
Proceedings of Recent Advances in Natural Language Processing, pages 386–393
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_044

386

Decoupled Transformer for Scalable Inference
in Open-domain Question Answering

Haytham ElFadeel
haythamf@fb.com

Stan Peshterliev
stanvp@fb.com

Abstract

Large transformer models, such as BERT,
achieve state-of-the-art results in machine read-
ing comprehension (MRC) for open-domain
question answering (QA). However, transform-
ers have a high computational cost for infer-
ence which makes them hard to apply to online
QA systems for applications like voice assis-
tants. To reduce computational cost and la-
tency, we propose decoupling the transformer
MRC model into input-component and cross-
component. The decoupling allows for part of
the representation computation to be performed
offline and cached for online use. To retain the
decoupled transformer accuracy, we devised a
knowledge distillation objective from a stan-
dard transformer model. Moreover, we intro-
duce learned representation compression layers
which help reduce by four times the storage re-
quirement for the cache. In experiments on the
SQUAD 2.0 dataset, a decoupled transformer
reduces the computational cost and latency of
open-domain MRC by 30-40% with only 1.2
points worse F1-score compared to a standard
transformer.

1 Introduction

Open-domain question answering (QA) aims to an-
swer questions from a collection of text passages.
It is an important and challenging task with appli-
cation to several domains such as web search and
voice assistants. The most popular architecture for
open-domain QA is retriever-reader (Chen et al.,
2017). Given a question, the retriever uses an in-
formation retrieval (IR) system over a collection
of passages to return top-K results that are most
likely to contain an answer. Then, the reader uses a
machine reading comprehension (MRC) model on
each of the top-K results to find an answer. In the
end, the top-K MRC answers are ranked to produce
a final answer.

For both the retriever and the reader, large trans-
former models such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019) and ELECTRA (Clark
et al., 2020) achieve state-of-the-art results. A
disadvantage of large transformer models is the
high computational cost for inference which makes
them hard to apply to online runtime systems, e.g.
voice-assistants. Transformers’ computational cost
comes from three major factors. Firstly, the size of
the feed-forward layers which project to an inter-
mediate higher dimension and projects back to the
original dimension. Secondly, the multi-head self-
attention has quadratic computational complexity
in the sequence length. Thirdly, the total number
of layers.

Dense passage retrieval (DPR) (Karpukhin et al.,
2020) is a retriever model which uses a transformer
question encoder and transformer passage encoder
to capture semantic similarity. The question and
passage encoders are trained such that passages
that are likely to contain an answer have a large em-
bedding dot product with the question embedding.
The embeddings for the passages are generated
offline and indexed for efficient distributed KNN
search (Johnson et al., 2017), and only the embed-
ding for the question is generated at runtime. Since
questions are usually short, the retriever runtime
inference computational cost is low.

MRC reader models process the top-K pas-
sages returned by the retriever to get an answer.
In transformer-based MRC models, each passage
is encoded together with the question using a
CLS and separator characters [CLS] Question
[SEP] Passage. The encoding is followed by a
prediction head which determines the answer span.
If there is no answer, the model result is a zero-
length span on the CLS token. The joint encoding
of the document and the question produces rich
interaction features but it increases the sequence
length, and thus the computational coast. Since the



387

MRC model inference is executed at runtime on
long sequences of a question and passages, MRC
is the main computational bottleneck in retriever-
reader QA.

There have been several ideas to reduce the run-
time inference of transformer models, such as preci-
sion reduction via quantization (Zafrir et al., 2019;
Shen et al., 2020), knowledge distilling to a smaller
architecture (Sanh et al., 2019; Jiao et al., 2019),
and approximate multi-head attention for reduc-
ing the quadratic complexity (Wang et al., 2020;
Beltagy et al., 2020). In this paper, we take an
orthogonal approach, decoupling the transformer
encoding for multiple inputs to improve efficiency,
which can be combined with the aforementioned
techniques. The motivation for the decoupled trans-
former is that in open-domain QA the passages are
known in advance and part of the passage compu-
tation can be performed offline and stored. Then,
online at the runtime the question computation can
be performed only once and combined with the
stored state from passages with cross-attention.

