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Abstract

Neural sequence-to-sequence (Seq2Seq) mod-
els and BERT have achieved substantial im-
provements in abstractive document summa-
rization without and with pre-training, respec-
tively. However, they sometimes repeatedly at-
tend to unimportant source phrases while mis-
takenly ignore important ones. We present
new reconstruction mechanisms on two lev-
els to alleviate this issue. The sequence-level
reconstructor reconstructs the whole source
document from the hidden layer of the tar-
get summary, while the word embedding-level
one rebuilds the average of word embeddings
of the source at the target side to guaran-
tee that as much critical information is in-
cluded in the summary as possible. Based
on the assumption that inverse document fre-
quency (IDF) measures how important a word
is, we further leverage the IDF weights in our
embedding-level reconstructor. The proposed
frameworks lead to promising improvements
for ROUGE metrics and human rating on both
the CNN/Daily Mail and Newsroom summa-
rization datasets.

1 Introduction

Single document summarization is designed to au-
tomatically compress a document into its short ver-
sion without changing the main idea. The sum-
marization task is generally divided into two cat-
egories: extractive methods that copy certain sen-
tences or phrases directly from the source text, and
abstractive methods that paraphrase the source text
by using novel words. Abstractive summarization
has the potential to produce summaries in the same
way that humans do.

Recent years have witnessed significant progress
in the abstractive summarization task performed
by Seq2Seq models, which encode a source text
and decode its summary. A hybrid of the extractive
and abstractive techniques, called pointer-generator

network (PGN) (Gu et al., 2016; See et al., 2017),
has been widely used as a basis for many studies
(Gehrmann et al., 2018; Shen et al., 2019; Shi et al.,
2019) thanks to its capability of copying words
from the source document and generating new
words. With the rich contextual representations,
pre-trained encoders (Devlin et al., 2018) have also
improved the state-of-the-art on this task (Liu and
Lapata, 2019; Raffel et al., 2020). However, the
conventional PGN and BERT face two main prob-
lems: 1) When generating summaries, PGN tends
to frequently pay attention to some source parts
while neglecting other parts, which are regarded as
over- and under-attention respectively. Therefore,
the model requires a mechanism to make sure that
as much salient information is transformed from
the source to the target as possible. 2) Additionally,
BERT is pre-trained for sentences (Xu et al., 2020),
thus it is deficient in distinguishing key points from
non-key points within long-range dependencies,
which leads to inconsequential phrases or words
being copied into the summary. This is mainly due
to the lack of ability to recognize topic-signifying
words from the document (Baziotis et al., 2019).

Similar problems have been encountered in neu-
ral machine translation (NMT) (Tu et al., 2016).
Tu et al. (2017) developed an encoder-decoder-
reconstructor framework with a two-step process
that first translates a sentence into another language
and then reconstructs the translation back to the
source language. The newly added reconstructor
rewards the model when it correctly reconstructs
the input source sentence from the decoder hidden
layer, which forces the salient information to be
transferred from the source to the target. Baziotis
et al. (2019) applied this concept to unsupervised
sentence compression, where the model consists
of two encoder-decoder pairs so that no large text-
summary dataset is needed.

Inspired by the above, we propose three recon-
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struction methods for neural document summariza-
tion. The intuitive approach is a reconstructor that
rebuilds the source document from the decoder
hidden layer in an encoder-decoder architecture
that assigns the corresponding likelihood as a re-
construction loss. When the reconstructed text is
significantly different from the original one due to
the model incorrectly omitting or repeating some
parts to generate the summary, the reconstructor pe-
nalizes it during training. We refer to this approach
as sequence-level reconstruction and choose it as
our first implementation of the idea.

In contrast to the sequence-level reconstruction,
reconstructing the word embeddings of source arti-
cles would be a rather simple and effective method
for document summarization. The embedding-
level reconstruction alleviates the length discrep-
ancy between articles and summaries by calculat-
ing the distance between the average word embed-
dings of the source and target sides. We therefore
propose the average word embedding reconstructor
as our second reconstruction method.

