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Abstract

Previous research has used linguistic features
to show that translations exhibit traces of
source language interference and that phylo-
genetic trees between languages can be re-
constructed from the results of translations
into the same language. Recent research has
shown that instances of translationese (source
language interference) can even be detected
in embedding spaces, comparing embeddings
spaces of original language data with embed-
ding spaces resulting from translations into the
same language, using a simple Eigenvector-
based divergence from isomorphism measure.
To date, it remains an open question whether
alternative graph-isomorphism measures can
produce better results. In this paper, we (i) ex-
plore Gromov-Hausdorff distance, (i) present
a novel spectral version of the Eigenvector-
based method, and (i) evaluate all ap-
proaches against a broad linguistic typologi-
cal database (URIEL). We show that language
distances resulting from our spectral isomor-
phism approaches can reproduce genetic trees
on a par with previous work without requiring
any explicit linguistic information and that the
results can be extended to non-Indo-European
languages. Finally, we show that the methods
are robust under a variety of modeling condi-
tions.

1 Introduction

The study of cross-linguistic variation has been a
key focus of linguistics for genetic or typological
classification of languages. Historical comparative
linguistic methods determine genetic relationships
between languages using concept lists of words
with a common origin in multiple languages that
share similar meaning and pronunciation (Swadesh,
1952; Dyen et al., 1992). Linguistic typology stud-
ies how distinct languages are, and what gener-
alizations can be made regarding cross-linguistic
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variation on different levels of linguistic analysis
and representations (Trask, 2000). Comrie (1989),
for example, studies language variance in terms of
their functional processes, whereas Cysouw (2013)
measures language distance using structural fea-
tures. More recent research indicates that semantic
similarity between languages can serve as a quan-
titative means to determine cross-linguistic varia-
tion across languages. Seminal work of Eger et al.
(2016) provides evidence that semantic alignment
between languages can be explained by geographi-
cal factors. Likewise, Thompson et al. (2018) find
that differences correlate with cultural distances
among societies speaking the languages.
Conversely, it has also been shown that language
differences are so profound that the structure of a
language is approximately preserved even when
translated into another language. This is often re-
ferred to as source language interference (Toury,
2012). Rabinovich et al. (2017) show that source
languages of translations into the same target lan-
guage can be clustered solely based on interfer-
ence phenomena in the translations in the target
language using simple linguistic features and that
these clusters correspond with genetic distance. In
a similar vein, Bjerva et al. (2019) find that com-
parable results can be established by clustering
neural language model (NLM) based vectors us-
ing raw words, part-of-speech (POS) tags, phrase-
structure or dependency-based input sequence rep-
resentations of the data, showing that the distances
between these learned language representations
are more reflective of syntactic (structural) sim-
ilarity rather than genetic relationship. Chowd-
hury et al. (2020) show that source language in-
terference is even evident in simple word, POS,
synset and semantic tag based embedding spaces
computed from originally authored and data trans-
lated into the same target language. They use a
graph-based Eigenvector (EV) divergence from iso-
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morphism distance measure (Sggaard et al., 2018),
originally used for bilingual dictionary induction,
to capture divergence from isomorphism between
monolingual original and translation embedding
spaces. With this, they quantify distances between
the source languages of the translations and predict
phylogenetic trees, and analyse the correlation be-
tween isomorphism measure based distances and
genetic relations in language families.

However, to date, (¢) alternative graph-based
distance metrics have not yet been explored for
embedding-based approaches to detect transla-
tionese; (i7) it is not clear how word-embedding
based approaches fare under different data settings
including a) varying the number of most frequent
words considered in the graphs, b) different cor-
pus sizes and ¢) different word embedding archi-
tectures; (444) it is not clear how the previous ap-
proaches (using either linguistic feature vectors,
NLM based feature vectors, or divergence from
isomorphism graph-based distance between embed-
ding spaces) compare on the same data against the
commonly used gold standard phylogenetic tree of
Serva and Petroni (2008) (SPO08); (iv) it is not clear
how function words would affect graph-based dis-
tances; (v) evaluation of the graph- and embedding-
space approach against the broader URIEL typo-
logical data base (Littell et al., 2017) has not been
carried out; and (v?) it is not clear if the scope of
this research can be expanded to include non-Indo-
European languages.