We use the decoupled transformer to reduce the
computational cost of open-domain MRC by 30-
40% with only 1.2 points worse than the F1-score
on the SQUAD 2.0 benchmark.

Our contributions are as follows:

• We propose and evaluate a novel decoupled
transformer approach for MRC in open-domain
QA to reduce runtime inference cost. Our ap-
proach uses a knowledge distillation (KD) ob-
jective to bridge the gap between a standard
transformer and decoupled transformer.

• We conduct experiments to understand how
much cross-attention between inputs is needed
in MRC and other natural language processing
(NLP) tasks like paraphrasing identification and
natural language inference.

• We devise an accurate representation compres-
sion approach to reduce the storage requirement
for decoupled transformer offline state. The
compression provides a four-fold reduction in
the index storage requirement for large corpora
such as Wikipedia, from 3.4 TB to 858 GB.

2 Related Work

DC-BERT (Zhang et al., 2020) is a decoupled trans-
former that has dual BERT models. An online
BERT encodes the question and an offline BERT

pre-encodes all the passages and stores their en-
codings. Conceptually, DC-BERT goals and ar-
chitecture of combining local and global context
are similar to our work with the following major
differences:

• We apply decoupled transformers to MRC and
DC-BERT is designed and evaluated for the
retrieval passage ranking. With the recent intro-
duction of DPR, passage ranking as explored in
DC-BERT is less important, so MRC becomes
the primary bottleneck.

• We investigate how much cross-attention is
needed for MRC and other NLP tasks.

• We introduce compression and decompression
layers to reduce representation storage require-
ments.

Another model where the query and the passage
are encoded independently using a transformer is
ColBERT (Khattab and Zaharia, 2020). The main
modeling applications for ColBERT are retrieval
and passage ranking. After encoding the query
and the passage independently, late interactions are
introduced using an efficient sum of maximum sim-
ilarity computations. ColBERT representations are
used for retrieval, so it combines the strengths of
DPR and DC-BERT. However, the efficient late
interactions in ColBERT do not have enough repre-
sentation power for complex tasks like MRC.

3 Decoupled Transformer

In the decoupled transformer, Figure 1, we split the
transformer model M into two components.

1. Input-component Minput (the lower N layers)
which processes the inputs independently and
produces a representation. The representation
for the inputs that are known in advance, i.e. the
passages, is stored and used without computa-
tion.

2. Cross-component Mcross (the higher M layers)
which processes the inputs jointly (after con-
catenation) and produces the final output.

3.1 Workflow
The workflow is depicted in Figure 2. Offline, we
run the input-component Minput on each passage
from the collection of passages and store the repre-
sentation in the search index. Moreover, we com-
press the stored passage representation to reduce



388

Input Component 
(N Layers)

[CLS] Tok 1 Tok N [SEP]… Tok 1 Tok M…

Question Passage

Transformer

E[CLS] E1 EN E [SEP]
… E’

1 E’M…

T[CLS] T1 TN T[SEP]
… T’1 T’M

…

Start/End Span

[CLS] Tok 1 Tok N [SEP]… Tok 1 Tok M…

Question Passage

Input Component 
(N Layers)

E[CLS] E1 EN E [SEP]
… E’1 E’M…

I[CLS] I1 IN I[SEP]
… I’1 I’M

…

T[CLS] T1 TN T[SEP]
… T’1 T’M…

Start/End Span

Cross Component (M Layers)

Figure 1: On the left, standard transformer model for MRC. On the right, decoupled transformer model with
input-component and cross-component.

storage requirements. The offline step is performed
together with the DPR indexing.

At runtime, using DPR we retrieve the candidate
passages with their stored representation which
we decompress. Then, we compute the question
representation using the input-component Minput.
Finally, we concatenate the question representation
with the representation of the passage and process
them with the cross-component Mcross.

3.2 Benefits

The decoupled transformer reduces per question
transformer complexity in lower N layers from
O(Np(Lq + Lp)

2) to O(L2
q + NpL

2p) where Np

denotes the number of top-K passages per question,
Lq and Lp denote the average number of tokens of
each question and passage.

