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Abstract

Concept normalization of clinical texts to stan-
dard medical classifications and ontologies is
a task with high importance for healthcare and
medical research. We attempt to solve this
problem through automatic SNOMED CT en-
coding, where SNOMED CT is one of the
most widely used and comprehensive clini-
cal term ontologies. Applying basic Deep
Learning models, however, leads to undesir-
able results due to the unbalanced nature of
the data and the extreme number of classes.
We propose a classification procedure that fea-
tures a multiple-step workflow consisting of la-
bel clustering, multi-cluster classification, and
clusters-to-labels mapping. For multi-cluster
classification, BioBERT is fine-tuned over our
custom dataset. The clusters-to-labels map-
ping is carried out by a one-vs-all classifier
(SVC) applied to every single cluster. We also
present the steps for automatic dataset gen-
eration of textual descriptions annotated with
SNOMED CT codes based on public data and
linked open data. In order to cope with the
problem that our dataset is highly unbalanced,
some data augmentation methods are applied.
The results from the conducted experiments
show high accuracy and reliability of our ap-
proach for prediction of SNOMED CT codes
relevant to a clinical text.

1 Introduction

The task of automatic encoding of clinical text with
standard medical classifications and ontologies is
with high importance for healthcare organizations

and medical research. Truly, more than 80% of
clinical documents are stored in free-text format.
This paper presents a research effort in solving the
problem of automatic encoding of textual descrip-
tion of medical diagnoses with one of the most
widely used (Lee et al., 2013) and comprehensive
ontologies – the Systematized Nomenclature of
Medicine – Clinical Terms (SNOMED CT)1. One
of the most important characteristics of SNOMED
CT, which makes it significantly different from the
rest of the standard medical classifications, is that
it is based on compositional grammar2. Another
aspect of popularity and importance of SNOMED
CT for health information is interoperability, that is
discussed in (Peterson and Liu, 2020). SNOMED
CT is well known for being one of the most com-
prehensive medical ontologies, which makes the
task of automatic encoding an extreme scale classi-
fication task with more than 360,000 medical codes.
Currently, this task has not been solved with suffi-
cient accuracy for all possible classes. Usually the
developed solutions cover restricted terminology
from 10 to a couple of thousands terms (Gaudet-
Blavignac et al., 2021). The compositional nature
of the SNOMED CT codes gives us the oppor-
tunity to address the problem either with classi-
cal approaches for classification tasks or with spe-
cific solutions that benefit from the compositional
grammar’s structure. As a product of our research,

1https://www.snomed.org/
2https://confluence.ihtsdotools.org/

display/DOCSCG/Compositional+Grammar+-+
Specification+and+Guide

https://www.snomed.org/
https://confluence.ihtsdotools.org/display/DOCSCG/Compositional+Grammar+-+Specification+and+Guide
https://confluence.ihtsdotools.org/display/DOCSCG/Compositional+Grammar+-+Specification+and+Guide
https://confluence.ihtsdotools.org/display/DOCSCG/Compositional+Grammar+-+Specification+and+Guide
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the developed service for automatic encoding with
SNOMED CT codes will be used mainly for Elec-
tronic Health Records (EHR) processing for pa-
tients with oncological diseases and certain rare
diseases. Most of these diseases are well known to
have a huge number of related diseases. Thus, our
study will not be restricted only to the diseases of
interest but will have a much broader scope. We
propose an adaptation of the approach proposed
by (Chang et al., 2020) and demonstrate the en-
tire process from training dataset construction to
classification model design and training.

2 Related Work

The problem of automatic encoding of EHR with
SNOMED CT codes was investigated by many re-
searchers since the very beginning of the ontology
development. Different solutions cover broad range
of SNOMED CT codes from 10 to a couple of thou-
sands, usually the main obstacle for scalabily is the
availability of sufficient volume of annotated train-
ing data. Basaldella et al (Basaldella et al., 2020)
present COMETA - manually annotated corpora by
experts that contain 20k English biomedical entities
encoded with SNOMED CT.

