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Abstract

Existing text style transfer (TST) methods rely
on style classifiers to disentangle the text’s con-
tent and style attributes for text style trans-
fer. While the style classifier plays a criti-
cal role in existing TST methods, there is no
known investigation on its effect on the TST
methods. In this paper, we conduct an em-
pirical study on the limitations of the style
classifiers used in existing TST methods. We
demonstrate that the existing style classifiers
cannot learn sentence syntax effectively and
ultimately worsen existing TST models’ per-
formance. To address this issue, we propose
a novel Syntax-Aware Controllable Genera-
tion (SACG) model, which includes a syntax-
aware style classifier that ensures learned style
latent representations effectively capture the
syntax information for TST. Through exten-
sive experiments on two popular TST tasks,
we show that our proposed method signifi-
cantly outperforms the state-of-the-art meth-
ods. Our case studies have also demonstrated
SACG’s ability to generate fluent target-style
sentences that preserved the original content.

1 Introduction

Text Style Transfer (TST) is an increasingly pop-
ular natural language generation task that aims
to change the stylistic properties (e.g., the senti-
ment of text) of the text while retaining its style-
independent content (Hu et al., 2020). Due to the
difficulty in obtaining training sentence pairs with
the same content and differing styles, most existing
methods are designed to perform TST in an unsu-
pervised manner; the models only have access to
non-parallel, but style-labelled sentences.

A popular TST approach is to leverage an ad-
versarial learning autoencoder framework where
a style classifier or discriminator is pre-trained to
first disentangle the content and style latent repre-
sentations, before using a decoder to generate the

output sentence in the target style (Shen et al., 2017;
Zhao et al., 2018; Fu et al., 2018; Chen et al., 2018).
Another line of work proposed attribute-controlled
generation methods where the style attribute latent
vector is learned and combine with the latent repre-
sentation of the text to generate output sentences in
target style (Hu et al., 2017; Dai et al., 2019; Zhang
et al., 2018a). Similar to the adversarial learning
approach, the learning of the style attribute latent
vector is guided using a pre-trained style classifier.

A common key component in the two aforemen-
tioned TST approaches is the usage of a style clas-
sifier. However, little is known about the effects of
the style classifier on these models. For instance, is
the style classifier effective in learning the style in
the text? What aspects of the text style has the exist-
ing style classifier learned? Can the style classifiers
distinguish text’s syntax? Can the style classifier
guide TST models to generate syntactically correct
sentences and in the target style? This paper inves-
tigates these questions by conducting an empirical
analysis of the style classifiers used in TST models.

Extending from our empirical study, we pro-
pose the Syntax-Aware Controllable Generation
(SACG)1 model, which includes a syntax-aware
style classifier that ensure that the learned style la-
tent representations effectively capture the syntax
information for TST. Through extensive experi-
ments with two popular TST datasets and human
evaluation, we demonstrated SACG’s ability to out-
perform the state-of-the-art baselines in the TST
tasks.

2 Related Work

In recent years, studies on text style have attracted
not only the linguist’s attention but also that of
many computer science researchers. Specifically,

1Code implementation: https://gitlab.com/bottle shop/
snlg/style/sacg
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computer science researchers are investigating the
Text Style Transfer (TST) task that aims to change
the text’s stylistic properties while retaining its
style-independent content. The recent comprehen-
sive survey (Hu et al., 2020) summarizes the exist-
ing TST approaches.

Among these approaches, a popular line of re-
search aims to infer a latent representation for an
input sentence and manipulate the generated sen-
tence’s style based on this learned latent represen-
tation. Two techniques are commonly used to learn
and manipulate the text’s style latent representa-
tions: (1) adversarial learning and (2) attribute con-
trolled generation. Shen et al. (2017) leverages
an adversarial training scheme where a classifier is
used to evaluate if an encoder is able to generate a
latent content representation devoid of style. The
text content latent representation is subsequently
used to generate a specific style sentence using a
style-dependent decoder. Similar works have been
proposed where a classifier is pretrained to enable
the adversarial learning process in TST models
(Zhao et al., 2018; Fu et al., 2018; Chen et al.,
2018; Logeswaran et al., 2018; Yin et al., 2019; Lai
et al., 2019; Vineet et al., 2019).