At runtime, the computation for the lower N
layers for the passage is eliminated because it is
performed once offline and reused. Moreover, the
computation for the lowerN layers for the question
is done only once for the top-K retrieved passages,
and not repeated, as opposed to the normal trans-
former which uses all layers on both the question
and the top-K retrieved passages.

3.3 Initialization

To build a decoupled transformer model, we
start from a standard transformer such as BERT,
RoBERTa, ELECTRA model which is fine-tuned
on a target dataset such as SQUAD 2.0. Then, we
create the decoupled transformer model by split-
ting the encoder layers into input and cross com-
ponents which are initialized with the fine-tuned
MRC model weights. In addition to the standard

Input Component 
(N Layers)

[CLS] Tok 1 Tok N

[SEP]

…

Tok 1 Tok M…

Question

Passage

Input Component 
(N Layers)

E[CLS] E1 EN

E [SEP]

…

E’1 E’M…

I[CLS] I1 IN

I[SEP]

…

I’1 I’M…

T[CLS] T1 TN T[SEP]
… T’1 T’M…

Start/End Span

Cross Component (M Layers)

Index

Offline

Compression Layer

Decompression Layer

Figure 2: Decoupled model offline indexing and run-
time. The passage is processed with the input module,
then the state representations are compressed using a
projection layer and stored in the index. At runtime,
the passage is retrieved by DPR from the index, decom-
pressed to the original representation size and used by
the cross-component.

transformer weights, we create a global position
embedding and segment embedding layers at the
start of the cross-component and initialize them
to the same weight as the local position and seg-
ment embedding from the input-component. The
global position and segment embedding re-encode
the tokens for the new position in the concate-



389

nated question-document encoding sequence. The
segment embedding differentiates whether the en-
coded token is from the question or document.

3.4 Training Objective
During decoupled transformer training, we aim to
preserve the standard transformer model accuracy.
To achieve that, we propose a knowledge distil-
lation (KD) (Hinton et al., 2015) objective from
the standard transformer to decoupled transformer
which helps preserve the original representation.

The objective function is the sum of four terms:

L = (1− λ)CE(y, target) (1)

+ λKL(logits/T, teacher-logits/T) (2)

+ σMSE(representn, teacher-representn) (3)

+ σMSE(attentionn, teacher-attentionn) (4)

1. A standard cross-entropy (CE) loss with the
prediction y and hard targets from ground truth
labels.

2. KD loss based on Kullback–Leibler (KL) di-
vergence with logits from the teacher standard
transformer model. We scale the targets with
the same temperature T for both the teacher and
student.

3. The mean square error (MSE) between the de-
coupled model final layer representation with
the original model final layer representation.

4. The MSE between the decoupled model fi-
nal layer multi-head self-attention output with
the standard model final layer multi-head self-
attention output.

The parameter λ determines the relative contri-
bution of CE and KL losses. And, σ is a weight for
the MSE losses.

The MSE losses on the final layer representation
and the final layer self-attention are similar to Tiny-
BERT (Jiao et al., 2019) approach to smaller model
distillation. Unlike TinyBERT, we only apply the
MSE losses only on the last layer. The motivation
for the MSE losses is that we are aiming to make
the representation at the end of the decoupled trans-
former to match the representation of the standard
transformer.

4 Representation Compression

In open-domain QA the collection of passages are
known in advance. So, with decoupled transformer,

we run the input-component Minput on each pas-
sage offline and store the passage representation in
the index. For a large corpus, the representation
storage can be a significant amount. In the case
of QA over Wikipedia, the storage requirement is
around 3.4TB given around 32 million passages,
averaging 150 tokens per passage, and 768 token
dimensions for the BERT-base model with 16-bit
precision.

To reduce the storage requirements for the pas-
sage representation of the decoupled transformer,
we introduce a compression layer at the end of
the input-component and a decompression layer
at the start of the cross-component, see Figure 2.
The compression layer is a linear projection from
the original dimension to a compression dimension.
The decompression layer is a linear projection from
the compression dimension to the original dimen-
sion. These layers are similar to an autoencoder
with a bottleneck.

