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Abstract

Neural Topic Models are recent neural models
that aim at extracting the main themes from a
collection of documents. The comparison of
these models is usually limited because the hy-
perparameters are held fixed. In this paper, we
present an empirical analysis and comparison
of Neural Topic Models by finding the optimal
hyperparameters of each model for four differ-
ent performance measures adopting a single-
objective Bayesian optimization. This allows
us to determine the robustness of a topic model
for several evaluation metrics. We also empir-
ically show the effect of the length of the doc-
uments on different optimized metrics and dis-
cover which evaluation metrics are in conflict
or agreement with each other.

1 Introduction

Topic models (Blei, 2012) are probabilistic genera-
tive models that aim at identifying the underlying
themes, or topics, in a collection of documents. Al-
though they are used in a vast range of applications,
from text exploratory purposes to information re-
trieval tasks (Boyd-Graber et al., 2017), most of
the investigations disregard the elements that influ-
ence the results generated by the models and, in
particular, what is the effect on their performance.

Several works explore topic modeling over a
range of different models, topics, and measures,
but usually focus on classical topic models (Greene
et al., 2014; Stevens et al., 2012), e.g. Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) or
Non-negative Matrix Factorization (NMF) (Lee
and Seung, 2000), and solely on a single evalu-
ation measure (Stevens et al., 2012; O’Callaghan
et al., 2015).

Doan and Hoang recently made an effort to
benchmark neural topic models, however, the au-
thors seem to disregard the importance of the hyper-
parameter selection. In fact, the evaluations of topic

models are usually limited to the comparison of
models whose hyperparameters are fixed. Yet, the
hyperparameters that control the models can have a
great impact on their performance. Therefore, fix-
ing them prevents the researchers from discovering
the best topic model on a given dataset. In the latest
years, Neural Topic Models (NTM) (Zhao et al.,
2021; Dieng et al., 2020; Bianchi et al., 2021a,b)
have gained popularity, due to their flexibility and
scalability. The problem of finding the best hy-
perparameter configuration has become even more
compelling, since topic models based on neural
networks are usually controlled by a high number
of hyperparameters.

In this paper, we perform an empirical analysis
of recent NTMs by optimizing the hyperparameters
of the models with respect to different metrics. We
aim to investigate if there exists a potential relation-
ship between hyperparameters, document length
and performance measures, to finally understand
under which conditions we can exploit at best the
potentiality of each model. In particular, the fol-
lowing research questions have been addressed:

RQ1: To what extent are Neural Topic Models ro-
bust across different evaluation metrics?

RQ2: Does the document length affect the Neural
Topic Models on different performance mea-
sures?

RQ3: Does the optimization of a model’s hyperpa-
rameters for a given performance metric imply
good performance on other measures?

To this purpose, we use Bayesian Optimization
(BO) (Archetti and Candelieri, 2019), a well-
known and efficient strategy for hyperparameter
tuning, to determine the optimal hyperparameter
settings for four different evaluation metrics of five
state-of-the-art NTMs. The hyperparameter opti-
mization allows us to guarantee a fair comparison
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between the models and investigate their behavior
with different hyperparameter settings.

2 Methodology

In this work, we conduct an empirical compari-
son of different state-of-the-art NTMs. We adopt a
single-objective Bayesian Optimization approach,
using the comparative framework topic modeling
OCTIS (Terragni et al., 2021a), to optimize the hy-
perparameters of five different topic models with
respect to four different evaluation metrics. Each
metric investigates a different aspect of a model.
Bayesian Optimization (Archetti and Candelieri,
2019; Kandasamy et al., 2020) is a Sequential
Model-Based Optimization (SMBO) strategy that
allows us to optimize all the hyperparameters by
treating the topic model as a black-box function.
The model is in fact viewed just in terms of its input
(the hyperparameters) and its output (the distribu-
tion of the topics over the vocabulary and the topic
distribution for each document).

BO uses the model’s configurations evaluated so
far to approximate the value of the performance
metrics with respect to the model’s hyperparame-
ters and then selects a new promising configuration
to evaluate. The two key components are the prob-
abilistic surrogate model aimed at approximating
the performance metrics to optimize, and the acqui-
sition function that uses the mean of the surrogate
model and the confidence (i.e. its standard devia-
tion) to select the next configuration.