The most popular approaches for automatic en-
coding, include hybrid methods combining regular
expressions and vector space models (Ruch et al.,
2008) with top precision 0.823 and mean avg preci-
sion 0.45 for 1239 MEDLINE citations. Some ap-
proaches take in consideration compositional struc-
ture (Liu et al., 2012) of SNOMED CT.

Recent research is based on deep learning tech-
niques, and the most promising solutions are using
transformers like BERT (Devlin et al., 2018). Patti-
sapu et al (Pattisapu et al., 2020) apply word em-
beddings, graph embeddings and BERT derivatives
transformers and achieve the highest accuracy 0.83
for two benchmark datasets CADEC and PsyTAR.

Kraljevic et al (Kraljevic et al., 2021) propose
MedCAT with Macro F1: 0.841–0.860 across dif-
ferent clinical domains and tasks. MedCAT is
based on Word2Vec embeddings, and there is also
MedCAT BERT version based on clinicalBERT
(Alsentzer et al., 2019), and latter model shows a
little bit lower performance than the former one.

A recent systematic review (Gaudet-Blavignac
et al., 2021) shows that only few of the developed
services for automatic encoding with SNOMED
CT, are provided as open source - The clinical
Text Analysis and Knowledge Extraction System

(cTAKES) (Savova et al., 2010) and MetaMap
(Aronson, 2001) . Both of them are rule-based.

3 Data

One of the key factors that plays a role in the auto-
matic encoding of SNOMED CT codes is the data.
In our project, we do not have annotated data which
can be used to train the developed models. Thus,
we use certain public data and linked open data in
order to automatically generate annotated corpora
that can serve as a training dataset.

3.1 Data Sources

In our research, we will consider only a subset of
the available SNOMED CT codes, namely those re-
lated to disorders, clinical findings and procedures.
The relevant medical ontologies, standard classi-
fications, and vocabularies for the project, which
are used to enrich the SNOMED CT descriptions
with additional alternative textual descriptions, are
the Human Disease Ontology3, the International
Classification of Diseases, 10th revision (ICD-10)4,
the International Classification of Diseases, 9th re-
vision (ICD-9)5, the International Classification
of Diseases for Oncology, 3rd Edition (ICD-O-3)6,
the Medical Subject Heading (MESH)7, the Mondo
Disease Ontology (MONDO)8, the Orphanet Rare
Disease Ontology (ORDO)9, and the Unified Med-
ical Language System (UMLS)10. Benefiting from
the resources provided by the linked open data
cloud (LOD)11, we can identify some of the map-
pings between the ontologies listed above using
Bioportal12. Some general equivalence mappings
are provided for ICD-10 and ICD-913 as well as
rules for mappings between SNOMED CT and
ICD-1014. In addition, the ICD-10 CM Alphabeti-

3https://disease-ontology.org/
4https://icd.who.int/browse10/2019/en
5https://apps.who.int/iris/handle/

10665/39473
6http://apps.who.int/iris/bitstream/

handle/10665/96612/9789241548496_eng.pdf
7https://www.ncbi.nlm.nih.gov/mesh/
8https://mondo.monarchinitiative.org/
9https://www.orpha.net/consor/cgi-bin/

index.php
10https://www.nlm.nih.gov/research/

umls/index.html
11https://lod-cloud.net/
12https://bioportal.bioontology.org/
13https://shorturl.at/vIKP4
14https://www.nlm.nih.gov/research/

umls/mapping_projects/snomedct_to_
icd10cm.html

https://disease-ontology.org/
https://icd.who.int/browse10/2019/en
https://apps.who.int/iris/handle/10665/39473
https://apps.who.int/iris/handle/10665/39473
http://apps.who.int/iris/bitstream/handle/10665/96612/9789241548496_eng.pdf
http://apps.who.int/iris/bitstream/handle/10665/96612/9789241548496_eng.pdf
https://www.ncbi.nlm.nih.gov/mesh/
https://mondo.monarchinitiative.org/
https://www.orpha.net/consor/cgi-bin/index.php
https://www.orpha.net/consor/cgi-bin/index.php
https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html
https://lod-cloud.net/
https://bioportal.bioontology.org/
https://shorturl.at/vIKP4
https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html
https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html
https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html
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cal Index15 is used. All these resource and official
mappings between them provide valid encoding of
the textual descriptions of diseases with SNOMED
CT codes.