We also present the third reconstructor that fo-
cuses on the saliency of words. Generally, certain
words that appear frequently in documents have
little importance and should not be kept in the sum-
mary. In contrast, words that signify the main idea
are supposed to be maintained in the summary. As
inverse document frequency (IDF) can measure
how important a token is and extract salient infor-
mation (Salton et al., 1983), we reconstruct the
IDF-weighted word embeddings of the source at
the target to keep topic-signifying words in the
summary. Since the summary has far fewer tokens
than the document, it is not appropriate to directly
incorporate the term frequency (TF) value into our
reconstructor. We therefore consider the IDF as the
weight of embeddings, rather than the TF-IDF.

In this work, we mainly adopt the PGN as base-
line and incorporate the above three reconstructors
upon it. We then assign a loss for each reconstruc-
tor and leverage each of them as a complement to
the baseline objective. On one hand, the recon-
struction objectives facilitate the model to gener-
ally focus on the entire text rather than parts of
it, thereby avoiding under-attention. On the other
hand, the IDF-weighted method serves as a selector
by giving more weights to topic-signifying words
such that it can identify essential parts (Table 1)
and prevent over-attention to less important words.

We performed experiments on two datasets and

Source Document (cnn) a mammoth fire broke out friday morning in a
kentucky industrial park, sending plumes of thick smoke over the area as
authorities worked to contain the damage. the blaze began shortly before
7 a.m. at the general electric appliance park in louisville, according to
mike weimer from the city ’s emergency management agency. he said that
there were no reports of anyone injured or trapped. video showed both
smoke and bright orange flames. firefighters took up positions around
the affected buildings, spraying water from the periphery. weimer told
cnn that authorities didn’t know what had caused the fire, which had gone
to at least four alarms. according to a ge website, its facility in the louisville
appliance park is “revitalizing manufacturing in the united states.” the park
is large, such that 34 football fields could fit in one of its warehouses in the
facility.

Reference fire breaks out at the general electric appliance park in
louisville, kentucky. city official: no is believed to be injured or trapped.
Pointer-Generator the blaze began shortly before 7 a.m. at the general
electric appliance park in louisville. authorities didn’t know what had
caused the fire, which had gone to at least four alarms.

Pointer-Generator with IDF-weighted Embedding Reconstruction a
mammoth fire broke out friday morning in a kentucky industrial park. the
blaze began shortly before 7 a.m. at the general electric appliance park
in louisville. no reports of anyone injured or trapped. firefighters took
up positions around the affected buildings.

Table 1: Example summaries without and with IDF-
weighted embedding reconstruction. The original arti-
cle contains four important pieces of information, ex-
pressed in four colors. The summary generated by our
method covers all information, while the baseline sum-
mary contains only one of them.

compared our methods with the baselines. Exper-
imental results on the Newsroom dataset demon-
strate that we outperformed the baselines by more
than 2 points in ROUGE-1, 2, and L. Our meth-
ods also led to significant improvements on the
CNN/Daily Mail dataset.

2 Preliminaries

In the PGN, a document x that consists of a se-
quence of tokens x = {1, z9,...,xs} is fed into
a bidirectional LSTM encoder, producing a se-
quence of hidden states h;. Then a unidirectional
LSTM decoder generates its corresponding sum-
mary y = {y1, ¥2, ..., yr} word by word with the
limitation of T' < I. I and T indicate the lengths
of the source article and the summary, respectively.
The PGN adopts the attention mechanism to
learn the alignment and yield target tokens simul-
taneously. Conditioned on decoder hidden state
s¢ and context vector c¢; for the ¢-th decoding step,
vocabulary distribution P, is as follows:

oncab,t = softma:):(Wsst + Weer + b323)7 (D

I
=), ol @
/ 1 ,
Q3 = eXp(at,i)/ Zk:l eXP(Oét,k), (3)
oz;ﬂ- = Wy tanh(Wrh; + Wysy + by), (4)

where W, W, W, Wy, Wy, bsas, by are train-
able parameters, and oy = {1, ..., a4 1} is the
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attention distribution over the source hidden states.

The PGN additionally employs the copy mech-
anism to decide whether to copy a word from the
source document or to generate a new word through
soft switch pgen ¢ € [0,1]. Pgen,+ can be obtained
by a feed-forward network whose inputs are the
context vector and the encoder and decoder hidden
states. The copy distribution is sampled from at-
tention distribution oy, that is, the copy probability
of a source token w is calculated as the sum of
attentions towards all occurrences of w. Thus, the
joint distribution is calculated as

P(yt) = Pgen,t X oncab,t(yt)
+ (1 - pgen,t) X Z Oét,i.