Hu et al. (2017) proposed an attribute-controlled
generation text style transfer model that utilized
a Variational Autoencoder (VAE) (Kingma and
Welling, 2013) to learn a sentence’s latent repre-
sentation z and leverage a style classifier to learn
a style attribute vector s. Subsequently, z and s
are input into a decoder to generate a target style
sentence. Similar attribute-controlled generation
methods have been proposed for the TST task (Dai
et al., 2019; Zhang et al., 2018a; Li et al., 2019).

In the aforementioned methods, pretrained style
classifiers played a vital role in guiding the TST
task. However, these style classifiers are often pre-
trained without considering the syntax of sentences.
We postulate that syntax is an important aspect of
text style, especially in text formality style trans-
fer. This paper empirically demonstrates the im-
portance of modeling syntax in the TST task and
proposes a novel syntax-aware TST method that
outperforms state-of-the-art TST methods.

3 Empirical Study

Before presenting our proposed method, we first
conduct an empirical study on the style classifiers
used in existing TST methods. The goal is to exam-
ine the style classifiers’ ability to learn the syntax

Classifier Test set ACC F I

TextCNN GYAFC 88.6 91.3 86.4
Disordered 85.3 84.9 85.5

RNN GYAFC 85.6 84.6 86.4
Disordered 82.2 74.8 87.8

Transformer GYAFC 84.9 86.7 83.7
Disordered 82.9 80.5 84.6

Table 1: Style classifiers performance on GYAFC test
set and corresponding Disordered test set. ACC refers
to the accuracy on both formal and informal sentences,
F refers to the accuracy on formal sentences, and I
refers to the accuracy to informal sentences.

style information in a given text.

TextCNN (Kim, 2014), RNN (Cho et al., 2014),
and Transformer (Vaswani et al., 2017) are popu-
lar style classifiers used in many TST models (Dai
et al., 2019; Vineet et al., 2019; Luo et al., 2019;
Li et al., 2019; Zhang et al., 2018b). In this study,
we train the three style classifiers on GYAFC (Rao
and Tetreault, 2018), which is a popular formal-
ity transfer dataset used in many TST studies. We
first train and test the classifiers using the original
GYAFC training and test set. Next, we perturb the
sentence structure of the text in the GYAFC test
set by disordering the sentences’ word order. The
underlying intuition is that there should be syntax
differences between formal and informal sentences,
and the style classifiers should be able to learn the
syntactic style information. Therefore, perturbing
the test set’s sentence structure should worsen clas-
sification accuracy as the syntactic information in
the text is corrupted.

The empirical experiment results show that syn-
tax plays a crucial role in text’s formality. Table 1
shows the results of our empirical experiments. We
observed a small 2.9% decrease in style classifica-
tion accuracy in the disordered test set compared
to the original GYAFC test set. We further exam-
ined the style classifiers’ performance in different
classes. We noted that the classification accuracy
for formal sentences sharply decreased as we dis-
ordered the test sentences’ word order. However,
such observations are not made for informal sen-
tences; the classification accuracy remained fairly
constant even when word order was disrupted in
informal sentences. From the observations, we pos-
tulate that the style classifiers may have focused on
the attribute words to predict the style of sentences
while neglecting the syntactic information in their
style predictions. Furthermore, the style classifiers
may have regarded the perturbed sentences as in-
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formal ones. Nevertheless, the syntax of informal
sentences should be different from the perturbed
sentences. The similar classification performance
on perturbed sentences demonstrated the style clas-
sifiers’ ineffectiveness in capturing different for-
mality styles’ syntax information. More impor-
tantly, the style classifier’s inability to learn syntax
information could misguide the TST model’s de-
coder to generate fragmented sentences, especially
when transferring sentences to the informal style.