3.2 Data Integration

As we alluded above, in order to increase the size of
the corpus of SNOMED codes with textual descrip-
tions (and hence boost the predictive power of our
neural network by ensuring a richer training set),
we extract mappings between SNOMED CT and
other medical ontologies, standard classifications,
and vocabularies. Then, we use these mappings to
link SNOMED CT codes to descriptions native to
the aforementioned resources.

Following this guiding principle, but applying it
to different subsets of SNOMED CT codes and al-
lowing different degrees of description transitivity
(stay tuned), we constructed four distinct datasets,
the last two of which allowed for a high classifica-
tion accuracy.

Corpus
Size

SNOMED
CT

Codes

Unique
Descrip-

tions
Dataset V1 22M 128k 280k
Dataset V2: 626k 227k 469k
Procedures 106k 64k 105k
Findings 140k 65k 107k
Disorders 380k 98k 257k

Dataset V3 85k 14k 54k
Dataset V4 198k 14k 58k

Table 1: Dataset Evolution

We can conceptualize the overarching principle
behind the construction of the different datasets
as follows: First, we choose a certain subset of
SNOMED CT codes whose elements will serve
as labels in the classification procedure. Second,
we consider the medical codes from the above
ontologies, classifications, and vocabularies that
are linked to our chosen SNOMED CT subset
through an ”exact-match” type predicate.16 Third,
we build a graph whose vertices are all of the cho-
sen SNOMED CT codes and their ”exact-match”
neighbors; and whose edges are precisely these

15https://icd.codes/icd10cm/
alphabetical-index

16We used verified existing mappings between ontologies
and SPARQL queries (e.g. https://w.wiki/3ZXd) to
extract similarities.

”exact-match” mappings. Fourth, we prescribe a de-
gree of description transitivity. That is, we specify
whether medical codes in connected components
will share all textual descriptions associated with
that component or simply the descriptions associ-
ated with their immediate neighbors. Finally, we
extract a corpus of SNOMED CT codes along with
the natural language descriptions that these codes
acquired from the mapping graph.

Version 1 of our dataset reflected the naı̈ve idea
of considering a graph with full description tran-
sitivity. Of course, this approach of total transi-
tive search between ontologies is largely misguided
since the mappings between SNOMED CT codes
an outside resources are rarely one-to-one. In-
deed, these mappings prescribe similarity rather
than identity – a circumstance that caused the graph
generated by the V1 SNOMED CT subset to con-
tain a connected component encompassing more
than 90% of the vertices. Thus, the majority of the
relevant SNOMED CT codes became indistinguish-
able for our classification procedure.

Figure 1: Dataset V1

For the second version of our dataset, we consid-
ered an even larger subset of SNOMED CT codes,
which we further split into three categories – Pro-
cedures, Findings, and Disorders – respecting the
official SNOMED CT organization. We used these
three subsets to generate three distinct mapping
graphs following the above procedure. Again, we
prescribed full mapping transitivity on the individ-
ual graphs, but we forbade communication between
graphs. This new strategy decreased the edge den-
sity of the graphs considerably, but large connected
components were still present, which led to poor
classification performance.

Consequently, we decided to narrow down the
generating subset of SNOMED CT codes and to

https://icd.codes/icd10cm/alphabetical-index
https://icd.codes/icd10cm/alphabetical-index
https://w.wiki/3ZXd
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allow description-sharing only among immediate
”exact-match” neighbors. Thus, for Dataset V3, we
considered solely the SNOMED CT codes which
exactly matched the following widely encountered
procedures, findings, and disorders related to onco-
logical diseases, certain rare diseases, and digestive,
neurological, and respiratory diseases.

