear at least twice to
be considered; thus, any entry in the co-occurrence
matrix that has a value less than 2 was set to 0.
Given our goal of predicting novel (verb, noun)
pairings (i.e. where the verb serving as predicate
may select the noun as an argument in comple-
ment position), we restricted our study to verbs
and nouns for which there was evidence (in the
corpus data) of co-occurrence with different nouns
and verbs respectively. To this end, we removed
rows corresponding to verbs that do not co-occur
with at least two distinct nouns, and we removed
rows corresponding to nouns that do not co-occur
with at least two distinct verbs. After this process
of reducing the verb-noun co-occurrence matrix,
there remained 4172 rows, each corresponding to a
distinct predicate lemma, and 12601 columns, each
corresponding to a distinct argument column; the
verb-noun rating matrix has a total of 716861 non-
zero entries. In this way, we computed the verb-
noun co-occurrence matrix from the (processed)
COCA corpora.5

Finally, we constructed the verb-noun rating
matrix, which serves as the input to the model-
based CF algorithms.6 We derived a distribution of
verb occurrences and a distribution of noun occur-
rences, and from these two distributions we com-
puted a joint distribution. (See Figure 1) We then
used this joint distribution to compute the expected

4See (Miller et al., 1990; Miller, 1995; Miller and Fell-
baum, 2007) for reference on the WordNet database.

5The verb-noun co-occurrence matrix is stored as a list of
three-tuples of (verb, noun, counts) for all (verb, noun) pairs
for which counts is non-zero.

6This matrix corresponds to the user-item rating matrix in
the terminology of collaborative filtering algorithms.
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(a) (b)

Figure 1: Distribution of ratings for verb-noun co-occurrences derived from the Corpus of Contemporary
American-English. (1a) shows the distribution of the number of distinct nouns that are (high rating) or are not
(low rating) expected to be selected by each distinct verb appearing in the corpus. Likewise, (1b) shows the distri-
bution of the number of distinct verbs that are (high rating) or are not (low rating) expected to select each distinct
noun appearing in the corpus.

number of counts for each (verb, noun) pairing.
We assigned a rating to each (verb, noun) pair-
ing for which there were a non-zero entry in the
co-occurrence matrix. Whether a (predicate, argu-
ment) pairing was rated high or low corresponded
to whether that predicate co-occurred with that ar-
gument more or less often than would be expected
by chance. The ratings were thus assigned as fol-
lows: (i) a high rating, which has numerical value
2, was assigned if the value in the co-occurrence
matrix was greater than the expected number of
counts; (ii) a low rating, which has numerical value
1, was assigned otherwise.7

4 Experiment

The experiment detailed in this section addresses
the question of whether model-based CF algo-
rithms can be used to accurately predict which
arguments (i.e. common nouns) a predicate (i.e.
a lexical verb) may select.8 We evaluated two dif-
ferent latent factor models, SVD and NMF.9

7The verb-noun rating matrix is stored as a list of three-
tuples of (verb, noun, rating).

8Note that throughout this study, in accordance with our
focus on understanding whether a lexical verb serving as a
predicate may select a particular common noun as its (comple-
ment) argument, we will refer to (lexical) verbs as predicates
and (common) nouns as arguments.

9We used the implementations of these models provided
by the Surprise python library (Hug, 2020).

Figure 2: Performance of CF models and baselines.

4.1 Methodology

To train a model-based CF algorithm, we employed
nested k-fold cross-validation with shuffling, with
the outer loop used to evaluate trained models, and
the inner loop used for model selection (hyperpa-
rameter tuning) and model fitting (i.e. training).
The outer loop consists of a 5-fold cross-validation
loop, with 20% of the data (i.e. entries in the verb-
noun rating matrix) held out as a test data set, and
the remaining data used for training and validation.
The inner loop consist of a 5-fold cross-validation
loop, with 20% of the data held out as a validation
set, and the remaining data used for training. Model
selection for both SVD and NMF consisted of opti-
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Predicate Recommended Not Recommended

begin dynasty, impeachment, simulation mouth, side, weapon
challenge doctrine, misconception, paradigm mother, eye, place
destroy battleship, habitat, rival lot, week, word
elect bishop, spokesperson, successor life, place, world
perform masterpiece, pushup, somersault air, mother, town
sell denim, postage, sushi circumstance, editor, father
sit cafeteria, parliament, veranda employee, history, justice
spread fluid, manure, paperwork break, friend, point

Table 1: Examples of arguments that the SVD model with median performance (as measured by AUROC) does or
does not recommend for selection as a complement for the listed predicate.

mizing the hyperparameter for the number of latent
factors, nf ∈ [4, 21].10 Models were evaluated
for selection by computing the mean average error
(MAE), a commonly used metric used for evaluat-
ing model-based CF algorithms. The output of a
trained model thus consists of: (i) a mapping be-
tween predicates and embedding vectors of length
nf + 1; (ii) a mapping between arguments and em-
bedding vectors of length nf+1; (iii) a matrix with
nf + 1 and nf + 1 columns.

