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Abstract

Claim verification is challenging because it re-
quires first to find textual evidence and then
apply claim-evidence entailment to verify a
claim. Previous works evaluate the entailment
step based on the retrieved evidence, whereas
we hypothesize that the entailment prediction
can provide useful signals for evidence re-
trieval, in the sense that if a sentence supports
or refutes a claim, the sentence must be rele-
vant. We propose a novel model that uses the
entailment score to express the relevancy. Our
experiments verify that leveraging entailment
prediction improves ranking multiple pieces of
evidence.

1 Introduction

Claim verification verifies the credibility of a tex-
tual claim by inferring relevant and reliable textual
evidence. An example in this space is FEVER,
which regards Wiki pages as potential evidence
and creates claims by crowdsourcing (Thorne et al.,
2018). They propose a three-step pipeline: (i) doc-
ument-level evidence retrieval; (ii) sentence-level
evidence retrieval; (iii) claim-evidence entailment.
Some works follow the pipeline and propose new
models to improve claim verification (Yoneda et al.,
2018; Nie et al., 2019; Hanselowski et al., 2018;
Zhou et al., 2019), while other works combine the
second and the third step and leverage all possi-
ble sentences for claim verification (Yin and Roth,
2018; Maetal., 2019). We refer to the former as the
pipeline framework and the latter as the multi-task
framework.

The pipeline framework restricts a few sentences,
and therefore it may not cover relevant evidence.
The multi-task framework includes all possible
sentences, where irrelevant ones may bring over-
whelming noise and hurt claim verification. We
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Claim: Andy Roddick lost 5 Master Series
between 2002 and 2010.

Candidate: Roddick was ranked in the top
10 for nine consecutive years between 2002
and 2010, and won five Masters Series in that
period.

Label: REFUTE

Candidate: Roddick’s hard-court record in
2003 included his first Masters Series titles
coming at Canada and Cincinnati and his only
Grand Slam title.

Label: NOT ENOUGH INFO

Candidate: Federer won his first Master Se-
ries event at the 2002 Hamburg Masters on
clay, over Marat Safin.

Label: NOT ENOUGH INFO

Table 1: The entailment result can imply whether the
candidate is relevant or not.

argue that previous works focus on improving in-
dividual components but neglect to examine how
those components connect. For example, will the
entailment improve the retrieval?

We hypothesize that claim-evidence entailment
can provide useful signals for evidence retrieval: if
a sentence supports or refutes a claim, the sentence
must be relevant. As in Table 1, the first candidate
(actual evidence) shares more words and longer
phrases than the other candidates. In contrast, the
other two candidates may be relevant to the claim
to some extent: the second sentence mentions Rod-
dick and masters series, and the third sentence men-
tions masters series and 2002. Thus, we propose
a novel method to link the entailment prediction
to the relevance score. Our method predicts the
entailment for all retrieved candidates and utilizes
the entailment score to express the relevance.

To our knowledge, this is the first work that
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uses the entailment prediction to measure relevancy.
Our experiment demonstrates that a reliable entail-
ment prediction improves evidence retrieval. This
is beyond previous works that merely share low-
level text encoder and train the two steps together.

2 Method

We adopt two base models, the Decomposable At-
tention (DA) model (Parikh et al., 2016) and the
Enhanced Sequential Inference (ESI) model (Chen
etal., 2017a), to encode claim-evidence pairs. Both
models are designed for textual entailment (Dagan
et al., 2005; Bowman et al., 2015; Parikh et al.,
2016; Williams et al., 2018). Although there are
more methods in the area of textual entailment (Sha
et al., 2016; Chen et al., 2017b; Conneau et al.,
2017; Nie et al., 2019; Munkhdalai and Yu, 2017;
Tay et al., 2018; Ghaeini et al., 2018), we prefer
the DA model and the ESI model because they
have been widely applied for sentence retrieval and
claim-evidence entailment (Thorne et al., 2018;
Hanselowski et al., 2018; Nie et al., 2019; Yoneda
et al., 2018).

2.1 Claim Verification Pipeline

We follow the three-step pipeline as proposed
in (Thorne et al., 2018). We first apply the strategy
proposed in (Hanselowski et al., 2018) to retrieve
documents. It employs the constituency parser
from AllenNLP (Gardner et al., 2018) to find enti-
ties. It uses MediaWiki API to obtain relevant arti-
cles by matching the title of the article with claim
entities. Once we collect K document candidates,
we treat each sentence of the article as potential
evidence. Evidence retrieval considers the claim
and all candidate sentences as the input and outputs
evidence by selecting a subset of sentences. We use
h* = Enc®(w®, w?) to denote the process that the
relevance encoder encodes the claim w* and the i-
th evidence candidate w? into the representation hs.
We obtain the relevance score s; by giving h; to a
fully connected network (FCN). After sorting the
relevance score of evidence candidates, we collect
the top K candidates as the evidence. Claim-
evidence entailment predicts three probable out-
comes: (i) the evidence supports the claim; (ii) the
evidence refutes the claim; (iii) the evidence needs
more information. The entailment encoder encodes
the claim w¢ and the retrieved evidence w", and
we denote the process as h” = Enc”(w® w").
Then we feed h” to another FCN for the entail-

ment probability.