LT =Yt

&)

During training, we use the negative log-likelihood
as the loss function:

T
Lron=—)_, logPy). (6
3 Proposed Model

We next describe the details of our proposed meth-
ods, which can be split into two main components:

* Pointer-generator: a neural Seq2Seq frame-
work with the attention and copy mechanisms,
as introduced in Sec. 2.

* Reconstructor: a module that manages to re-
construct the salient information of the origi-
nal document in its summary. We put forward
three independent reconstructors that will be
explained in the next subsections. Moreover,
our proposed approaches are applicable to any
attention-based Seq2Seq summarization archi-
tectures.

3.1 Sequence-level Reconstruction

The first reconstructor, as shown in Fig. 1, is ex-
pected to recover the full input sequence from
the decoded summary, i.e., to reconstruct the one-
hot representations of the tokens in the source
document to reward the summary with the com-
plete source information. Specifically, the recon-
structor generates a reconstructed sequence & =
{Z1, &2, ..., 21} word by word from decoded sum-
mary sequence y and decoder hidden state s;. We
obtain a probability distribution over the vocab-
ulary through reconstructor hidden state h; and
inverse context vector ¢;:

oncab,i = SOftmal‘(WhiLi + Wcéz + 8828)7 (7)
T
G=) i, (8)

Minneapolis, Minnesota drivers who were on the Minneapolis
bridge when it collapsed told harrowing tales of survival...

Reconstructor

{ Minnesota bridge collapsed during rush hour Wednesday. ]

Encoder-Decoder

Minneapolis, Minnesota drivers who were on the Minneapolis
bridge when it collapsed told harrowing tales of survival...

Figure 1: Sequence-level reconstruction model.

where inverse attention &; for reconstructing step
¢ has the same structure as the original attention,
except taking the decoder and reconstructor hidden
states as inputs and owning independent weighted
vectors. Then, we try to minimize the reconstruc-
tion loss, which is the negative log-likelihood as-
signed by Z to the original document z:

I ~
ﬁrecon == Zi:l log P’UOCCLb,i (i'z = *rz) (9)

In general, the reconstruction phase can be treated
as an inverse process of a standard encoder-
decoder.

It is obviously impossible to reduce the loss to a
low level because a summary must contain fewer
tokens and less information than its original text.
However, we can reasonably expect the reconstruc-
tion loss to urge the encoder-decoder to embed
complete information of the source document.

3.2 Word Embedding-level Reconstruction

In order to ensure the generated summary main-
tains a similar sequence representation with the
source article, we compute the average word em-
beddings of = and ¥, and attempt to minimize their
cosine distance. For a source word z; in the input
document, we simply utilize vector e, obtained
from the encoder embedding layer. To represent to-
ken y;, we first concatenate context vector c;—; and
embedding e,, , of the word generated at the pre-
vious step. ey, _, keeps and shares part of the word
embedding information at the input side, while ¢,
simultaneously adds new information about context
at the output side. Then, a linear transformation is
applied to combine above two vectors:

w = Welerien ] th (10)

where W, and b, are trainable parameters.
Considering the difference of the embedding rep-
resentations between the document and its sum-
mary, we take the following actions: 1) the em-
bedding matrix is shared between the encoder and
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Figure 2: IDF-weighted word embedding reconstruction model.

decoder for unity, 2) the method pays fair atten-
tion (weight) to each word in the sequence to re-
strain under-attention, and 3) to prevent the effect
of length difference, we calculate the average of the
word embeddings for each sequence, i.e., divide
the sum by their respective lengths.

We calculate the embedding representations for
original article z and summary y as follows:

I I 1 T
= 7 Zi:l exwr(y) = T Zt:l €yt

The reconstruction loss is then examined by the
cosine similarity between summary representation
r(y) and source representation r(x) accordingly as

. (11)

Lrecon = 1 — cos(r(z),r(y)).