In this paper, we show (i) that Gromov-
Hausdorff (GH) distance can be used as a dis-
tance metric to quantify divergence from isomor-
phism between simple embedding spaces in mono-
lingual settings and develop a novel Spectral Graph-
based (SGM) distance measure, extending the
original EV-based approach; (i¢) that graph- and
embedding-based distances are fairly robust under
different data settings and that they are not sensitive
to skip-gram or CBOW-based embeddings; (7i7) di-
vergence from isomorphism graph-based measures
using embeddings can reproduce genetic trees on a
par with linguistic feature vector and NLM based
approaches (Rabinovich et al., 2017; Bjerva et al.,
2019); (iv) that function words and concept lists
are still relevant within this general approach; (v)
that graph- and embedding space-based distance
metrics correlate not only with genetic features but
also with geographical and syntactic ones (Littell
et al., 2017); and (vi) that this research can be
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extended to translations from non-Indo-European
languages.

The rest of the paper is organised as follows.
We review related work in Section 2. Section 3
introduces the concept of graph isomorphism and
our SGM measure, together with EV and GH. We
describe the experimental setting in Section 4. In
Section 5, we report results on the isomorphism
metrics, infer language family relationships and
correlate them with linguistic benchmarks. We
describe robustness experiments in Section 6 and
compare to previous work in Section 7. Finally, we
extend our analysis to non-Indo-European source
languages in Section 8 and summarize and draw
conclusions in Section 9.

2 Related Work

Representational distance between two languages
refers to how different one language or language
variety is from another. Several analyses (Malaviya
et al., 2017; Oncevay et al., 2020) have attempted
to disentangle the typological factors that influence
language representational distance. Rabinovich
et al. (2017) clustered languages based on linguisti-
cally inspired features of their translations into the
same target language and show that syntactic foot-
prints of the source language in the translations can
be used to estimate phylogenetic similarities be-
tween their source languages. They use agglomera-
tive clustering with variance minimization (Ward Jr,
1963) as linkage procedure and compare their gen-
erated trees (P) to the pruned gold-tree (g) (SP0S8)
of Serva and Petroni (2008). Their comparison
metric is the sum of squared deviations between
each language pair’s gold-tree distance D, and cor-
responding distance in their computed tree Dp :

Dist(P,g) =Y (Dp(li,1j) — Dy(li,1;))* (1)

.3

It is worth noting that the use of SPO8 as a gold stan-
dard has also been questioned in the literature. Fort-
son IV (2011) observes that the SPO8 approxima-
tion is only suited for a small subset of languages
and that it fails to explain finer-grained inconsisten-
cies in the Indo-European language family.

Bjerva et al. (2019) expand the work of Rabi-
novich et al. (2017) in their NLM- and sequence-
based approach and argue that representational dis-
tance between languages can be better explained
by structural relatedness than by language genet-
ics. Chowdhury et al. (2020) use departures from



isomorphism based on the EV measure (Sggaard
et al., 2018) on simple embeddings to infer ge-
nealogical distances. They compare different em-
bedding spaces (word, POS, synset or semantic
tags) constructed from translations into a single
target language and the target language in terms of
how similar their corresponding nearest neighbor-
hood graphs are by analyzing their eigenvalues.

The similarity between languages can also be
measured using the (dis)similarities between their
discrete linguistic properties. Such properties are
typically handcrafted and collected in typologi-
cal databases such as URIEL (Littell et al., 2017)
which lists a large inventory of properties for 8000
languages of various typological characteristics,
such as overlap in syntactic features, or proximity
along phoneme features (Cysouw, 2013). URIEL
is a compilation of a variety of linguistic resources
including the World Atlas of Language Structure,
WALS (Dryer, 2009), PHOIBLE (Moran et al.,
2014), Ethnologue (Lewis et al., 2015), and Glot-
tolog (Nordhoff and Hammarstrom, 2011). Based
on linguistic feature vectors, URIEL provides pre-
computed distance statistics between any language
pairs stored in the database in terms of various
metrics including genetic, geographical, syntactic,
phonological, and phonetic inventory distances.

In this work, we follow the approach of Rabi-
novich et al. (2017) and evaluate our geometri-
cal measures against the phylogenetic benchmark
SP08. We compute the branching length directly
from SPOS, assuming it reflects the actual propor-
tions. Additionally, we follow He et al. (2019) to
compare our generated trees against the average
of three precomputed measures of language dis-
tance, namely genetic, geographic, and syntactic
distances based on the URIEL database.