The lack of description transitivity in V3 caused
the majority of the considered SNOMED CT codes
to have unique description clusters. This circum-
stance allowed us to observe high classification ac-
curacy for the first time. However, many SNOMED
CT codes were now matched to a single single-
word textual description, and the augmentation
strategies discussed in the next subsection failed to
meaningfully increase the description clusters of
such codes.

For that reason, the official verified SNOMED
CT ontology mappings used in V3 were supple-
mented with additional mappings excavated from
Wikidata17. Then, full description transitivity was
applied, and thus Dataset V4 came to be.

Corpus
Size

SNOMED
CT

Codes

Unique
Descrip-

tions
Additional

Data
112k 8k 3k

Table 2: Additional Data

3.3 Data Augmentation

Our data integration strategies resulted in a one-
to-many mapping of SNOMED CT codes to syn-
onymous natural language descriptions. This map-
ping, however, featured a significant number of
SNOMED CT codes with less than four textual
descriptions. In order to address this circumstance,
which would have otherwise interfered with the pre-
cision of our neural network, we employed several
data augmentation techniques aimed at syntheti-
cally increasing the set of descriptions so that each
SNOMED CT code could get mapped to at least
four descriptions.

Our augmentation strategies were motivated by
considerations of what synonymous textual descrip-
tions could arise in the work of medical profession-
als.

17https://www.wikidata.org/wiki/
Wikidata:Main_Page

3.3.1 Random Swap and Random Synonym
Insertion

We adapted some of the code developed for Easy
Data Augmentation(Wei and Zou, 2019) for the
purposes of random word swapping and random
synonym insertion. The Random Swap transfor-
mation works by selecting two random indices in
a list of multiple words, and then, swapping the
words with the corresponding indices. Only one
swap is performed per transformation, which guar-
antees that novel descriptions are produced after
the augmentation. The Random Synonym Insertion
transformation works by shuffling the words in a
sentence and looping over the shuffled sequence
of words until a word with a WordNet18 synonym
is selected. Once such a word is found, a random
synonym is pulled from its list of synonyms and
inserted at a random place in the initial sentence. If
no synonyms are found, nothing happens.

Examples:

• Random Swap: Fear of thunderstorms →
Fear thunderstorms of.

• Random Synonym Insertion: Complete
loss of teeth due to trauma→ Complete loss
of hurt teeth due to trauma.

3.3.2 Typographical Augmentation
Since medics work in tense environments, they are
susceptible to making errors while typing medi-
cal records, as they are subjected to a lot of stress,
strain, and lack of sleep. We have developed the
following augmentations mimicking potential ty-
pos:

• Swap adjacent character:
Syndrome→ Synrdome.

• Remove character:
Syndrome→ Syndome.

• Change character with corresponding ad-
jacent keyboard-key character:
Syndrome→ Syndrone.

• Insert adjacent keyboard-key character to
a word:
Syndrome→ Syundrome.

All these augmentations are applied on a ran-
domly selected character of a randomly selected
word.

18https://wordnet.princeton.edu/

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://wordnet.princeton.edu/
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Figure 2: Data collection and classification model pipeline

3.3.3 Manual Augmentation
At certain places, where the above strategies could
not be naturally applied, synonymous natural lan-
guage descriptions were manually crafted.

Example:
3-PGDH deficiency→ 3-phosphoglycerate dehy-
drogenase deficiency.

4 Text-Based Encoding with SNOMED
CT Codes

If we have an unbalanced dataset, or if we want
to split our problem into sub-problems, we can
group our labels into clusters and train a model
to predict to which of the clusters each sample
belongs. After that, another model can refine (map)
every predicted cluster to a specific label.

The proposed approach of text-based SNOMED
CT classification is the following (see Fig. 2):

• Data Augmentation

• Label Clustering

• Sampling

• Train Multi-Cluster Classification Model

• Train Model for Clusters to Labels Refine-
ment

4.1 Data Augmentation

The data augmentation techniques used in this step
are described in detail in the previous section. The
following parameters are used:

augment probability = 40%

minimum samples = 5,

where augment probability refers to what por-
tion of the current description’s words will be aug-
mented and minimum samples refers to the min-
imum number of description samples every class
should contain after the augmentation.