3.3 IDF-weighted Embedding-level
Reconstruction

(12)

The abstractive summarization task is intended to
remove duplicate or unimportant words and to para-
phrase the rest. The second approach, introduced
above, takes the average of word embeddings (i.e.,
fair weights) as the goal of reconstruction. How-
ever, attending to all words equally does not suit
the objective of this task. Thus, we propose an ad-
vanced version of the word embedding reconstruc-
tion by incorporating IDFs, as shown in Fig. 2.
Intuitively, some words, e.g., “the”, appear in
many documents, while others, e.g., “Harry Pot-
ter”, are not so frequent. Therefore, words with
lower IDF values usually have no specific mean-
ing and can be omitted without confusing the main
idea. Conversely, higher valued words might sig-
nify the topic of an article. This assumption allows

the model to distinguish key points from non-key
points, thereby avoid over-attention to less impor-
tant parts. Consequently, IDF-weighted embed-
dings are used as an alternative, changing Eq. 11 to

Zz’lzl IDinewi T(y) _ Z;F 1 IDFyteyt
S _IDFE, Sr IDF,,

(13)
The same form of reconstruction loss as Eq. 12 is
implemented here as well.

The IDF values can be computed on the basis of
the training dataset. They are calculated separately
from a corpus of original articles and reference
summaries to create source and target-side dictio-
naries, respectively. Given a token w, its inverse
document frequency can be obtained by

1+ny4
1+ DF(d,w)

where n4 denotes the total number of documents
in the corpus and DF'(d, w) is the number of doc-
uments where w appears. 1) At the source side,
the model takes the encoder input x; as a key to
search for I DI, from the source-side dictionary.
2) Whereas at the target side, the decoder outputs a
probability distribution at each time step according
to Eq. 5. We choose the word with the highest prob-
ability as the output and look for its corresponding
IDF,, in the target-side dictionary.

r(z) =

IDF,, = log +1, (14)

3.4 Training Loss
We use A as a hyperparameter to balance Lpgn
with L;¢con. The overall loss can be defined as

L= EPGN + )\ﬁrecon- (15)
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4 Experiments

4.1 Datasets and Settings

Datasets We carried out the experiments on
two benchmark datasets, namely CNN/Daily Mail
(Nallapati et al., 2016) and Newsroom (Grusky
et al., 2018). Using these two datasets is chal-
lenging since we need to compress long news ar-
ticles into short multi-sentence summaries. To
split the CNN/Daily Mail dataset into train-
ing/validation/test sets, we followed See et al.
(2017) to use the non-anonymized version. We
replicated the pre-processing steps released by Shi
et al. (2019) to generate the splits of the Newsroom
dataset. The basic statistics of the datasets, includ-
ing the splitting details, are summarized in Table 2.
In both datasets, the document and summary were
truncated to 400 and 100 tokens, respectively. Ad-
ditionally, 50K of the most frequently occurring
tokens in the training dataset were selected to form
a vocabulary for both the source and target.

Evaluation metrics We evaluated our models
with the ROUGE metrics (Lin, 2004), which com-
pare model-generated summaries with reference
summaries by referring to the overlap of unigram
(ROUGE-1), bigram (ROUGE-2), and longest com-
mon subsequence (ROUGE-L).

Experimental settings We trained our models
on a single GeForce RTX 2080Ti GPU (11GB
RAM). 128-dimensional word embeddings with
random initialization were fine-tuned during train-
ing. We utilized a single-layer bidirectional LSTM
for the encoder and a unidirectional LSTM for the
decoder. Both the encoder and decoder have 256-
dimensional hidden states. As for the optimizer,
Adam (Kingma and Ba, 2015) with a learning rate
of 0.0001 and an initial accumulator value of 0.1
was used. The maximum norm of gradient clipping
was set to 2.0. We set the batch size to 8 on the
CNN/Daily Mail dataset whereas 32 on the News-
room dataset. Summaries were decoded through
beam search with a beam size of 4 at test time. The
maximum iterations on CNN/Daily Mail and News-
room were 500, 000 and 450, 000, which are both
approximately equal to 14 epochs. The same set-
tings were applied to the baselines for comparison.

Training our embedding-level reconstruction
model on the CNN/Daily Mail dataset took 41.6
hours, while it took 34.7 hours on the Newsroom
dataset. We noticed that embedding-based ap-
proaches do not increase training time significantly

compared to the baselines. Our approach can im-
prove the performance without introducing too
many parameters or sacrificing training efficiency.
When setting the scaling factor A (in Eq. 15),
we found that the baselines with embedding-level
reconstructors (in Sec. 3.2, 3.3) achieved the best
results when the reconstruction loss was weighted
to A = 2.0 on the CNN/Daily Mail validation
dataset and A = 2.5 on the Newsroom validation
dataset. However, the sequence-level reconstructor
(in Sec. 3.1) worked best when A was set to 0.1.