3 Graph Isomorphism

We define the distance between languages based
on word usage and the notion of isomorphism. An
isomorphism f between two metric spaces (X,
dy) and (), dy), where X and Y are two sets
of words in two languages and dx and dy are
the metric distances, is a function f : X — )
that is a distance preserving transformation i.e.:
for all pairs of points z; and x5 in X such that,
dy(f(21), f(z2)) = dx(z1,22).

For a vocabulary V' = vg, vy, ...., v, in language
¢, we define its graph as G(V, E, w), where V' de-
notes the set of vertices corresponding to the vo-

cabulary words; E =eg, e1, ..., €, is a set of edges;
and every pair {v;,v;} has a non-negative edge
weight w;; associated with it. Our approach starts
with mapping words vf in language ¢ onto points
v;i¢ using distributional semantics methods. Each
language is then represented with its own graph
G*. After mapping words onto points v;¢ as vec-
tors, the distance between words is defined as the
distance between their vectors. We quantify the
similarity between languages ¢, and {5 through a
distance function between their graphs d(G**, G*2).
In what follows we make the concept mentioned

above more concrete.

3.1 Gromov-Hausdorff (GH) Distance

The first measure we use to quantify the similar-
ity between languages is the Gromov-Hausdorff
distance (GH) proposed by Patra et al. (2019).
Given two metric spaces (X, dy) and (), dy),
we start with the Hausdorff distance, defined as:

dir(X,Y) = max {sup d(z, V), supd(y, X)}
TEX yey
(2)

where d(a, B) = inf ycp|| a — b ||, is the distance
of point @ in A from set B. Informally, it is the
largest distance needed to travel from a point in A
to a point in B.

However, the Hausdorff distance is easily af-
fected by isometric transformations. The GH dis-
tance which is the infimum of the Hausdorff dis-
tances under all possible isometric transformations
is a more robust measure. By contrast, the GH
distance reduces the distance over the isometric
transforms f and g between X" and ) as follows:

deu(X,Y) :ingde(f(X),g(y)) 3)

The computation of Hausdorff distance is NP-

hard, and hence we follow Patra et al. (2019) and

compute the Bottleneck distances (Chazal et al.,

2009) which are considered to be reasonable lower-
bounds.

3.2 Spectral Graph-based Matching (SGM)

Our second measure is based on the graph-based
Eigenvector similarity method. Segaard et al.
(2018) used this similarity to measure the distance
between two embedding matrices corresponding
to two languages ¢; and /o, via their Laplacian
matrices, L. They argue that the Laplacian eigen-
values are good compact representations for the
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graph Laplacian, and that their comparison can
consequently capture the degree of isomorphism.

Although similar in spirit to their approach, our
method to build the underlying graphs (G** and
G*) differs. We use the same idea to model dif-
ferences between two embedding spaces X’ and )
for the single target language translations from dif-
ferent source languages, as proposed by (Sggaard
et al., 2018) but our method to build the underlying
graphs (G* and G*2) differs from their approach.
While they extract the nearest neighbors by com-
puting the cosine similarity of the cross-lingual
word pairs, we take inspiration from the Isomap
algorithm of Tenenbaum et al. (2000) and build a
weighted connected graph over the data points to
capture better neighborhood relations. Weights w;;
correspond to the distance between points ¢ and j
in the input space (X, dx (i, 7)). We connect each
point only to its K nearest neighbors to consider
more geometrical information on the interaction
between all vectors within the initial space to im-
prove the graph characterization of the spaces. The
value K (=6) is chosen to have similar edge density
for all graphs. We estimate the geodesic distances
between vertices (points) in the input space using
shortest-path distances obtained with Dijkstra’s al-
gorithm (Dijkstra et al., 1959) on the constructed
graph to minimize the sum of the weights of their
constituent edges. The subsequent distance matrix
represents the basis for our graphs. From this point
onwards, the computation of the Laplacian matri-
ces and the final measure A is as in Sggaard et al.
(2018), where

k
A Z )\12 - )\21 . (4)
=1

First for £, we find the smallest £ in Equation 4
such that the sum of its k largest eigenvalues
Sk Ay is at least 90% of the sum of all its
eigenvalues. Similarly, we find another k for Lo,
and take the smallest k£ of these two, such that,
k = min(ki,k2). The graph similarity metric
returns a value in the half-open interval [0, c0),
where values closer to zero indicate better isometry.
We compare our SGM metric with the metric of
Segaard et al. (2018) (referred to as EV) in Section
5.