2.2 Sentence Pair Encoder

We design the relevance encoder and the entailment
encoder to share the same architecture, because
they both take two sentences as input and produce
vector representation that captures claim, evidence,
and the correlation of them. Although we consider
the DA model and the ESI model in this work, we
do not limit the choice of architectures. Let a and b
be two sentences. The core idea of the two models
is to obtain the attention weights e; ;. of word a;
and word by, as in equation 1, where F'(x) follows
either DA or ESI to encode a single sentence. With
the attention weights e, we obtain a and b:

b
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Then DA and ESI introduce G(z1,z2) to
update the representation by taking (F'(a), a),
or (F(b), b), as the input. Formally, h® =
G(F(a),a) and h® = G(F(b),b). We recom-
mend readers to refer the origin papers for the im-
plementation of F'(x) and G(z1, x2). We concate-
nate the two representations as the final output of
the encoder, h = [h?; h®]. We use the encoder for
the retrieval step and the entailment step by varying
the input pairs.

2.3 Entailment Score as Relevance Measure

A common design of V(z) is to generate three
values [v°, v®, vV], representing the evidence sup-
ports the claim, the evidence refutes the claim, and
the evidence does not have enough information,
respectively. The largest value decides the entail-
ment: v = max([v¥, v, vV]). Intuitively, if one
sentence supports or refutes the claim, the sentence
must be relevant. Thus, we apply V' (z) on all can-
didate sentences and propose a new form of the
relevance score in Equation 4.

Also, we can combine the new relevance score
with the old one that intends to capture the rele-
vance on a single sentence. We introduce the fi-
nal relevance score 7°°™ in Equation 5, where «
and [ can be learnable parameters or fixed hyper-

parameters, and 7N is the common way that ob-
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tains the relevance score via a fully connected net-
work.

YOI — max([v®, vB]) — o “4)

peom — . TrFCN + 5 . TvDiff (5)

We optimize the retrieval objective as in Equa-
tion 6, by ranking the minimum score of evidence
and the maximum score of irrelevant sentences.
We use cross-entropy as in Equation 7 for the en-
tailment objective. We sum the two as the joint
training objective: £ = £ + LV

NC
1
LB=—o max (0, min ([, ... r"
e o masOmin(by i)
—max([r;o...7; y-1) +m)
1 &
V== 5% ; y; log(v;) 7

One may wonder if a claim requires multiple
sentences to form evidence. In that case, v may
predict a single sentence irrelevant. We argue it
is not a concern because the r* in our design is
capable of taking a negative value while the r—
can take a positive value. As long as 7 is greater
than ~, we can retrieve the right evidence.

3 Experiments

The focus of the experiments is to understand if the
entailment score can benefit the retrieval. We con-
ducted experiments on the FEVER dataset (Thorne
et al., 2018)!. FEVER contained 80,035 Support
claims, 29,775 Refute claims, and 35,639 NotE-
noughlinfo claims for training. The shared task of
FEVER released 6,666 Support claims, 6,666 Re-
fute claims, and 6,666 NotEnoughlnfo claims for
validation, and held another blind test set of 6,666
Support claims, 6,666 Refute claims, and 6,666
NotEnoughlnfo claims. We considered two scenar-
ios in our experiment, and we describe them as
follows:

EC: short for Entailment Comparison. We ex-
plored the claim-evidence entailment by augment-
ing gold evidence with irrelevant sentences. We
varied the irrelevant sentences so that we main-
tained the recall of the evidence retrieval. This
scenario emphasizes the importance of evidence
retrieval.

'https://fever.ai/data.htm]
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Figure 1: The entailment results on a different amount
of sentences as evidence. The Oracle took gold evi-
dence. Model@number means the model was trained
on the evidence given that number of sentences.

RC: short for Retrieval Comparison. We followed
the three-step pipeline and focused on sentence re-
trieval. At the document retrieval step, we adopted
the strategy of (Zhou et al., 2019; Hanselowski
et al., 2018). At the sentence retrieval step, we
trained on gold evidence and applied retrieved doc-
uments for validation.

3.1 The Importance of Evidence Retrieval

We first experimented against the EC to understand
the importance of evidence retrieval. The irrelevant
sentences are sampled from the same document as
the evidence. For claims that did not have gold
evidence, we sampled sentences from high ranked
documents. We evaluated cases where the evidence
contained [5, 10, 15, 20, 25, 30] sentences, while
we constructed evidence with [5, 15, 25] sentences
for training. Besides, we included the oracle setting
that claims were paired with only gold evidence.

We report the result in Figure 1. We notice a
clear trend that having irrelevant sentences hurt
claim verification, which strengthens the impor-
tance of evidence retrieval. We also see that the
ESI model performs better than the DA model in
all cases, possibly because the ESI model leveraged
sequential orders.