Baselines We employed the following excellent
baselines for comparison and to demonstrate that
our approaches can be transplanted to various
Seq2Seq models. As our original intention to de-
sign the reconstructors, the PGN in Sec. 2 was
treated as our main baseline for both datasets. We
also adopted PGN+Coverage and PreSumm (Liu
and Lapata, 2019)! on the CNN/Daily Mail dataset
to further examine the adaptability of our recon-
structors. The coverage mechanism (Tu et al., 2016;
See et al., 2017) maintains a vector, i.€., a sum of
attention distributions over all the former decod-
ing steps, to prevent repeating words. PreSumm
employs and fine-tunes the pre-trained context rep-
resentations of BERT (Devlin et al., 2018) as an
encoder. On the Newsroom dataset, we addition-
ally utilized LeafNATS (Shi et al., 2019)? as our
baseline. LeafNATS is an open-source toolkit that
can train and evaluate neural Seq2Seq models for
the abstractive summarization. The authors mod-
ified the PGN by adding an intra-decoder (Paulus
etal., 2018) to it.

4.2 Results

CNN/Daily Mail Table 3 shows our main results
on the CNN/Daily Mail test set with ROUGE. Un-
derlines indicate statistically significant differences
from the baseline using the bootstrap test (Dror
et al., 2018). The results for the Lead-3 baseline
method are shown at the top, with excellent abstrac-
tive representatives in the middle, and our recon-
struction methods at the bottom.

From Table 3, we can explicitly observe that the
sequence-level reconstruction mechanism beat the
baseline but took three times as long as the original
model to train (117.9 hours), which is computa-
tionally expensive and time-consuming. Therefore,
even though the sequence-level reconstruction has

"https://github.com/nlpyang/PreSumm
*https://github.com/tshi04/LeafNATS
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Dataset ‘ Train  Validation Test ‘ Article length Summary length
CNN/Daily Mail | 287,226 13,368 11,490 781 56
Newsroom 993,101 108,621 108,670 751 30
Table 2: Basic statistics of the datasets.
Method ROUGE-1 ROUGE-2 ROUGE-L
Lead-3 Baseline (See et al., 2017) 40.34 17.70 36.57
Pointer-Generator (See et al., 2017) 36.44 15.66 33.42
Pointer-Generator + Coverage (See et al., 2017) 39.53 17.28 36.38
PreSumm (Liu and Lapata, 2019) 41.72 19.39 38.76
Pointer-Generator (our implementation) 36.69 15.90 33.45
+ Sequence-level reconstruction 37.10 16.32 33.92
+ Word embedding reconstruction 38.21 16.85 35.01
+ IDF-weighted embedding reconstruction 38.48 17.05 35.23
Pointer-Generator + Coverage (our implementation) 39.45 17.31 36.01
+ Word embedding reconstruction 40.02 17.91 36.74
+ IDF-weighted embedding reconstruction 40.40 18.21 37.12
PreSumm (rerun) 41.2 18.99 38.29
+ IDF-weighted embedding reconstruction 41.55 19.17 38.56

Table 3: ROUGE F1 scores on the test set of the CNN/Daily Mail dataset. The best results of our experiments are
marked in bold. Underlined results significantly surpass the PGN, coverage or PreSumm baseline with p < 0.01.

been proved to work well for NMT (Tu et al., 2017),
it is not suitable for the summarization task. One
of the most likely explanations is that NMT is a
sentence or document transformation between two
languages, which attempts not to lose any informa-
tion during the process. However, summarization
is designed to compress the information to form a
shorter version of the original article. The nature of
this task makes it extremely difficult to reproduce
the whole input sequence from the generated sum-
mary. Furthermore, recovering the entire original
information is not necessary and does not match
the summarization objective. Therefore, we report
the results of the PGN-based sequence-level recon-
structor only on this dataset.

For both the PGN and the Coverage baseline,
we can see higher ROUGE scores achieved by
the word embedding-level reconstructions, which
demonstrates the their effectiveness. In addition,
our third reconstructor with IDF-weighted embed-
dings outperformed the baselines and two other
reconstruction methods, despite far fewer training
epochs.