4 Methodology

This section proposes the Syntax-Aware Control-
lable Generation (SACG) model, which addresses
the ineffectiveness of existing TST methods in
handling sentence structure when transferring text
style. We first introduce Graph Convolutional Net-
works (GCNs). Subsequently, we explain how the
GCNs are utilized to extract sentence structure
information in our syntax-classifier and syntax-
encoder, which are the two main components in
our proposed SACG model. Finally, we describe
the learning process of our SACG model.

4.1 GCN and Sentence Structure
Representation

As a variant of convolutional neural networks (Le-
Cun et al., 1998), graph convolutional networks
(GCN) (Kipf and Welling, 2017) is designed for
graph data and it has demonstrated effectiveness in
modeling text data via syntactic dependency graphs
(Marcheggiani and Titov, 2017). Consider a graph
G = {V, E} where V (where |V| = n is the num-
ber of vertices in G) is the set of graph node and
E is the set of graph edges. Given a feature matrix
X ∈ Rn×d, where row xi ∈ Rd corresponds to a
feature for vertex i, the propagation rule of a GCN
is given as

H(l+1) = σ(AH(l)W (l)), (1)

where H(l) ∈ Rn×dl is the feature matrix of
the l-th layer and dl is the number of features for
each node in the l-th layer. H(0) = X , W (l) is the
weight matrix between the l-th and (l+1)-th layers,
A ∈ Rn×n is the adjacency matrix associated with
the graph G, and σ(·) is a non-linear activation
function, such as ReLU or Leaky ReLU. In essence,
a GCN takes in a feature matrix X as an input and
extract a latent feature matrix H(L) as the output,
where L is the number of layers in GCN.

Figure 1: Architecture of syntax-aware style classifier.

Our goal is to extract and utilize sentence struc-
ture information to guide our SACG model to gen-
erate more plausible sentences. The syntactic re-
lations between words in a sentence can be repre-
sented using dependency trees (Marcheggiani and
Titov, 2017). A dependency tree can be regarded as
a directed graph, and the GCNs can be used to ex-
tract the latent representation of sentence structure
from the dependency trees. Previous studies have
attempted to use GNCs to learn syntactic represen-
tation from dependency trees (Marcheggiani and
Titov, 2017; Bastings et al., 2017). However, many
of these existing techniques are over-parameterized,
especially on huge datasets. To overcome this lim-
itation, we employ a simpler approach where an
adjacency matrix incorporated with directions is
used to represent a sentence’s structure. Specifi-
cally, the adjacency matrix A is used to represent
the dependency relations of all words in the sen-
tence. The column words are head words, and the
row words are dependents. We set the element Aij

to 1 if there is a dependency between the i-th word
(head) and the j-th word (dependent). Similar to
(Marcheggiani and Titov, 2017), we add a self-loop
for each node in the graph, where all diagonal ele-
ments of A are set to 1.

4.2 Syntax-Aware Style Classifier

In this subsection, we propose syntax-aware style
classifier D to encode the syntactic information
from the dependency trees better.

Figure 1 shows the architecture of our proposed
syntax-aware style classifier. We first encode the to-



569

Figure 2: Framework of the Syntax-Aware Controllable Generation (SACG) model.

kens in a sentence of size n as s = {w1, ..., wn} in
the word embedding layer, where wi is the i-th step
input of Bi-LSTM. GCN has a limitation in cap-
turing dependencies between nodes far away from
each other in the graph. Therefore, instead of per-
forming the graph convolution on the static word
embeddings, we perform the GCN operations on
top of the Bi-LSTM hidden states (Marcheggiani
and Titov, 2017). As such, the GCN will only need
to model the relationships for fewer hops. The Bi-
LSTM states Hlstm = {hlstm,1, ..., hlstm,n} serve
as input xi = hlstm,i to GCN, where hlstm,i is the
concatenation of the forward and backward hidden
states. We feed the hidden states into a L-layer
GCN to obtain the hidden representations of each
token, which are directly influenced by its neigh-
bors no more than L edges apart in the dependency
tree. Formally, the hidden representation of node i
at the (l + 1)-th layer of GCN is computed by the
following equation:

h
(l+1)
i = σ(

n∑
j=1

AijW
(l)h

(l)
j + b(l)) (2)

where A is the adjacency matrix of dependency
tree, W (l) and b(l) are the model parameters, and
σ is an activation function. We obtain the hidden
representation h(L)i of node i after L GCN layers.