4.2 Label Clustering

Label clustering is widely used in extreme scale
classification problems because datasets are mainly
unbalanced and there are vast numbers of classes
or because we want the classification task to be per-
formed with less granularity. Our approach for clus-
tering the dataset labels into groups is done by label
embeddings, used in (Khandagale et al., 2020), and
by applying clustering algorithm to it. Label em-
beddings for specific labels can be produced by
summing all sample embeddings for which it is
active. So, if we denote X to be the matrix hold-
ing the embeddings of all samples’ descriptions,
X = [samples× embeddings], and Y to be the ma-
trix holding multi-hot encoding of samples’ classes,
Y = [samples × labels], Label embeddings (ma-
trix L) is calculated using dot product between
X and Y . This matrix L gives us information on
how each label relates to each sample in our data,
L = Y TX = [labels×embeddings]. For encoding
the input samples’ descriptions, we applied the pre-
trained BioBERT model (Lee et al., 2020). Cluster-
ing is done by a K-Means algorithm, with selected
number of clusters of 100. This specific number
is selected by manual analysis of data distribution
over different number of clusters. The desired num-
ber of clusters is the smallest number that produces
the minimum number of labels contained in more
than one cluster, as well as best distribution of the
labels for each cluster.
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4.3 Sampling

Since our dataset is highly unbalanced because of
the specifics of the domain, there are classes with
only 5 samples and there are classes with more than
800 samples. The naı̈ve sampling of random data
splitting to train/dev/test sets will not work because
this will result in all samples of some classes to be
included entirely into one of the splits, which will
lead to reduced accuracy. So, we developed a cus-
tom sampling strategy, which extracts distributed
number of samples by a random manner into the
dev and test split, which will result specific classes
included into the dev and test splits to be included
into the training corpus. For example, if class N
has only 5 samples, its samples will be distributed
as follows: train/dev/test = 3/1/1.

4.4 Train Multi-Cluster Classification Model

After label clustering is applied on the data, the
next step is training a model for classification of
the produced clusters. This can be formulated as bi-
nary, multi-class or multi-label classification. Since
our dataset is very complex, and one class can be
included into one or multiple clusters, we modified
the official BioBERT implementation to perform
a multi-label classification using Area Under the
Curve (ROC AUC) as a scoring function. As an
input, we have transformed our dataset using the
produced clusters instead of the original labels, and
we have fine-tuned the BioBERT weights on it.

4.5 Train Model for Clusters to Labels
Refinement

The goal of the last step in the pipeline is find-
ing to which label every sample belongs based on
the already predicted cluster. There are a lot of
possible solutions for mapping the sample’s pre-
dicted clusters to their labels, and a classical one
is for each label to look into all instances which
is too expensive, discussed in (Chang et al., 2020).
Another approach is training multiple models. A
model for every label including the subset of all in-
stances included into the predicted clusters (Chang
et al., 2020), which will lead to the number of mod-
els equal to the number of classes. Since we are
dealing with an extreme scale classification task
with more than 10k classes, we think that this is
not practical for applying it in real applications.
We have trained liner one-vs-rest classifiers (Sup-
port Vector Classification (Platt, 1999), (Chang and
Lin, 2011)) for every cluster including all its in-

stances with BioBERT sample embeddings as an
input. This approach results in 100 SVC trained
models for clusters-to-labels refinement using Area
Under the Curve (ROC AUC) as a scoring function.