4 Experimental Setting

In this section, we provide information on the data,
and the vector spaces used for computing devia-
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tion of isomorphism. Since we quantify language
similarity based on the degree of isomorphism in
monolingual spaces, we independently train mono-
lingual word embeddings for the target language
and translations into that target language.

4.1 Data

We use the same setup as Rabinovich et al. (2017),
Bjerva et al. (2019) and Chowdhury et al. (2020),
and use the comparable portion of Europarl (Koehn,
2005) with translations from 21 European Union
languages into English to minimize the impact of
domain difference. The tokens per language vary,
ranging from 67 k tokens for Maltese to 7.2 M for
German. We refer to the multiple translations into
English as L;’s, where j=1,2,...,n; and to originally
written text in English as L.

We select the subset of translations from 16 lan-
guages covering four families: Romance (French
(fr), Italian (¢t), Spanish (es), Romanian (r0), Por-
tuguese (pt)), Germanic (Dutch (nl), German (de),
Swedish (sv), Danish (da)), Slavic (Czech (cs),
Slovak (sk), Slovenian (sl), Polish (pl), Bulgarian
(bg)) and Baltic (Latvian ({v) and Lithuanian (It))
into English and English original (en) text.

For these 17 datasets, we define two settings,
the full data condition and the small data condi-
tion to investigate the effect of data settings on our
methods. The former makes use of the complete
Europarl edition available for a language (recall
that data size differs widely); for the latter, we ran-
domly extract m sentences, where m corresponds
to the lower-bound data-size of our translationese
data, i.e., the size of the Latvian corpus (118,525
words). We shuffle and randomly subsample m
sentences with the same seed for all target-side
language data. We report results for the full data
setting and use the small data for robustness checks
and comparisons with existing literature.

4.2 Vector Spaces

Our data are original English (L,) or translations
from language j into English (L;’s). For each data
set we induce separate monolingual embeddings
in the full and small data conditions, from their re-
spective tokenised (Koehn et al., 2007) and lower-
cased data using fastText (Bojanowski et al., 2017).

We train 300 dimensional embeddings with
words with more than 5 occurrences in the data.
We use skip-gram with negative sampling (Mikolov
et al., 2013) with standard hyper-parameters (char-
acter n-grams of sizes 3 to 6, and a learning rate of
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Figure 1: Normalised distances between embedding spaces for original en and translations into en from 16 lan-
guages given by our three distance measures using 4 different number of data points.

0.025). Afterwards, embeddings are mean centered
and unit normalised. For comparison purposes, we
also create vector spaces using the CBOW algo-
rithm and standard hyper-parameters.

5 Results and Evaluation

We analyze the behaviour of the different dis-
tance measures: the Gromov-Hausdorff distance
(GH) and the two Eigenvector similarity-based
ones (SGM and EV). We apply them to (¢) infer
language families, (ii) reconstruct phylogenetic
trees, and finally (i77) perform correlation analysis
against two benchmarks (SPO8 and URIEL).

5.1 Language Distance Measures

First, we perform an experiment to determine how
distant the vector spaces created from L, and L;’s
are. We compute each metric over the top-n most
frequent common words in our data, where n €
{1000,1500,2500,3500} to explore the behaviour
of the measures with different graph sizes. Notice
that having the same number of components (ver-
tices and edges) is a condition for isomorphism.
Results with the normalised distances are dis-
played in Figure 1. The behaviour for the met-
rics varies with respect to the number of the most
frequent top-n datapoints considered. SGM is
the most stable measure across all configurations,
showing most variance for 1000 points. EV shows
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larger variability in distinguishing language simi-
larity, while GH results are relatively stable with
respect to larger datapoints (2500 and 3500 points).
These variations are due to the different nature of
the metrics. GH calculates the distance between the
spaces only on the subset of n words, while SGM
weights the nearest neighbors of a word which
could lie outside the top-n to build the initial graph.
Thus SGM considers more context for each point
and thus needs less datapoints to successfully de-
scribe the space. As expected, results with EV
and SGM are closer to each other than to GH be-
cause they follow a similar methodology, except
that SGM retains more context than EV.