We noted that some node representations are
more informative by gathering information from
syntactically related neighbors through GCN. Thus,
we utilize scaled dot-product attention (Vaswani
et al., 2017) and averaging to aggregate the node
representations to sentence representation:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (3)

where Q,K, V represent queries, keys, and val-
ues, respectively, 1√

dk
is the scaling factor. In prac-

tice, we feed the output H(L) of GCN to Q,K, V .
Finally, we obtain the style prediction by feeding
the sentence representation into a fully connected
neural network followed by the softmax operation.

4.3 Syntax-aware Controllable Generation
Figure 2 shows the framework of our proposed
Syntax-Aware Controllable Generation (SACG)
model. For each input sentence s with attribute
yo and the corresponding adjacency matrix A, the
syntax-aware encoder E encodes s to a latent rep-
resentation z = E(s,A). E is designed to ex-
tract sentence structure using the feature extractor
of our proposed syntax-aware classifier. Subse-
quently, a decoder G decodes transferred sentence
s̃ = G(z, yt) or input sentence s = G(z, yo) based
on the attribute controlling code yt or yo. We em-
ploy the Stanford neural dependency parser Stanza
(Zhang et al., 2020) to generate the dependency
tree for transferred sentences, and the correspond-
ing adjacency matrix Ã. The transferred sentence
s̃ and the corresponding adjacency matrix serve as
the input of the syntax-aware classifier D, and the
classifier will evaluate if the transferred sentence
has the desired style.

We train the SACG model with classification
loss Lcla and reconstruction loss Lrec.

Classification Loss Lcla: The classification loss
ensures the transferred sentence is in the target
style. To this end, we apply the pretrained syntax-
aware classifier to guide the updates of related pa-
rameters such that the output sentence is predicted
to be in the target style:

Lcla = −E(s,yo)∼D[logP (yt|G(s̃), Ã)] (4)

where G(s̃) denotes a soft generated sentence
based on Gumbel-Softmax distribution (Jang et al.,
2017a) and the representation of each word is
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defined as the weighted sum of word embed-
dings with the prediction probability at the current
timestep. Ã denotes the corresponding adjacency
matrix of transferred sentence s̃.

Reconstruction Loss Lrec: The reconstruction
loss attempts to preserve the original content infor-
mation in the transferred sentences. Specifically,
the loss function constricts the model to capture
informative features to reconstruct the original sen-
tence using the learned representations. Formally,
we define Lrec as follows:

Lrec = −logP (s|z, yo) (5)

Where z denotes the hidden representation ex-
tracted by our syntax-aware encoder, and yo de-
notes the original style of input sentence s.

Putting them together, the final joint training
loss L is as follows:

L = Lrec + λLcla (6)

Where λ is a balancing hyper-parameter to en-
sure that the transferred sentence has the target
style while preserving the original content.

5 Experiments

5.1 Experiment Setting
Datasets. We evaluate our model on two popular
style transfer tasks: (1) Sentiment transfer, and (2)
formality transfer. The representative Yelp 2 restau-
rant reviews dataset (Shen et al., 2017) is selected
for the sentiment transfer task. Following the same
data preprocessing steps proposed in (Shen et al.,
2017), reviews with a rating above 3 are considered
positive, and those below 3 are negative. We adopt
the same train, development, and test split as (Shen
et al., 2017). Rao et al. (2018) released the GYAFC
3 (Grammarly’s Yahoo Answers Formality Corpus)
dataset to facilitate the formality style transfer task.
We adopt the Family&Relationship (F&R) domain
data for our experiments. Although it is a parallel
dataset, the alignments are only used for evaluation
and not for model construction. Table 2 shows the
training, validation, and test splits of the Yelp and
GYAFC datasets used in our experiments.