4.2 Results

We computed four baselines that, given a (predicate,
argument) pairing (p, a) in the test set, make the
following predictions:

• The pred.med and pred.avg baselines predict
the median and mean values (respectively) of
entries with predicate p (in the training set).

• The arg.med and arg.avg baselines predicts
the median and mean values (respectively) of
entries with argument a (in the training set).

The two trained collaborative filtering models and
the four baselines each produce, for a given pred-
icate and argument, a continuous value that we
interpret as being a high or low rating based on
whether is above or particular threshold value or
not. We thus evaluated the performance of each
model by computing the Area Under the Receiver
Operating Characteristic curve (AUROC), which
is presented in Figure 2.11 Notably, the two CF
algorithms, SVD and NMF, achieved an AUROC
of 0.90 and 0.89 respectively, and both models out-
performed each of the baselines - this suggests that

10Both models were trained over 350 epochs. For SVD we
used a learning rate of 0.005 and a regularization rate of 0.02;
for NMF we used a regularization rate of 0.06.

11See (Fawcett, 2006) for discussion on interpreting the
Receiver Operating Characteristic curve.

both of these models perform well on the task of
predicting which arguments a predicate can take as
its complement. See Table 1 for examples of model
predictions.

5 Analysis

Having seen that the two model-based CF algo-
rithms performed well on the task of predicting
which arguments a predicate is likely to select
as its complement, we now turn to considering
whether these CF models encode some knowledge
of lexical-semantics. Lexical verbs may be said
to cluster together into classes, with lexical verbs
in the same class sharing similar syntactic and se-
mantic properties (see the verb-classification es-
tablished in (Levin, 1993)). The model-based CF
algorithms that were evaluated in §4 produced dis-
tinct embedding vectors for each argument and for
each predicate - this section analyzes whether these
embedding vectors for verbs and nouns can be clus-
tered into disjoint groups (of embedding vectors for
verbs and nouns respectively). We will restrict our
attention to the embedding vectors learned by the
SVD and NMF models with median performance
(with respect to AUROC).

For each of the two trained CF models, we
used the k-means algorithm (Lloyd, 1982; Forgey,
1965; Jain, 2010) to group the embedding vec-
tors for predicates and arguments into disjoint
clusters of predicates and arguments respectively.
The k-means algorithm was parameterized by the
number of clusters the input (embedding) vectors
should be grouped into. Let kp denote the num-
ber of clusters the predicate embedding vectors
are grouped into, and let ka denote the number
of clusters the argument embedding vectors are
grouped into. A grouping of the predicates and
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arguments using particular values of kp and ka
respectively is referred to as a model-grouping.
We ran k-means clustering to compute model-
groupings using kp ∈ {10, 15, 20, . . . , 55} and
ka ∈ {10, 15, 20, . . . , 100}, with clustering run
five times for each selection of kp and ka.

We next evaluated how well a model-grouping
could be used to predict whether a given predicate
(lexical verb) selects a particular argument (com-
mon noun). Given a particular model-grouping
with kp predicate clusters and ka argument clus-
ters, for a verb-cluster, α, and a noun-cluster, β,
let the cα,β be the total number of co-occurrence
counts for (verb, noun) pairs in (α, b) that have
a high rating, and let dα,β be the total number of
co-occurrence counts for (verb, noun) pairs in (α,
b); next, define the average rating aα,β to be cα,β

dα,β
,

and let us suppose that all (verb, noun) pairs in
(α, β) are assigned the rating aα,β . We can then re-
compute the AUROC for this model-grouping on
the test data to evaluate the discriminatory power
of the model-grouping; we refer to this metric as
the clustered-model AUROC.