Optimizing a model’s hyperparameters not only
allows us to investigate the robustness of a model
over different evaluation metrics (RQ1), but we can
also investigate the performance of the optimized
evaluation metric on datasets with different features
(RQ2) and the relationship between the optimized
evaluation metric and the other metrics (RQ3).

2.1 Topic Models

In our investigation, we focus on the following
recent state-of-the-art topic models based on a neu-
ral variational frameworks. We consider Neural
LDA (Srivastava and Sutton, 2017, NeurLDA),
Product-of-experts LDA (Srivastava and Sutton,
2017, ProdLDA), the Embedded Topic Models (Di-
eng et al., 2020, ETM), and finally we use a vari-
ant of the family of Contextualized Topic Mod-
els, namely the Zero-shot Contextualized Topic
Model (Bianchi et al., 2021b, CTM).

All these neural models are based on the Varia-

tional Autoencoder (VAE) presented in Miao et al..
The neural variational framework trains an infer-
ence network to map the bag-of-words (BoW) doc-
ument representation into a continuous latent rep-
resentation. A decoder network reconstructs the
BoW by generating its words from the document
representation. This document representation is
K-dimensional, where K is the number of topics.

NeurLDA and ProdLDA (Srivastava and Sutton,
2017) explicitly approximate the Dirichlet prior
using Gaussian distributions, instead of using a
Gaussian prior. In addition, ProdLDA replaces the
word-topic distribution in LDA with a product of
experts (Hinton, 2002).

CTM (Bianchi et al., 2021b) extends ProdLDA
by replacing the BoW document representation
of the input with the corresponding pre-trained
contextualized representations of the documents.
These representations derive from contextualized
language models, e.g. BERT (Devlin et al., 2019).1

Concerning ETM (Dieng et al., 2020), words
and topics are represented in the same embedding
space. The word-topic distribution is proportional
to the exponentiated inner product of the topic em-
bedding and each word embedding. ETM can au-
tomatically learn the word embedding representa-
tions or use pre-trained word embeddings. Follow-
ing the original paper, we will refer to the former
version of the model as ETM, while the one that
uses pre-trained word embeddings (PWE) will be
referred to as ETM-PWE.

We also consider the well-known Latent Dirich-
let Allocation (Blei et al., 2003, LDA) as a base-
line. LDA is a probabilistic model that describes
a corpus through K topics, seen as distributions
of words over a vocabulary W . A document is as-
sumed composed of a mixture of topics following a
Dirichlet distribution, where a topic drawn from the
mixture is assigned to each word of the documents.

2.2 Evaluation Metrics

We consider four evaluation metrics that investigate
different aspects of a topic model.

F1 refers to the Micro-F1 measure, the weighted
average of the F1 measure for each class. We train a
linear support vector machine (SVM) that predicts
the document’s class using the topic distribution θ
of each document (given by each topic model) as

1This model has been designed for addressing a task of
cross-lingual topic modeling, however, it also outperforms
several monolingual neural topic models.
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its feature representation (Terragni et al., 2020a).

IRBO (Bianchi et al., 2021a; Terragni et al.,
2021b) is a measure of topic diversity (0 for iden-
tical topics and 1 for completely different topics).
It is based on the Ranked-Biased Overlap mea-
sure (Webber et al., 2010). Topics with common
words at different rankings are penalized less than
topics sharing the same words at the highest ranks.

NPMI (Lau et al., 2014) measures Normal-
ized Pointwise Mutual Information of each pair of
words (wi, wj) in the 10-top words of each topic.
It is a topic coherence measure, that evaluates how
much the words in a topic are related to each other.

KL–B (AlSumait et al., 2009; Terragni et al.,
2020b) is the Kullback-Leibler distance of a topic
to a “background” topic, a topic found equally prob-
able in all the documents. Meaningful topics appear
in a small subset of the data, thus higher values are
preferred.