Baselines. We benchkmark SACG against 12
state-of-the-art TST models:ARAE (Zhao et al.,
2018), DualRL (Luo et al., 2019), DAST, DAST-
C (Li et al., 2019), PFST (He et al., 2020),

2https://github.com/shentianxiao/language-style-transfer
3https://github.com/raosudha89/ GYAFC-corpus

Dataset Attributes Train Dev Test

Yelp Positive 267K 38K 76K
Negative 176K 25K 50K

GYAFC Informal 51K 2.7K 1.3K
Formal 51K 2.2K 1K

Table 2: Dataset statistics for Yelp and GYAFC.

DRLST (Vineet et al., 2019), DeleteOnly, Template,
Del&Retri (Li et al., 2018), DIRR (Liu et al., 2021),
and HPAY (Kim and Sohn, 2020).

Training. The experiments were performed on
an Ubuntu 18.04.4 LTS system with 24 cores, 128
GB RAM, and Nvidia RTX 2080Ti. The word
embeddings of 300 dimensions are learned from
scratch. We use a single Bi-LSTM layer followed
by 2 GCN layers. The hidden dimension of the la-
tent representation z is set to 500, and the learnable
vectors with 200 dimensions represent the style la-
bels. The decoder is initialized by a concatenation
of the latent representation z and attribute control-
ling code y. The syntax-aware style classifier is
pretrained for evaluation and guiding the decoder’s
generation. After pretraining, the parameters of the
classifier are fixed. We use the Gumbel-softmax
to back-propagate the loss through discrete tokens
from the classifier to the encoder-decoder model
(Jang et al., 2017b). We empirically set the learning
rate to 1× 10−5 and the balancing parameter λ to
1.

5.2 Automatic Evaluation

We evaluate the proposed model and baselines on
three criteria commonly used in TST studies: trans-
fer strength, content preservation, and fluency.

Transfer strength. A TST model’s transfer
strength or its ability to transfer text style is com-
monly measured using style transfer accuracy (Hu
et al., 2020). A syntax-aware style classifier is first
pre-trained to predict the style label of the input
sentence. The classifier is subsequently used to
approximate the style transfer accuracy of the sen-
tences’ transferred style by considering the target
style as the ground truth.

Content preservation. To quantitatively mea-
sure the amount of original content preserved after
the style transfer operation, we employed four met-
rics used in previous work (Fu et al., 2018; Vineet
et al., 2019; He et al., 2020):

• BLEU: The BLEU score (Papineni et al.,
2002) is used to compare the style transferred
sentences with the human references provided
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Model ACC(%) BLEU CS WO PPL G-Score
ARAE (Zhao et al., 2018) 76.2 2.2 0.903 0.042 35 0.71

DeleteOnly (Li et al., 2018) 18.7 16.2 0.945 0.431 74 1.11
Template (Li et al., 2018) 44.7 19.0 0.943 0.509 102 1.32

Del&Retri (Li et al., 2018) 50.7 11.8 0.934 0.345 74 1.21
DualRL (Luo et al., 2019) 59.8 18.8 0.944 0.447 266 1.12

DAST (Li et al., 2019) 78.3 14.3 0.934 0.350 352 1.01
DAST-C (Li et al., 2019) 79.2 13.8 0.927 0.328 363 0.98

DRLST (Vineet et al., 2019) 49.8 2.7 0.909 0.342 31 1.06
PFST (He et al., 2020) 48.3 16.5 0.940 0.393 116 1.25

HPAY (Kim and Sohn, 2020) 43.1 10.4 0.942 0.418 92 1.17
DIRR (Liu et al., 2021) 71.8 18.2 0.942 0.451 145 1.28

SACG (ours) 84.1 21.1 0.962 0.591 73 1.69
Human0 84.6 24.6 0.942 0.393 24 2.00
Human1 83.8 24.3 0.931 0.342 27 1.89
Human2 83.6 24.6 0.932 0.354 27 1.91
Human3 82.1 24.7 0.931 0.354 27 1.90

Table 3: Performance of models on GYAFC dataset (Formality Transfer Task).