We identified model-groupings that achieved
near-optimal clustered-model AUROC while us-
ing as few predicate clusters and argument clus-
ters as possible. We did this as follows. Let the
optimal clustered-model AUROC be the maximal
clustered-model AUROC achieved by any model-
grouping, and let a model-grouping be called sub-
optimal if its clustered-model AUROC is less than
99% of the optimal clustered-model AUROC. Then
a model-grouping is called near-optimal if (i) its
clustered-model AUROC is within 1% of the op-
timal clustered-model AUROC, and (ii) decreas-
ing either kp or ka yields a sub-optimal model-
grouping. We computed the clustered-model
AUROC for each model-grouping and identified
model-groupings that were near-optimal. We found
that near optimal performance (i.e. < 1% loss
of maximal clustered-model AUROC) could be
achieved using a relatively small number of clus-
ters for verbs and nouns (relative to the dimensions
of the verb-noun rating matrix). See Table 2 for
statistics of both near-optimal model-groupings as
well as model-groupings that obtained the optimal
clustered-model AUROC.12

We also computed a summary statistic, the

12See Figure 4 and Figure 5 in the appendix for the distri-
bution of the clustered-model AUROC for each of the model-
groupings, for the (median-performing) SVD and NMF mod-
els (respectively).

model kp ka AUROC W(ka,kb) NMI

SVD 55 20 0.847 0.407 0.201
SVD 40 25 0.847 0.407 0.180
SVD 35 30 0.846 0.409 0.169
SVD 30 50 0.846 0.405 0.153
SVD 25 100 0.847 0.405 0.143
NMF 55 30 0.860 0.388 0.228
NMF 40 35 0.860 0.391 0.208
NMF 35 40 0.860 0.389 0.197
NMF 30 50 0.859 0.391 0.184
NMF 25 100 0.862 0.385 0.175

SVD 55 95 0.854 0.383 0.198
NMF 55 100 0.868 0.372 0.227

Table 2: Statistics for model groupings that are near-
optimal with respect to AUROC on test data. Here kp is
the number of predicate (verb) clusters, ka is the num-
ber of argument (noun) clusters. The two bolded rows
at the bottom are the model groupings that had the max-
imal AUROC on the test data.

weighted average entropy of a clustering, that
serves as a measure of how well (on average) the
various verb and noun clusters in a model-grouping
are able to cluster together similarly behaving verbs
and nouns. This statistic was computed as follows.
Given a particular model-grouping with kp verb
clusters and ka noun clusters, for a verb-cluster, α,
and a noun-cluster, β, the entropy for this pair of
verb and noun clusters is:

e(α,β) = −
cα,β
dα,β

log

(
cα,β
dα,β

)

The entropy e(α,β) measures how much informa-
tion is needed (on average) to determine whether a
randomly selected (verb, noun) pair in (α, β) has
a high or low rating; note that since there are only
two possible ratings (high and low), 0 ≤ e(α,β) ≤
1, and we expect a good (verb, noun) cluster-pair to
have an entropy value closer to 0 than to 1, as that
signifies that the members of the cluster pair are
either majority high-rated or low-rated (verb, noun)
pairs, which in turn suggests that these (verb, noun)
pairs behave in a similar manner and are thus ap-
propriate to cluster together. We then compute the
weighted average entropy (also bounded between 0
and 1) of the model-grouping (kp, ka) is computed
as:

W(ka,kb) =

∑
α,β cβe(α,β)∑
α,β dα,β

See Table 2 for the weighted average entropy for
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select model-groupings.13

Finally we sought to understand whether the
information encoded within the verb embedding-
vectors learned by a latent factor model aligns with
traditional classification of verbs by their syntactic
and semantic properties. To this end, we computed,
for both the SVD and NMF models, the Normal-
ized Mutual Information (NMI) between the clus-
terings of the predicate embedding vectors and the
Levin verb classes.14 The Levin verb classes were
restricted to verbs that appear as verbs in WordNet,
and (following (Li and Brew, 2008)) we removed
verbs that appeared in more than two verb classes.15

We also compared the NMI between the Levin verb
classes against two baselines:

• Baseline A: group the predicates into kp clus-
ters of even size, with predicates randomly
assigned to the clusters.

• Baseline B: create kp clusters and randomly
assign each predicates to one of the clusters.

We found the NMF model consistently had a
higher NMI score than the SVD model (and thus
aligned more closely with the Levin verb classifica-
tion), and that both the SVD and the NMF model
had higher NMI scores than the two baselines
(see Figure 3). Note that the Levin verb classes
were derived by considering the set of predicate-
argument frames that a verb appears in, of which
the argument-selection considered in this study (i.e.
how a predicate selects an argument that serves
as its complement) is a subset; thus, we expected
at most a partial alignment between the predicate
embedding vectors produced by the model-based
CF algorithms and the Levin verb classes.