We observe that, in all plots, the differences be-
tween original English and translations from Ger-
manic, followed by Romance languages are the
lowest, indicating that vector spaces of these lan-
guages are closer to each other in terms of seman-
tic embedding space based isomorphism measures.
However, isomorphism weakens consistently with
increased linguistic distances of Baltic and Slavic
families irrespective of the method used, provid-
ing evidence that language distance in semantic
space is higher for etymologically distant language
pairs. Additionally, we observe some outliers vary-
ing from measure to measure. GH puts 7o far from
the other Romance languages and da and sv are
placed relatively far from other Germanic relatives.



On the other hand, SGM (and to lesser extent EV)
locates pl close to en.

5.2 Reconstructing Language Phylogeny

Figure 2! shows evidence that deviations from iso-
morphism between semantic spaces computed from
L;’s into a common target language (en) and orig-
inally authored text (L,) in en reflect linguistic
notions of distance between the source languages
and the source language families of the translations.
This is evidence for an important aspect of transla-
tionese, namely source language interference, in se-
mantic space. Below we further investigate whether
the distance in semantic space signal can be used
to infer phylogenetic trees.

In our predicted trees, Figure 2, we observe
trends that indicate groupings based on morpho-
logical or other typological properties. We identify
some well known language—language relationships
in all three trees showing high similarity between
English and other Germanic languages, with some
divergences —for example, sv is located far away
from its other Germanic counterparts under GH
reconstructions and pl is always misplaced into
the Germanic-Romance language group, despite
its Slavic origin. The influence of geographical
factors such as language contact or structural in-
teractions (Balkan Sprachbund) can also explain
some of the interesting divergences. Overall, the
trees exhibit coarse-grained language family con-
tour traces, i.e., Baltic and Slavic languages are
close together, while Germanic and Romance form
another group in most of the cases.

Our simple embedding-based results provide ev-
idence that translationese is reflected in semantic
spaces and that without reliance on fine-grained
linguistic knowledge, differences in semantic em-
beddings space are powerful enough to detect im-
portant language differences related to linguistic
typology in semantic spaces, corroborating previ-
ous results of Chowdhury et al. (2020). This fur-
ther reconfirms in word embedding based semantic
space earlier findings of Rabinovich et al. (2017),
Bjerva et al. (2019) which used manual feature en-
gineering or NLMs with a focus on morphologic
and syntactic structure.

!The clusters are computed over 3500 datapoints for each
metric.

5.3 Correlation with Typology, Geography
and Phylogeny Benchmarks

Above we observed how predicted trees not only
show genetic effects, but also other characteristics
that might be due to the geographic proximity and
not to just to phylogenetic evolution. In this section,
we compare our language classification predictions,
Figure 2, against linguistic benchmarks. We esti-
mate Kendall correlations between our generated
trees and SPO8 (representing genetic similarities),
and our trees and the averaged URIEL features
introduced in Section 2 (representing other rich
typological similarities beside genetic ones). The
Kendall correlation between the two benchmarks
SP08 and the selection of URIEL features is 0.56 re-
flecting the different nature of the two benchmarks.
Although the genealogical distance is common in
both, the source for this kind of information is dif-
ferent.

Our results, summarised in the top rows of Table
1, show that correlations between predicted trees
and URIEL are higher than with SPOS, demon-
strating that other factors besides genetics are re-
flected in the semantic spaces. SGM reproduces
the genetic SPO8 benchmark better than EV and
GH, while GH clearly correlates better with struc-
tural URIEL features, followed by SGM and EV.
This corroborates NLM-based findings of Bjerva
etal. (2019) in our semantic word embedding based
spaces: the differences and similarities between
languages and language representations go beyond
genetic (dis)similarities. Further, we find that while
correlations are better under full data conditions,
they exhibit a similar behaviour in simulated small-
data scenarios, suggesting that our graph-based ap-
proaches are effective in a variety of data settings.

6 Robustness Analysis

After showing that exploiting departures from iso-
morphism between spaces can be used to predict
relations between languages, we analyze the im-
pact of various modeling assumptions and different
training conditions that might have an effect in
skewing the results.

6.1 Data Size Effects

Large differences in data sizes between high and
low-resource languages have played a pivotal role
in the performance of monolingual embeddings
(Vuli¢ et al., 2020; Sahlgren and Lenci, 2016). In
our work, to some extent this is already minimized
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Figure 2: Clustering based on the distance matrix obtained for GH (left), EV (middle) and SGM (right).