Model ACC(%) self -BLEU CS WO PPL G-Score
ARAE (Zhao et al., 2018) 83.2 18.0 0.874 0.270 79 1.35

DeleteOnly (Li et al., 2018) 84.2 28.7 0.893 0.501 130 1.53
Template (Li et al., 2018) 78.2 48.1 0.850 0.603 250 1.50

Del&Retri (Li et al., 2018) 88.1 30 0.897 0.464 88 1.66
DualRL (Luo et al., 2019) 79.0 58.3 0.970 0.801 117 1.98

DAST (Li et al., 2019) 90.7 49.7 0.961 0.705 181 1.76
DAST-C (Li et al., 2019) 93.6 41.2 0.933 0.560 274 1.49

DRLST (Vineet et al., 2019) 91.2 7.6 0.904 0.484 65 1.36
PFST (He et al., 2020) 85.3 41.7 0.902 0.527 94 1.78

HPAY (Kim and Sohn, 2020) 86.5 31.2 0.886 0.450 85 1.66
DIRR (Liu et al., 2021) 94.2 52.6 0.957 0.715 292 1.63

SACG (ours) 93.0 57.7 0.971 0.778 74 2.23

Table 4: Performance of models on Yelp dataset (Sentiment Transfer Task).

in the GYAFC dataset.

• self-BLEU: The self -BLEU score is adopted
by comparing the style transferred sentence
with its original sentence. This metric is used
when human reference is not available.

• Cosine Similarity: Fu et al. (2018) calcu-
lated the cosine similarity between original
sentence embedding and transferred sentence
embedding. The two sentences’ embeddings
should be close to preserve the semantics of
the transferred sentences.

• Word Overlap: Vineet et al. (Vineet et al.,
2019) employed a simple metric that counts
the unigram word overlap rate of the original
and style transferred sentences.

Fluency. Generating fluent sentences is a com-
mon goal for most natural language generation
models. GPT-2 (Radford et al., 2019) is a large-
scale transformer-based language model that is pre-
trained on large text corpus. We fine-tuned GPT-2
on the GYAFC and Yelp datasets and use the model

to measure the perplexity (PPL) of transferred sen-
tences. The sentences with smaller PPL scores are
considered more fluent.

Geometric Mean (G-Score): We compute the
geometric mean of ACC, self-BLEU, BLEU, CS,
WO and 1/PPL. Notably, we take the inverse of the
calculated perplexity score because a smaller PPL
score corresponds to better fluency.

5.2.1 Automatic Experiment Results
Table 3 shows the performance of the proposed
SACG model and baselines on the formality trans-
fer task. SACG has achieved the best G-Score,
outperforming the state-of-the-art baselines. Nev-
ertheless, we noted that none of the TST models
could score well on all evaluation metrics. Many
of the baselines can only perform well on trans-
fer strength or content preservation, but not on
both evaluation criteria. SACG has outperformed
the baselines in G-Score, and achieve 84.1% trans-
fer accuracy and 21.1 average BLEU score. The
GYAFC dataset also provided the performances of
four human references performing the formality
transfer task on the test set. The BLEU score of
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Model Style(%) Content Fluency
DualRL 28.5 4.09 4.52
DAST 27.5 3.22 3.68
PFST 24.0 3.91 4.54

Del&Retri 25.5 2.61 3.23
SACG 44.5 4.39 5.07

Table 5: Human evaluation results on GYAFC dataset.

each human reference is calculated with the other
three human references. Interestingly, we observe
that SACG’s performance on the three TST eval-
uation criteria is comparable and close to human
references’ performance.