Even though we did not observe as much im-
provements as the previous two baselines with the

PreSumm-based reconstruction, the statistical sig-
nificance test shows the stability and effectiveness
of our method. To overcome the appearance of rare
words, PreSumm tokenize words into subwords
with Byte Pair Encoding (Sennrich et al., 2016).
However, one subword may appear in words with
various IDF values, which makes it meaningless to
calculate IDF in the granularity of subwords. There-
fore, in our experiments, we still calculated IDF on
the word-level while we gave the IDF weights for
the words only to their first subword. We believe
that the difference of the granularity between IDFs
and embeddings is the main reason of the slight
improvement. We leave how to solve this issue as
our future work.

Newsroom Table 4 lists the comparison results
on the Newsroom dataset. Following the previous
one, we enumerated extractive methods, abstractive
or mixed Seq2Seq models, and our reconstruction
architectures in three blocks in turn. Obviously,
our reconstruction-based models were largely supe-
rior to the extractive methods and two abstractive
approaches, while achieving comparable ROUGE
scores with ExtConSumm, which is the state-of-
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Method ROUGE-1 ROUGE-2 ROUGE-L
Lead-3 Baseline (Grusky et al., 2018) 32.02 21.08 29.59
TLM (Subramanian et al., 2019) 33.24 20.01 29.21
ExtConSumm Extractive (Mendes et al., 2019) 39.40 27.80 36.20
LeafNATS (Shi et al., 2019) 39.91 28.38 36.87
Pointer-Generator (our implementation) 37.12 25.27 33.92
+ Word embedding reconstruction 38.76 26.88 3547
+ IDF-weighted embedding reconstruction 39.19 27.32 35.95
LeafNATS (rerun) 39.01 27.21 35.77
+ Word embedding reconstruction 39.36 27.49 36.15
+ IDF-weighted embedding reconstruction 39.57 27.79 36.34

Table 4: ROUGE F1 scores on the test set of the Newsroom dataset. The best results from our experiments are
marked in bold. Underlined results significantly surpass the PGN or LeafNATS baseline with p < 0.01.

Model Informativeness Readability Redundancy
PGN 3.98 4.05 2.90
+ Embed. Rec. 4.12 4.12 3.00
+ IDF-wt. Rec. 4.12 4.15 3.21

Table 5: Human evaluation of model-generated sum-
maries.

the-art mixed method. The IDF-weighted word
embedding reconstruction was still the best among
the reconstructors, which achieved an average im-
provement of 2.05 ROUGE points over the PGN
baseline.

To sum up, these results indicate that sim-
ply adding the IDF-weighted embedding-level re-
construction to a Seq2Seq model is a very use-
ful method in abstractive document summariza-
tion. However, the training time for introducing
the sequence-level reconstructor greatly increased
while it gains only a small improvement compared
with the other two effective word embedding-level
reconstruction methods. We leave the problem of
how to successfully reconstruct a long document
from a short summary with a neural Seq2Seq model
as future work.

5 Analysis

5.1 Human Evaluation

Next, we performed the experiments with a manual
evaluation to investigate the quality of summaries
in three aspects: informativeness, readability, and
redundancy. We randomly selected 100 examples
from each dataset. Forty volunteers on Amazon
Mechanical Turk (AMT) with a U.S. high school

diploma or higher qualification were asked to rate
each summary on a scale of 1-5 (higher is bet-
ter). The average scores for the summaries of each
model are shown in Table 5.

As we can see, the baseline model suffered from
low informativeness and high redundancy, which
can be considered as under-attention and over-
attention, respectively. Incorporating the recon-
struction architectures could alleviate these prob-
lems, whereas better summaries were generated
with the help of the IDF values. We consider
two reasons for this, as follows. 1) When aver-
age word vectors of summaries differ from their
source texts, the summaries tend to be penalized
by the reconstruction loss. There was no big differ-
ence observed between using and not using the IDF
weights in terms of informativeness because the
word embeddings play an important role in cover-
ing all the input tokens. 2) The IDF value for each
word serves as a discriminator for avoiding fair at-
tention. The redundancy was reduced with the IDF
weights because higher-valued words control the
summary content while lower-valued words tend
to be ignored.