6 Conclusion

The results of this study suggest that model-based
CF algorithms perform well on the task of inferring
which (common) nouns a given (lexical) verb serv-
ing as a predicate can select as a complement. The
two model-based CF algorithms that were evalu-
ated on this task, SVD and NMF, achieved AUROC
of 0.90 and 0.89 (respectively), indicating that they

13See Figure 6 and Figure 7 in the appendix for the distribu-
tion of weighted average entropy (for each model-grouping),
for the SVD and NMF models (respectively).

14See (Strehl and Ghosh, 2002; Vinh et al., 2010) for a
review of NMI. Note that NMI varies between 0, for no-
alignment between two clusterings, and 1 for complete align-
ment between two clusterings.

15Consequently, there were a total of 48 verb classes, the
largest having 186 verbs, the smallest having 1 verb, and the
median-sized class having 16 verbs.

Figure 3: Normalized Mutual Information between
Verb Clusters and Levin Verb Classes.

have good discriminatory power and surpassing the
performance of several baselines. Notably, these
two models achieved this level of performance us-
ing at most six latent factors, yielding embedding
vectors of relatively low dimensionality as com-
pared to the dimensionality of the verb-noun rating
matrix from which they were derived. We also
found that the embedding vectors yielded by the
SVD and NMF models could each be clustered
into a small number of disjoint groups with only
a minuscule loss of performance (as measured by
AUROC). Finally, we observed modest alignment
of the verb clusters with the Levin verb classes as
compared to several baselines. We believe that the
results presented in this study warrant evaluation
of whether model-based CF algorithms are suitable
for modeling constituent selection, thereby going
beyond inferring the arguments a predicate may se-
lect as its complement; such a set of CF models for
constituent selection could be used to constrain the
productivity of the rules that make up a constituent
grammar, thereby yielding a system for learning a
grammar from noisy corpus data.
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Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng
Zhang, Zi-Ke Zhang, and Tao Zhou. 2012. Rec-
ommender systems. Physics Reports, 519(1):1–49.
Recommender Systems.

George A Miller. 1990. Nouns in wordnet: a lexical in-
heritance system. International journal of Lexicog-
raphy, 3(4):245–264.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

George A Miller. 1998. Nouns in wordnet. WordNet:
An electronic lexical database, pages 23–46.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller. 1990.
Introduction to wordnet: An on-line lexical database.
International journal of lexicography, 3(4):235–
244.

George A Miller and Christiane Fellbaum. 2007. Word-
net then and now. Language Resources and Evalua-
tion, 41(2):209–214.

Massimo Piattelli-Palmarini and Robert C Berwick.
2012. Rich languages from poor inputs. OUP Ox-
ford.

Badrul Sarwar, George Karypis, Joseph Konstan, and
John Riedl. 2001. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the
10th international conference on World Wide Web,
pages 285–295.

J Ben Schafer, Dan Frankowski, Jon Herlocker, and
Shilad Sen. 2007. Collaborative filtering recom-
mender systems. In The adaptive web, pages 291–
324. Springer.

https://doi.org/10.21105/joss.02174
https://doi.org/10.21105/joss.02174
https://doi.org/https://doi.org/10.1016/j.physrep.2012.02.006
https://doi.org/https://doi.org/10.1016/j.physrep.2012.02.006


637

Alexander Strehl and Joydeep Ghosh. 2002. Cluster
ensembles—a knowledge reuse framework for com-
bining multiple partitions. Journal of machine learn-
ing research, 3(Dec):583–617.

Xiaoyuan Su and Taghi M Khoshgoftaar. 2009. A sur-
vey of collaborative filtering techniques. Advances
in artificial intelligence, 2009.

Nguyen Xuan Vinh, Julien Epps, and James Bailey.
2010. Information theoretic measures for cluster-
ings comparison: Variants, properties, normaliza-
tion and correction for chance. The Journal of Ma-
chine Learning Research, 11:2837–2854.



638

Appendix

Figure 4: AUROC for each Model-Grouping derived from the median-performing SVD model.

Figure 5: AUROC for each Model-Grouping derived from the median-performing NMF model.
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Figure 6: Weighted Average Entropy for each Model-Grouping of the median-performing SVD model.

Figure 7: Weighted Average Entropy for each Model-Grouping of the median-performing NMF model.