Similar results were observed for the sentiment
transfer task. Table 4 shows the performance of the
proposed SACG model and baselines on the Yelp
dataset. We computed the self-BLEU scores as no
human references are provided for the Yelp test set.
Similarly, SACG outperformed the baselines in G-
score. We observe that the average style transfer
accuracy in Yelp is 86.3%, which is significantly
higher than GYAFC’s average score of 66.0%. The
difference in the average style transfer accuracy
highlights the challenge of the formality transfer
task. We also noted that most models performed
better in this task compared to the formality trans-
fer task. Nevertheless, the trade-off phenomenon
between transfer strength and content preservation
is still observed in the sentiment transfer task.

5.3 Human Evaluation

To further evaluate SACG’s performance in gener-
ating syntactically correct sentences in target style,
we conducted a human-based evaluation study.
Specifically, we first randomly sampled 200 sen-
tences from the GYAFC dataset. Next, we perform
text style transfer for the sampled sentences using
SAGC and four competitive baselines. Finally, we
recruited two linguistics researchers (i.e., partici-
pants) to evaluate the style-transferred sentences
generated by the TST models. The participants
are asked to evaluate the generated sentences on
the three criteria discussed in the earlier section.
Specifically, for Transfer Strength, participants are
asked to indicate if the generated sentences are
in the target style (i.e., a binary true/false indica-
tor). For Content Presentation, the participants are
asked to rate the amount of content preserved in the
generated sentences using a 6-point Likert scale.
1: no content presented, and 6: all content are pre-
served. Similarly, for Fluency, the participants are
asked to rate fluency in the generated sentences us-

Model TED Model TED
DRLST 19.2 DeleteOnly 18.2
ARAE 18.1 Template 17.9

DualRL 15.2 Del&Retri 21.0
DAST 16.6 HPAY 18.4
PFST 15.5 DIRR 15.5

DAST-C 16.9 SACG (ours) 13.2

Table 6: Average Tree Edit Distance (TED) of con-
stituency tree between TST model generated sentences
and 4 human references in GYAFC.

ing a 6-point Likert scale. 1: too many grammatical
errors, and 6: perfect and fluent sentence.

To minimize biases, we do not display the mod-
els’ names and we shuffled the order of the models
when displaying their generated sentence. There-
fore, the participants do not know which model
generates a particular sentence.

5.3.1 Human Experiment Results
Table 5 shows the human evaluation results. For
the transfer style, we compute the models’ style
transfer accuracy using the binary feedback from
the participants. We compute the models’ average
6-point Likert scores for content preservation and
fluency criteria. SACG is observed to outperform
the baselines in all three criteria. SACG is also
rated to generate more syntactically sound and flu-
ent sentence compared to the baselines. To check
for participant bias, we compute the inter-annotator
agreement between the participants. The Cohen’s
kappa coefficients on style transfer strength, con-
tent preservation, and fluency are 0.54, 0.76, and
0.72, respectively. The participants have substan-
tially high agreement on the content presentation
and fluency. However, the participants’ agreement
for style transfer strength is moderate as text for-
mality is subjective, and the participants are only
asked to perform binary indication.

5.4 Syntax Evaluation
As human references are available in the GYAFC
dataset, we compare the syntax of the sentences
generated by the TST models with the human ref-
erences. Specifically, we compute the constituency
tree edit distance (TED) to measure the syntactic
similarity between generated sentences and human
references. The intuition is that the TST model
that could generate sentences with similar syntac-
tic structure as the human references would likely
have learned the syntactic information associated
with the text formality style. To compute the con-
stituency TED, we parse the sentences using Stan-



573

Model ACC(%) self -BLEU BLEU CS WO PPL
GYAFC

SACG 84.1 - 21.1 0.962 0.591 73
SACG w/o Syntax-aware Encoder 83.8 - 20.3 0.957 0.544 83

SACG w/o Syntax-aware Encoder & Classifier 78.7 - 15.6 0.943 0.446 223
Yelp

SACG 93.0 57.7 - 0.971 0.778 74
SACG w/o Syntax-aware Encoder 92.6 56.4 - 0.964 0.720 85

SACG w/o Syntax-aware Encoder & Classifier 89.3 49.1 - 0.943 0.697 230

Table 7: Results of ablation study.