3.2 Evidence Retrieval

We conducted experiments against the RC scenario
to investigate if the claim-evidence entailment can
enhance evidence retrieval. We considered three
variants of the sentence retrieval step for compari-
son: R was the baseline that no entailment signal
was used; R+V-J measured the relevance score as
in Equation 5; R-]J also leveraged the entailment
task but only used 7N for the relevance score.
We selected three previous works to compare
against: TwoW (Yin and Roth, 2018) combined
the retrieval step and the entailment step as R-J.
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TwoW ‘ HAN ‘ GEAR

ESI
H R | RJ | RtV H R R-J R+V-J
FRecall | 5481 | 53.60 | 86.72 || 8559 | 8551 | 85.43 || 86. 34 86.55 86.51
MRR@5 - - | 8519 || 8272 | 82.69 | 82.29 || 85.15 | 8554 | 85.77"
MAP@5 - - | 84.10 || 81.68 | 81.73 | 81.29 || 84.03 | 8434 | 84.62°*
MRR@A | - - - 83.16 | 83.14 | 83.08 || 85.55 | 85.78"*" | 86.11"*
MAP@A | - - - 80.04 | 80.19 | 80.07 | 82.48 | 82.53"** | 83.16"**

Table 2: Evidence Retrieval Comparison. R is the retrieval baseline. R-J leverages the entailment signal via joint

training. R+V-J measures the relevance score as in Equation 5. We use T-test, and ***,

EES

, and * means the

difference was significant under level o < 0.01, o < 0.05, and o < 0.1, respectively.
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Figure 2: The visualization of the equation 1 using ESI. Each row corresponds to a token of the claim, and each
column is a token of the evidence. A darker color means a higher attention score.

They filtered out low confident sentences so that
the entailment step could focus on a relevant sub-
set; HAN (Ma et al., 2019) also combined the re-
trieval step and the entailment step and filtered
out irrelevant sentences. They leveraged coher-
ence-based attention to model sentence candidates;
GEAR (Zhou et al., 2019) adopted the three-step
pipeline. They shared the same document retrieval
step as ours and a similar sentence retrieval model.

We evaluated the retrieval step on three metrics:
F-recall is the FEVER recall that measures if the
top five sentences contained evidence. F-recall
would count true positive if at least one evidence
was found; MRR stands for mean reciprocal rank.
Not only measuring if one evidence was selected,
but it also considers the highest ranking position of
the evidence. MRR favors to select one evidence
as confident as possible; MAP stands for mean
average precision. It cares for all evidence to be
highly ranked and encourages the retrieval step to
have all evidence confidently selected so that the
retrieved candidates had less irrelevant sentences.

We report the result in Table 2. Since GEAR
only reported results on the top five sentences,
we calculated MRR and MAP on top five sen-
tences (MRR @5 and MAP@5) and all sentences
(MRR@A and MAP@A). We first observe that
leveraging the entailment signal improves evidence
retrieval on the ESI model, whereas it shows no

improvement in the DA model. One possible rea-
son is that the DA model did not perform well
on claim verification compared to the ESI model.
Therefore, the DA model could not provide a re-
liable entailment signal to enhance the retrieval.
The ESI model, showing better accuracy to predict
the entailment, improves MAP and MRR when we
leveraged the entailment prediction (ESI-R+V-J v.s.
ESI-R), which reinforced the thought that lever-
aging the entailment signal would require a good
entailment predictor.

We also observe that TwoW and HAN could
not efficiently retrieve relevant evidence as other
methods. Although they show descent accuracy on
claim-evidence entailment, a low F-recall means
that filtering out low-rank candidates removed rele-
vant evidence as well. Thus, these models show a
disadvantage when people care about the evidence
that leaded to a verification result.

Finally, we observe that leveraging the entail-
ment signal did not offer an improvement in terms
of F-recall. This might indicate that our method
benefits ranking multiple pieces of evidence, as
we see better performance on MAP and MRR. Be-
sides, GEAR deployed an ensemble of ten models
for retrieval, which could explain the difference.
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3.3 Visualization

In Figure 2 we provide one visualization of the
claim-evidence attention. We see that the claim
and the evidence are attending on the same words
and phrases. This explains why the entailment can
benefit the retrieval: they reinforce each other to
find similar lexicons.

4 Conclusion

In this work, we show that leveraging the entail-
ment prediction can improve evidence retrieval
when the entailment step produces a reliable result.
In the future, we will adopt pre-trained models,
e.g., BERT (Devlin et al., 2019), for our experi-
ments. We expect improvement because BERT
shows competitive results on the textual entailment
tasks (Zhou et al., 2019).

Ethical consideration This work conducts ex-
periments on benchmark datasets that have been
extensively studied in the literature. Although the
datasets used in the work was manually annotated,
there is no identity characteristics. Also, we use
RNN-based models with only a few layers, which
are more eco-friendly compared to transformer
based models.
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