4.1 Training Procedure
To train the compression and decompression layers
we start from a decoupled transformer model. Then,
we perform training in two phases:

• Phase 1. We train the randomly initialized com-
pression and decompression layers to recon-
struct the input-component output representa-
tion without updating the decoupled transformer
model itself.

• Phase 2. We train the compression and de-
compression layers together with the decou-
pled transformer jointly. This means the cross-
component receives the decompressed represen-
tation.

The intuition behind the two-phase approach is
that since compression and decompression layers
are randomly initialized, it is beneficial to first train
the compression and decompression layers indepen-
dent from the decoupled transformer to get near-
optimal weights. Then, train the cross-component
of the model to understand the slightly different
decompressed representation.

5 Experiments and Results

5.1 Datasets
We evaluate the decoupled transformer on SQUAD
2.0 (Rajpurkar et al., 2018) which is a popular
MRC dataset over Wikipedia articles. In addition



390

to MRC, we evaluate models on the datasets below
to understand how many cross-components layers
are needed for tasks of different complexity and
dataset size.

• QQP (Chen et al., 2018) and MRPC (Dolan
and Brockett, 2005) datasets for paraphrasing
identification. The task is given two sentences,
recognizing if they are paraphrases or not.

• MNLI (Williams et al., 2018) dataset for nat-
ural language inference datasets. The task is
given two sentences the “premise” and the “hy-
pothesis”, to determine if the hypothesis entails,
contradicts, or is neutral given the premise.

Hyperparameter Value
Warmup steps 200
Learning Rate (LR) 5e-5
Layer-wise LR Multiplier 0.95
Batch size per GPU 32
Number of GPUs 2
Adam ε, β1, β2 1e-6, 0.9, 0.999
Attention Dropout 0.1
Dropout 0.1
Weight Decay Linear
Gradient Clipping 3.0
Epochs 4
KD temperature T 3.0
Loss weight λ 0.95
Loss weight σ 0.5

Table 2: Model training hyperparameters.

5.2 Setup
Models. We use ROaD-base (ElFadeel and Peshter-
liev, 2021) for the MRC experiments on SQUAD
2.0. ROaD is an ELECTRA model pretrained
and distilled using multi-task learning. For the

experiments on QQP, MRPC, and MNLI we use
ELECTRA-base. All models are implemented in
PyTorch and optimized using Adam (Kingma and
Ba, 2014).

Hyperparameters. Table 2 shows the hyperpa-
rameters that we use for fine-tuning the standard
transformer and training the decoupled transformer.
We searched different values for the temperature T ,
and the weights λ and σ. For λ, we experimented
with 0.5, 0.7, 0.9, 0.95 values and we found that for
decoupled transformer training a large λ that biases
towards the KL divergence objective work best. For
σ, we experimented with 0.25, 0.5, 0.75, 1.0 val-
ues and we found that smaller values work better
because otherwise the KL divergence objective is
given less weight which leads to worse models.

Hardware. We perform the experiments and
benchmarks on Nvidia Titan RTX with tensor cores
GPU and AMD Ryzen Threadripper 3960X - 24
cores CPU.

5.3 Decoupled Transformer

First, we perform a set of experiments on a decou-
pled transformer without compression. For each
experiment, we denote the decoupled transformer
split configuration as x-y, where x is the number
of input-component layers, and y is the number of
cross-component layers.

Table 1 shows the performance and FLOPs start-
ing from the baseline standard transformer model
to decoupled transformer with extreme 11-1 split.
We observe that tasks with a large dataset (QQP,
SQUAD, MNLI contain over 100K samples each)
have similar behavior with a noticeable drop when
moving from decoupled transformer 5-7 split to
6-6 split, and another big drop when the number
of cross-component layers becomes less than 3.
While in MRPC, a small dataset with around 5K
sample, the drop of performance was significant