From formal to informal(GYAFC) From positive to negative (Yelp)
Source also , i dislike it when my father is unhappy . We will definitely come back here!
DualRL also i thrilled... We will not come back here!
DAST also, i r it when my father is men! We will normally joke back here?
PFST so i miss it when my father is 18. We will not come back here again.

SACG (ours) i also hate it when my father is unhappy !! We will not come back here!

Table 8: Example outputs on the GYAFC and Yelp datasets. Grammatical errors are colored.

ford CoreNLP and compute the TED between con-
stituency parsing trees.

Table 6 shows the syntax evaluation results. We
noted that SACG outperformed the baseline in gen-
erating sentences that are syntactically similar to
human references. This superior performance in
both the formality transfer task and syntax evalua-
tion suggests that SACG is able to learn the syntax
information of formal and informal text to perform
better text formality transfer.

5.5 Ablation Study

We also conducted an ablation study to further
examine the importance of syntax-aware classi-
fier and encoder in the SACG model. Table 7
shows the results of our ablation study. In the
“w/o syntax-aware encoder” setting, we replace the
syntax-aware encoder with a one-layer GRU (Cho
et al., 2014). We noted a small decrease in perfor-
mance for both formality transfer and sentiment
transfer tasks when the encoder is replaced. In the
“w/o syntax-aware encoder & classifier” setting,
we further replace the syntax-aware classifier with
a TextCNN (Kim, 2014) classifier. Interestingly,
we observe a sharp decrease in performance for
both formality transfer and sentiment transfer tasks.
In particular, the absence of the syntax-aware en-
coder and classifier greatly worsens the fluency of
the sentences. Our ablation study noted that the
syntax-aware encoder and classifier play vital roles
in ensuring SACG generates fluent target-style sen-
tences that preserve the original content.

5.6 Case Study

We conduct some case studies by presenting ran-
domly sampled examples and the corresponding
style transferred output of SACG and the top three
baselines ranked by G-Score. Table 8 shows the
example outputs on the GYAFC and Yelp datasets.
For the Yelp dataset, we observe that DualRL,
PFST, and SACG are able to transfer the sentiment
of the source sentence correctly. The generated
sentences are also fluent and have preserved the
original content (i.e., going back to a venue). The
formality transfer task is observed to be more chal-
lenging, as we noted that most of the baselines
could not generate acceptable output sentences.
The baselines have generated output sentences with
grammatical errors, making it harder to judge if the
style has been successfully transferred. Albeit the
difficulty of the task, SACG is able to generate a
fluent sentence that preserved the original content.

6 Ethical Considerations

TST algorithms have many real-world applications.
For example, these algorithms can improve target
marketing messages’ persuasiveness and integrate
into writing tools to improve users’ writing style.
However, TST algorithms inherently run the risk
of being misused for document forgery, imperson-
ation, and sock-puppeting. To mitigate these risks,
we will add access control to our code repository,
and we would share our codes after the requester
has acknowledged our ethical disclaimer.
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7 Conclusion

In this paper, we empirically examined the style
classifier used in existing TST models and demon-
strated that the existing style classifier could not
learn the text syntax effectively. We proposed
SACG, a novel deep generative framework that
considers syntax when learning style latent repre-
sentation. We conducted extensive experiments on
two benchmark datasets and benchmarked SACG
against competitive TST models. The automatic
and human-based evaluation experiment results
showed that SACG outperforms state-of-the-art
methods. Our case studies also demonstrated that
SACG is able to generate fluent target-style sen-
tences that preserved the original content. For fu-
ture work, we will continue to explore other meth-
ods to improve the structural representations of text
and incorporate them to perform better TST.
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