3 Experimental Setting

3.1 Datasets and Preprocessing
To analyze the impact of the length of the doc-
uments with respect to several models and per-
formance measures, we consider two different
datasets: 20Newsgroup2 (20NG), where each docu-
ment is characterized by a long text, and M10 (Lim
and Buntine, 2014), which is composed of titles of
scientific papers, and therefore it represents a case
study of short texts.

We adopt a common preprocessing procedure3:
punctuation removal, lemmatization, removal of
English stop-words and unfrequent words, removal
of documents with less than 3 words (for M10) or
5 words (for 20NG). The stopwords list is the one
provided by MALLET4. Each dataset is split into
training (70%), validation (15%) and test set (15%).
Table 1 shows the datasets statistics.

Datasets # docs average
# words

# unique
words

# classes

20NG 16309 48 1612 20
M10 8355 6 1696 10

Table 1: Statistics of the preprocessed datasets.

2http://qwone.com/ jason/20Newsgroups/
3The preprocessed datasets are already provided by

the OCTIS library: https://github.com/mind-Lab/
octis.

4http://mallet.cs.umass.edu/

3.2 Bayesian Optimization and Model
Settings

We optimize the models’ hyperparameters using
BO for each evaluation metric. We trained each
model 30 times and considered the median as the
evaluation of the function to be optimized. The ini-
tial configurations are randomly sampled via Latin
Hypercube Sampling and equal to the number of
the hyperparameters to optimize plus 2 (to pro-
vide enough configurations for the initial surrogate
model). The total number of BO iterations is 30
for LDA and 120 for the other models. We use
Random Forests as the surrogate model and the
Upper Confidence Bound (UCB) as the acquisition
function.

We report the models’ hyperparameters and their
corresponding ranges in Table 2.

Model Hyperparameter Range

α prior [10−4, 10]
LDA

β prior [10−4, 10]

Dropout [0, 1 - 10−6]
Learning rate [10−6, 10−1]
Momentum [0, 1]

Activation function
elu, leakyrelu,
relu, rrelu, selu,
sigmoid, softplus

Optimizer
adadelta, adagrad,
adam, rmsprop,
sgd

# Neurons 100, 200, . . ., 1000
# Layers 1, 2, 3, 4, 5

NeurLDA/
ProdLDA/
CTM

Learn priors true, false

Dropout [0, 1 - 10−6]
Learning rate [10−6, 10−1]

ETM/
ETM-PWE

Weight decay [10−6, 10−1]

Activation function
elu, leakyrelu, relu,
rrelu, selu, softplus,
tanh

Optimizer
adadelta, adagrad,
adam, asgd, rm-
sprop

# Neurons 100, 200, . . ., 1000

ETM Rho size 100, 200, 300

Table 2: Hyperparameters and ranges.

Regarding LDA, we optimize the hyperparam-
eters α and β priors that the sparsity of the topics
in the documents and sparsity of the words in the
topic distributions respectively. These hyperparam-
eters are set to range between 10−4 and 10 on a
logarithmic scale.

The hyperparameters of the neural models are
mainly related to the architecture of the network.
For all the neural models, we optimize the dropout

https://github.com/mind-Lab/octis
https://github.com/mind-Lab/octis
http://mallet.cs.umass.edu/
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20NG M10
F1Score* IRBO* NPMI* KL-B* F1Score* IRBO* NPMI* KL-B*

LDA 0.469 0.963 0.064 2.299 0.472 0.944 -0.089 2.343
NeurLDA 0.339 1.000 0.067 0.907 0.420 1.000 -0.131 0.904
ProdLDA 0.373 0.998 0.107 0.992 0.539 1.000 0.044 1.652
CTM 0.361 0.998 0.118 1.019 0.563 1.000 0.055 0.937
ETM 0.453 0.996 0.080 0.370 0.534 0.997 -0.028 0.532
ETM-PWE 0.471 0.986 0.089 0.424 0.585 0.997 -0.070 0.201

Table 3: Median of each performance metric (columns) for each single-objective optimization (rows).

(ranging between 0 and 1− 10−6) and the momen-
tum (ranging between 0 and 1). We optimize the
learning rate, that is set to range between 10−4 and
10−1, on a logarithm scale. We also consider differ-
ent variants of activation functions and optimizers.