5.2 Case Study

Table 13 shows example summaries obtained by the
PGN with and without the IDF-weighted embed-
ding reconstruction. For ease of understanding, we
marked four most important passages in the source
article with different colors. By observing these
example summaries, we identified the following
issues: 1) The baseline model tended to incorrectly

3Refer back to page 2.
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focus on unimportant details in the original text,
and 2) The whole sentences or paragraphs were fre-
quently copied from the source even if half of them
were meaningless or redundant. For example, the
second sentence of the baseline summary indicates
that the cause of the fire accident has not been inves-
tigated. Compared to other elements in the news,
e.g., the incident, location, consequences, and so-
lution, the cause is not essential and should not
appear in the summary. Moreover, the redundancy
can be reduced if the model ignores the attributive
clause containing four alarms instead of copying
the whole sentence from the article.

All of the four key messages were included in
the summary generated by our IDF-weighted em-
bedding reconstruction method, while only one of
them appeared in the baseline. Even the reference
misses one key piece of information. This exam-
ple demonstrates the efficacy of our reconstruction
mechanism in keeping the salient information in
text summarization in addition to the improved
ROUGE scores.

6 Related Work

Compared to the extractive summarization, abstrac-
tive methods are more challenging and attract atten-
tion because they can generate new words through
the source document representation (Liddy, 2001;
Nallapati et al., 2016). With the popularity of deep
learning, many neural network-based models, espe-
cially Seq2Seq models (Rush et al., 2015; Chopra
et al., 2016), have been widely applied to natural
language processing tasks, such as machine transla-
tion (Bahdanau et al., 2015) and dialogue systems
(Lei et al., 2018). Since the work of Rush et al.
(2015), neural Seq2Seq networks with an atten-
tion mechanism have been widely utilized in the
abstractive summarization tasks.

Howeyver, the attention mechanism is sometimes
not enough to address different problems. For ex-
ample, repetitions at the word or phrase level cause
grammatical errors and insufficient reflection of
the main idea of the source article. Therefore, the
distraction method (Nema et al., 2017) imposes
a constraint over the attention that can reduce the
probability of repeated content. Tu et al. (2016)
and See et al. (2017) found that the original atten-
tion often leads to over- or under-focus without the
memory of past alignment information. Thus, they
used the coverage concept from statistical machine
translation to keep track of the attention history

with an additional loss. Moreover, the inability to
handle out-of-vocabulary (OOV) tokens also limits
the fluency and readability of generated summaries.
To alleviate this problem, hybrid models that com-
bine the extractive and abstractive methods through
the copy mechanism account for the vast majority
of models used in the summarization task (Vinyals
et al.,, 2015; Gu et al., 2016; See et al., 2017).

Pre-trained language models (Peters et al., 2018;
Radford et al., 2018; Devlin et al., 2018), essen-
tially word embeddings presenting contextual rep-
resentations, that were learned from large-scale
corpora, have recently emerged and achieved state-
of-the-art performances in a variety of NLP tasks
(Zhang et al., 2019; Liu and Lapata, 2019; Rothe
et al., 2020). Due to the subword tokenizer, out-
of-vocabulary words are rarely observed in their
output even without the pointer mechanism.

However, neither non-pretrained Seq2Seq mod-
els nor BERT can measure the proportion of infor-
mation transmitted from the source to the target.
The idea of reconstruction can be implemented in
many forms so as to adapt to different types of tasks.
For example, Srivastava et al. (2015) proposed an
LSTM encoder-decoder model that encodes the
video and reconstructs its frame sequence. Tu et al.
(2017) proposed a reconstruction model based on
NMT that consists of three sequences. If the origi-
nal sentence can be reconstructed from the target,
it proves that the information has been effectively
transferred. Another work is SEQ? (Baziotis et al.,
2019) with a triple sequence structure, which re-
builds the input sentence from the latent represen-
tation of the decoder in the unsupervised sentence
compression task.

7 Conclusion

In this work, we presented three reconstruction
mechanisms for the neural Seq2Seq abstractive
summarization task that reconstruct the essential
information from the source document to its target
summary. The proposed reconstruction methods
are applicable to any attention-based Seq2Seq sum-
marization architectures. Experimental results on
both the CNN/Daily Mail and Newsroom datasets
showed the improvements from the baselines in
terms of ROUGE metrics and human evaluation.
Our analysis also indicated that the proposed re-
construction approaches can restrict the under-
attention to key points and over-attention to redun-
dant parts.
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