Our contribution:

• Proposed augmentation techniques matching
data distribution specifics;

• Proposed sampling strategy dealing with un-
balanced data;

• Multi-class cluster classification is replaced
with multi-label cluster classification, increas-
ing the task’s level of complexity;

• Cluster to label refinement is compressed to
model per cluster, which is more suitable for
extreme scale classification tasks;

5 Experiments and Results

5.1 Dataset V1
On version 1 of our dataset, we initially attempted
a classical multi-class classification approach by
using pretrained BioBERT (Lee et al., 2020). The
results were close to random guessing, so we tried
another approach. We used some standard com-
munity detection algorithms (like Louvain (Blon-
del et al., 2008), (Dugué and Perez, 2015), (Traag
et al., 2011) and Leiden (Traag et al., 2019)) to
group SNOMED CT codes into classes in order
to train a cascade of hierarchical BioBERT classi-
fiers. This grouping was necessary because 95% of
Dataset V1 forms a dense graph (see Figure 5). Af-
ter analyzing the results, we concluded that by this
grouping a lot of important connections were re-
moved. For this reason, we have left this approach
aside.

5.2 Dataset V2
On the new version of the dataset, we tried to
solve the problem by a multi-label classification
approach using pretrained BioBERT again. Af-
ter comprehensive training iterations, our model
reached Area Under the Curve (ROC AUC) of 0.60
(Figure 6 ) which was not high enough for solving
the problem.

5.3 Dataset V3
The proposed approach described in section 4 is
applied on this third version of our dataset. We
have fine-tuned the BioBERT weights for the multi-
cluster classification task (Step 4 of our pipeline),
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Figure 3: Cluster classification BioBERT model is dealing with multi-label data

Figure 4: Refinement maps every sample with its corre-
sponding labels based on the sample’s predicted cluster

Figure 5: Dataset V1 - Dense Graph

and after 7 epochs of training, it reached Area Un-
der the Curve (ROC AUC) of 0.99653. Training

Figure 6: Dataset V2 - ROC curve

SVC for every cluster (100 SVC models) produces
Area Under the Curve (ROC AUC) of 0.83273.

5.4 Dataset V4

The proposed approach described in the previous
section is applied on this fourth version of our
dataset. The Vocabulary is based on BioBERT v1.1,
trained over PubMed. Some of the characteristics
of Dataset V4 are presented in Table 3.

Characteristic Count
Unique tokens 6,522
Number of tokens 2,949,353
Min of tokens 1
Max of tokens 189
Mean of tokens 14.85
Median of tokens 11.0

Table 3: Dataset V4 Characteristics

We have fine-tuned the BioBERT weights for
the multi-cluster classification task (Step 4 of our
pipeline), and after 25 epochs of training, it reached
Area Under the Curve (ROC AUC) of 0.977.

Training SVC for every cluster (100 SVC mod-
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els) produces Area Under the Curve (ROC AUC)
of 0.804.

5.5 Discussion
The comparison (see Table 4) of the bioBERT
multi-label classification with bioBERT cluster-
ing and label refinement, show that the proposed
approach significantly improves the accuracy for
SNOMED CT encoding task. The experiments
are performed for trained models for 7 epochs for
Dataset V2 - disorders subset.

Approach Accuracy
bioBERT multilabel classification 0.56
bioBERT clusterings + label re-
finement (final approach)

0.97

Table 4: Comparison of the bioBERT models for
Dataset V2- disorders

The proposed approach shows high accuracy and
scalability. The additional steps for label refine-
ment do not cause significant slow down of the
learning process of the model. The obtained ac-
curacy of the given method shows a significant
improvement of the evaluation, compared to other
solutions in the literature of the same problem, that
report accuracy in the range from 0.83 (Pattisapu
et al., 2020) up to 0.86 (Kraljevic et al., 2021) .
Moreover, the presented results of the experiments
and the evaluation are for a larger dataset and a
wider range of SNOMED CT codes.

6 Conclusion and Further Work

We demonstrated how can be generated annotated
dataset with SNOMED CT codes. The proposed
approach demonstrates high accuracy and scala-
bility. In comparison with other state-of-the-art
approaches the achieved accuracy for the proposed
model is relatively high and more over for wider
coverage of SNOMED CT.

Our further work includes training of Multilin-
gual BERT to solve the multilingual problem. Pos-
sible increase of the Area Under the Curve (ROC
AUC) scores can be achieved through grid search
applied to the selection of the K-Means clusters
number, until finding the optimal number, based on
the distribution of the data.
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