Regarding NeurLDA, ProdLDA, and CTM in
particular, we optimize the number of layers (rang-
ing from 1 to 5), and the number of neurons (rang-
ing from 100 to 1000). For simplicity, each layer
has the same number of neurons. Finally, we also
consider the hyperparameter learn priors that con-
trols if the priors are learnable parameters.

Following (Bianchi et al., 2021a), we use the con-
textualized document representations derived from
SentenceBERT (Reimers and Gurevych, 2019). We
use the pre-trained BERT model fine-tuned on the
natural language inference (NLI) task.5

Considering ETM and ETM-PWE, in addition
to the hyperparameters mentioned above, we only
optimize the number of neurons (ranging from 100
to 1000). We follow the original implementation,
for which the number of hidden layers is set to 1.
For ETM-PWE, we use pre-trained word2vec word
embeddings (Mikolov et al., 2013), trained on the
Google News corpus (3 million 300-dimension En-
glish word vectors).

For the neural models, we set the batch size to
200 and we adopted an early stopping criterion
for determining the convergence of each model.
We set the remaining model parameters to their
default values. To have a fair comparison, we set
the number of topics to be discovered equals to
the number of classes available in each dataset,
i.e. 10 for M10 and 20 for 20NG. For running
the experiments, we use the open-source library
OCTIS (Terragni et al., 2021a), which already inte-
grates the implementations of the considered mod-
els and metrics. It is available at the following link:
https://github.com/mind-Lab/octis.

5https://huggingface.
co/sentence-transformers/
bert-base-nli-mean-tokens

4 Empirical Analysis and Discussion

4.1 Robustness of Neural Topic Models
(RQ1)

In table 3 we report the median of the four evalua-
tion metrics for each topic model obtained by the
best hyperparameter configuration. Rows represent
the optimized metric (marked as metric*), while
columns denote the median of the evaluated metric.
The overall best values for each metric and dataset
are reported in bold. First of all, we can observe
that there is not a model that outperforms the others
for all the considered metrics. In fact, it seems that
each topic model works better for a specific metric.

In particular, LDA is the topic model that obtains
the best performance in terms of KL-B*, thus ob-
taining topics that are significant rather than back-
ground topics. While, the topic models based on
the neural variational framework defined in (Srivas-
tava and Sutton, 2017), i.e. NeurLDA, ProdLDA,
and CTM, are the ones that obtain the highest diver-
sity. Regarding the topic coherence, CTM obtains
the best topic coherence for both datasets. In fact,
it improves the performance of ProdLDA (second-
best model for the topic coherence) through the
incorporation of the contextualized pre-trained rep-
resentations of the documents. Finally, ETM-PWE
outperforms the other models in terms of F1*, prob-
ably due to the contribution of the pre-trained word
embeddings.

Provided that each topic model seems to reach
the best performance only in a specific metric, it
follows that they cannot simultaneously guarantee
optimal performance for the other metrics. We
will further investigate the trade-off between dif-
ferent metrics in Sections 4.2 and 4.3. A complete
overview of the best configuration of hyperparame-
ters discovered by BO for all the models and for all
the considered evaluation measures is reported in
Tables 4, 5, 6, 7, 8 and 9. This would allow a user to
choose a promising hyperparameter configuration
for the evaluation metric of their interest.

https://github.com/mind-Lab/octis
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
https://huggingface.co/sentence-transformers/bert-base-nli-mean-tokens
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(a) LDA on M10. (b) LDA on 20NG. (c) CTM on M10. (d) CTM on 20NG.

(e) NeurLDA on M10. (f) NeurLDA on 20NG. (g) ProdLDA on M10. (h) ProdLDA on 20NG.

(i) ETM on M10. (j) ETM on 20NG. (k) ETM-PWE on M10. (l) ETM-PWE on 20NG.

Figure 1: Metrics-metrics correlations.

4.2 Impact of the Document Length (RQ2)

We can derive other insights by analyzing Table 3
and comparing the two datasets. In particular, we
highlight that for LDA the document length seems
to be an invariant when optimizing on the KL-B*
metric. This insight can be grasped by considering
the KL-B* of LDA (i.e. 2.343 for M10 and 2.299
for 20NG) that, not only are the best performance
when compared to the other models, but they sug-
gest that LDA performs well independently on the
document length and therefore it guarantees opti-
mal KL-B* both on short and long documents.