Task Baseline 1-11 2-10 3-9 4-8 5-7 6-6 7-5 8-4 9-3 10-2 11-1
SQUAD 2.0 87.6 87.5 87.2 87.1 87.0 86.7 85.4 85.2 84.8 84.0 80.6 62.6
QQP 91.5 91.1 91.0 90.9 90.9 90.9 90.5 90.4 90.4 90.0 89.0 86.4
MNLI 88.9 87.3 87.1 86.9 86.7 86.7 86.7 86.4 86.4 85.6 77.0 73.5
MRPC 89.5 87.7 86.3 85.5 83.0 80.1 78.1 77.9 77.8 77.7 71.8 71.6
FLOPs 1.0 .91 .83 .75 .66 .58 .50 .41 .33 .25 .16 0.08

Table 1: Decoupled transformer results with variable number of input-component and cross-component layers.
Baseline is a standard transformer model. The x-y columns indicate the number of input-component and cross-
component layers. We use F1 score for SQUAD 2.0 and accuracy for QQP, MNLI, and MRPC. There is a consistent
trend for performance to degrade as we increase the number of input-component layers and decrease the number of
cross-component layers. FLOPs is floating point operations for inference as a measure of computational cost.



391

and bigger than the other large datasets even with
the decoupled transformer with 1-11 split.

With every layer, we moved from the cross-
component to the input-component, the FLOPs de-
creased by about 8% and performance dropped by a
small amount until the number of input-component
layers equals to or bigger than the cross-component
layers. The results show that choosing the right
setting is application-specific and the best option
depends on the particular performance and latency
trade-offs.

For the following experiments, we use the 5-7
split because it provides the best trade-offs between
accuracy and FLOPs across the evaluated datasets.

MRC Model
SQUAD 2.0
F1 EM

Decoupled 5-7 86.7 84.1
- SQUAD 2.0 pretraining 84.2 81.5
- training position and segment

embedding in the cross-model
82.1 80.0

- KL objective 84.0 80.4
- MSE on representation and

attention final layer
86.5 83.7

+ MSE on hidden and
attention applied to all layers

86.0 83.2

Table 3: Decoupled transformer ablation study for
SQUAD 2.0 MRC decoupled transformer with 5-7 split.
We remove one row at a time except for the last row
where we add MSE losses to all layers and not just the
final layer.

Ablations. We perform an ablation study to
understand the effect of the different modeling
techniques on the decoupled transformer perfor-
mance. Table 3 shows the results. First, we remove
the SQUAD 2.0 pretraining and start with regular
ELECTRA-base which reduces F1 significantly by
2.5 points. Then, we tried keeping the position
and segment embeddings in the cross-component
frozen which hurt F1 as expected. If we remove
the distillation KL objective, F1 degrades signifi-
cantly by 2.7 points. On the other hand, removing
the MSE losses on the representation and atten-
tion does not cause a significant reduction in F1.
However, adding MSE losses on all layers actually
causes a reduction in F1 because the CE and KL
objectives receive less weight.

Compression Rate Dim Size SQUAD 2.0
F1 EM

No compression 768 86.7 84.1
2.0x 386 86.6 84.0
3.0x 256 86.5 83.8
4.0x 192 86.4 83.8
4.8x 160 86.2 83.6
6.0x 128 85.2 82.4

Table 4: Decoupled transformer compression rates for
SQUAD 2.0 MRC decoupled transformer with 5-7 split.
The dim size is the number of embedding dimensions
per token. EM is exact match accuracy. FLOPs is
floating-point operations for inference as a measure of
computational cost.

5.4 Compression
To evaluate compression, we conducted experi-
ments on a decoupled transformer with 5-7 split
using the MRC model for SQUAD 2.0. Our goal is
to understand how much impact different levels of
compression have on the storage requirement and
model performance.

Table 4 compares the results with five different
levels of compression. We observed the perfor-
mance degradation is minimal for 2x, 3x and 4x
compression, and then it starts to degrade signifi-
cantly. At 4x compression, the required storage for
open-domain QA over Wikipedia with the previous
assumptions is 3.4 TB which could be reduced to
858 GB.

Ablations. We evaluate the effectiveness of the
two-stage training of the compression and decom-
pression layers. Table 5 shows the results. First,
we remove the training of the compression inde-
pendent from the model fine-tuning which causes
a significant 6.6 F1 score reduction. Second, we
remove the joint training of compression and MRC
layers which cause 1.6 F1 sore drops. Overall, both
stages are necessary for training effective compres-
sion layers.