# Points SPO8

GH SGM EV GH

Full data condition
1000 032 052 043 039 038 024
1500 040 030 026 051 031 036
2500 042 038 039 057 036 043
3500 040 039 031 058 045 0.36

FW 040 030 032 044 045 030
Swadesh 030 032 011 036 043 0.09

URIEL
SGM EV

Small data condition
1000 0.11 045 021 0.21 0.39  0.20
1500 029 037 021 049 027 0.21
2500 039 045 023 040 039 030
3500 027 046 0.11 036 035 0.12

Table 1: Mean Kendall correlations of predicted trees
with SPO8 and average URIEL for various number of
datapoints and the function words experiment (FW).

by taking only the most frequent n words to esti-
mate the distances between embedding spaces, but
still the quality of even these embeddings might
differ. To examine the impact of the data size for
our experiments, we use the embeddings obtained
under the small data condition (see Section 4) and
compare the results in the bottom rows of Table 1.

The results show that SGM correlates best with
SPO8 under all training conditions (number of dat-
apoints and corpus size), but the correlation de-
creases with respect to URIEL features. GH shows
good correlation in some instances (1500 and 2500
datapoints) for both SPO8 and URIEL, while EV,
shows no consistent correlation. For EV, we con-
sider frequent words and mutual nearest neighbors,
thus in the small data condition, it has even less ac-
cess to contexts. Our spectral graph-based measure
SGM, which is inspired by the ideas of node repre-
sentation in contemporary geometric and manifold
learning (Cayton, 2005), provides more intuitive
understanding of linguistic distances than what is
offered in Chowdhury et al. (2020) under varied
data settings.
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6.2 Word Embedding Effects

Ko6hn (2015) showed that different methods to ob-
tain word embeddings (CCA, skip-gram, CBOW,
GloVe, etc.) behave similarly when capturing syn-
tactic and morphological information. We check
that this is also the case with our distance meth-
ods by comparing the performance obtained with
skip-gram and CBOW architectures, and observe
small variations with similar global trends. To give
an example, correlation results for SGM under the
full data condition with CBOW and skip-gram vary
only in the £0.05 range.

We also performed experiments with lower di-
mensions (50,100,200) which may lead to reduced
expressivity, but, very interestingly, we obtained
similar performance as we did with 300 dimen-
sions. For example, on 100-dimensional monolin-
gual word embeddings, the differences are: GH
(£0.077), SGM (£0.013), and EV (£0.088).

7 Comparison with Previous Approaches

7.1 Leaf-Node Tree Distances

In order to compare our results with previous work,
we calculate tree distances using the leaf-node dis-
tance in Equation 1 previously defined in Rabi-
novich et al. (2017), and compare with the best
results on SPO8 in Rabinovich et al. (2017) and
Bjerva et al. (2019). We report our results in the
small and the large data conditions for 1500 most
frequent datapoints obtained with different metrics
in Table 22. All distances are normalized to a zero-
one scale’.

Notice that the results of Table 1 and Table 2 cannot be
directly compared as Table 2 is computed after summing over
all possible pairs of the leaves (languages), while Table 1
shows the association with benchmarks (SPO8 and URIEL)
keeping only originally authored English as its source. Table
1 follows Chowdhury et al. (2020) to correlate the results
with the benchmarks and Table 2 compares the findings to
Rabinovich et al. (2017); Bjerva et al. (2019).

3 Although an overall correlation similarity analysis based
on confusion matrices would be more optimal, we perform
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Figure 3: Normalised distances between original and
translationese en. Embedding spaces are created with
only functional words from the Europarl data (a) and
Swadesh wordlist (b).

According to the mean distance, our simple em-
bedding and graph-based approaches, especially
GH can reproduce genetic trees on a par with previ-
ous work without requiring any explicit linguistic
information.

Unlike previous methods which rely on surface-
level features of the source language, our graph-
based isomorphism analysis is unsupervised and
still is able to detect important language differences
related to linguistic distances. Of all the methods,
GH is the closest to SP08, followed by SGM and
EV in the full data settings while the trend for
SGM-EV is reversed under the small data condi-
tion.

7.2 Function and Content Words

To control topical skew, we investigate whether our
approaches of departure from isomorphism works
on non-lexical representations. To this end, we

tree distance analysis because not all underlying confusion
matrices of the previous approaches are available.
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Figure 4: Normalised distances between original and
translationese en. Embedding spaces are created with
UN parallel corpus (Tolochinsky et al., 2018).