5.5 Inference Performance
In addition to FLOPs computational cost analysis,
we run inference benchmarks on GPU and CPU.
For the benchmarks, we use FP16 PyTorch models
without TorchScript. We test in two settings: long
and short inputs. Long inputs are 64 words for
the question and 448 words for the passage. Short
inputs are 16 words for the question and 150 words
for the passage. For each setting, we perform four
runs and take the average time.



392

MRC Model
SQUAD 2.0
F1 EM

Decoupled 5-7, 4x compress 86.4 83.8
- training compression

independent from the model
79.8 77.3

- joint training 84.8 82.3

Table 5: Compression ablation study for MRC SQUAD
2.0 model with 5-7 split. We remove either training
compression independent of the model or join training.

Table 6 shows the benchmark results. For CPU
the results are close to our FLOPs analysis, and for
GPU the we get lower runtime reduction due to the
GPU parallelism.

MRC Model
GPU CPU

Long / Short (diff) Long / Short (diff)
Baseline 9.1 / 9.0 3200 / 920
Decoupled 5-7 6.3 / 6.2 (31%) 1890 / 490 (40-46%)
+ 4x compress 6.4 / 6.3 (30%) 1950 / 520 (39-43%)

Table 6: Decoupled transformer inference performance.
Baseline is a standard transformer MRC model. Long
and short indicate the input length, and the times are in
milliseconds. Diff is the difference with the baseline.

Model FLOPs SQUAD 2.0
F1 EM

DeBERTa 1.2x 86.2 83.1
ROaD 1.0x 87.6 85.1
Decoupled ROaD
5-7, 4x compress

0.6x 86.4 83.8

Table 7: Decoupled transformer with DeBERTA-base
and ROaD-base on SQUAD 2.0 model. EM is exact
match accuracy. FLOPs is floating point operations for
inference as a measure of computational cost.

5.6 Results

Table 7 compares the decoupled ROaD-base 5-7
split model with 4x compression with the ROaD-
base model and DeBERTa-base model on SQUAD
2.0 MRC task. The DeBERTa model introduces
additional positional embeddings that increase the
computational cost by 20%. Still, the decoupled
ROaD model achieves comparable accuracy with
DeBERTa while requiring two times fewer FLOPs.

6 Conclusion and Future Work

We presented the decoupled transformer model for
reducing runtime latency of MRC models in open-
domain QA. The decoupling allows for part of the
representation computation to be performed offline
and cached for online use. To bridge the accuracy
gap between a standard transformer and decoupled
transformer, we devised knowledge distillation ob-
jectives for both model logits and features. More-
over, we introduced a representation compression
approach that allows for a four-times reduction
in representation storage requirements for open-
domain QA without significant loss of accuracy.
We use the decoupled transformer to reduce the
computational cost of open-domain MRC by 30-
40% with only 1.2 points worse than the F1-score
on the SQUAD 2.0 benchmark.

In the future, we are planning to extend the de-
coupled model with a DPR objective. The goal is
for the input-component to also produce DPR-like
embeddings suitable for similarity search. This
way, we can have a single model that acts as both
retrieval and reader.

References
Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051.

Zihan Chen, Hongbo Zhang, Xiaoji Zhang, and Leqi
Zhao. 2018. Quora question pairs. University of
Waterloo.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
arXiv preprint arXiv:2003.10555.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Haytham ElFadeel and Stan Peshterliev. 2021. Robustly
optimized and distilled training for natural language
understanding. arXiv preprint arXiv:2103.08809.



393

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2019.
Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages
39–48.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W Mahoney, and Kurt
Keutzer. 2020. Q-bert: Hessian based ultra low
precision quantization of bert. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 8815–8821.

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768.

Adina Williams, Nikita Nangia, and Samuel R Bowman.
2018. The multi-genre nli corpus.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit bert. arXiv
preprint arXiv:1910.06188.

Yuyu Zhang, Ping Nie, Xiubo Geng, Arun Ramamurthy,
Le Song, and Daxin Jiang. 2020. Dc-bert: Decou-
pling question and document for efficient contextual
encoding. arXiv preprint arXiv:2002.12591.