Rabinovich Bjerva Our proposal

etal. 2017  etal. 2019 Full  Small
Words - 0.53
FW 0.43 - - -
POS 0.35 0.52 - -
FW+POS 0.36 0.56 - -
PS - 0.36 - -
DepRel - 0.32 - -
GH - - 0.37  0.38
EV - - 0.57  0.56
SGM - - 0.54  0.58

Table 2: Mean distance between SP0O8 and recon-
structed phylogenetic trees as compared to previous
literature using words, function words (FW), parts of
speech (POS), phrase structures (PS) and dependency
relations (DepRel) as features.

first focus on function words which introduce and
identify key discourse referents and represent re-
lationships between entities but are considered to
be not well-modeled by distributional semantics
(Bernardi et al., 2015). We use the list of function
words defined in Koppel and Ordan (2011) to con-
struct the language distance measure of Section 5.1
in Figure 3(a). In this case, the number of data
points is 468, well below the minimum number of
points used with content words (1000).

The performance of all three methods show sim-
ilar trends as in Figure 1. The figure demonstrates
that function words are able to capture departures
of isomorphism in a similar way as the complete
set of words, indicating that source languages carry
over grammatical constructs into the translation
product, corroborating in simple embedding space
prior findings of Rabinovich et al. (2017) and
Bjerva et al. (2019) with function words.

Additionally, we explore the much smaller cog-



nate collection of Swadesh word lists (Swadesh,
1952) to capture the relatedness between languages
in Table 1 and the language distance computed
from their embeddings is shown in Figure 3(b). As
this concept-aligned resource ensures a consistent
set of word-lists across all our languages, thereby
enhancing comparability, these findings are partic-
ularly important. The results in Table 1 show that
the large context (6 neighbors) exploited by SGM
estimations exceeds other isomorphism methods,
while highlighting the limitations of EV in low-data
regimes with limited access to contexts.

8 Analysis for non-Indo-European
Source Languages

Previous research (Rabinovich et al., 2017; Bjerva
et al., 2019; Chowdhury et al., 2020) focused on
investigating translationese and source language
interference for European language families. Here
we extend this work, for the first time, to the best
of our knowledge, to translations from non-Indo-
European languages into English. We explore the
language distance measures of Section 5.1 on the
UN corpus (Tolochinsky et al., 2018) which con-
sists of translations covering typologically different
languages such as Arabic (ar) and Chinese (zh),
as well as Indo-European languages (i.e., Russian
(rw), Spanish (es) and French (fr)). The embed-
ding spaces are created in the same manner as for
Europarl dataset.

We show results with 1500 words* in Figure 4
and observe the following trends: compared with
translations from ar and zh, the difference between
original English and translations from fr and es
tend to be smaller, the distance to zh is the largest,
and that within the European language family dis-
tances is mostly fr < es < ru. This is in line with
our previous results in Figure 1 on the same-domain
monolingual Europarl data under different data set-
tings. However, despite these general trends, GH
and EV measured distance scores are similar for
es, ar and ru, while EV has fr more distant to en
than es, ru and ar. This is something that would
need to be further explored in future work. Of all
measures, SGM, which captures more context from
the interaction between data-points and their neigh-
borhoods, accords best with linguistic expectations
about language (dis)similarities.

“We have comparable trends in all of our configurations
with varying number of points.
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9 Conclusion

In this paper we contribute to the ongoing line of re-
search in computational typology, exploring the po-
tential of translations into a single target language
that retains the traces of the source languages to
reflect the distances between them. Specifically,
we propose an alternative graph-based distance
measure to explore (dis)similarities between lan-
guages. Our results show that simple graph- and
embedding-based distance based methods perform
on a par with the best results achieved by pre-
vious approaches based on linguistic features in
detecting source language interference in transla-
tions. We compare Gromov-Hausdorff and our
novel Spectral Graph based approach with the orig-
inal Eigenvector-based divergence from isomor-
phism measure (EV) against URIEL and SPOS,
show that our alternative graph isomorphism mea-
sures outperform EV and, for the first time, expand
translationese research to non-Indo-European lan-
guages. We perform robustness tests to verify that
our methods are stable under a variety of modeling
conditions.

In future work, we aim to leverage our estimated
similarities to better explain transfer behavior (local
information spreading from one language to the
other) in downstream applications such as machine
translation.
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