Another important insight is about the F1 mea-
sures obtained by LDA (0.472 and 0.469), ETM
(0.534 and 0.453), and ETM-PWE (0.585 and
0.471), which seem to be not affected by the length
of the documents. On the other hand, the results for
the F1 measure for NeurLDA, ProdLDA, and CTM
(which are based on the same architecture) are af-
fected by the documents’ length, obtaining the best
performance for short texts. In these cases, when
the models achieve a high F1 on short documents
(0.420 by NeurLDA, 0.539 by ProdLDA, and 0.563

by CTM), the performance on short documents is
lower (0.339 by NeurLDA, 0.373 by ProdLDA, and
0.361 by CTM).

When optimizing for the IRBO* metric, all the
models succeed in obtaining almost completely di-
verse topics, both for long and short texts. The per-
formance of IRBO* for LDA* is slightly affected
when dealing with short texts. Finally, we remark
that CTM obtains an excellent topic coherence for
both datasets, but, on the other hand, the remain-
ing models seem to be particularly affected when
dealing with short texts, assuming NPMI values
inferior to 0.

4.3 Metrics-Metrics Correlations (RQ3)

In Figure 1, we report the correlations between
the evaluation metrics when a single-objective op-
timization policy is performed. The rows of the
correlation matrices denote the optimized metrics
(F1*, IRBO*, KL-B*, and NPMI*), while the
columns the non-optimized evaluated measures
(F1, IRBO, KL-B, and NPMI). According to these
results, we can observe if optimizing a model for
a specific metric allows us for an increasing or
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α prior β prior Median

F1* 1.332 1.146 0.472
IRBO* 0.325 0.004 0.954
KL-B* 0.006 3.054 2.29920NG

NPMI* 0.658 0.520 0.066

F1* 0.627 1.870 0.469
IRBO* 0.349 9.403 0.939
KL-B* 2 · 10−4 9.614 2.343M10

NPMI* 0.005 1.531 -0.083

Table 4: Best configuration of hyperparameters discovered by BO for LDA for each evaluation measure.

Activation Dropout Learn
Priors

Learning
Rate Momentum Num

Layers
Num

Neurons Optimizer Median

20NG

F1* sigmoid 0.0839 1 0.0097 0.789 1 800 adam 0.373
IRBO* sigmoid 0.0839 1 0.0097 0.789 1 800 adam 0.998
KL-B* sigmoid 0.9481 1 0.0039 0.984 1 1000 sgd 0.992
NPMI* selu 0.0381 0 0.0208 0.949 3 600 adam 0.107

M10

F1* elu 0.0025 1 0.0611 0.742 5 1000 adam 0.539
IRBO* sigmoid 0.0839 1 0.0097 0.789 1 800 adam 1.000
KL-B* rrelu 0.0198 1 0.0089 0.512 5 100 adam 1.652
NPMI* softplus 0.1664 0 0.0006 0.374 1 400 sgd 0.044

Table 5: Best configuration of hyperparameters discovered by BO for ProdLDA for each evaluation measure.

Activation Dropout Learn
Priors

Learning
Rate Momentum Num

Layers
Num

Neurons Optimizer Median

20NG

F1* sigmoid 0.084 0 0.0314 0.575 1 1000 adam 0.339
IRBO* sigmoid 0.062 1 0.0273 0.667 1 400 adam 1.000
KL-B* elu 0.0003 0 0.0008 0.891 3 700 adam 0.907
NPMI* sigmoid 0.130 0 0.0075 0.797 1 800 rmsprop 0.067

M10

F1* sigmoid 0.061 0 0.0129 0.756 1 800 rmsprop 0.420
IRBO* leakyrelu 0.125 0 0.0019 0.859 2 200 sgd 1.000
KL-B* selu 0.0003 0 0.0186 0.269 2 600 adam 0.904
NPMI* selu 0.087 1 0.0002 0.754 1 100 sgd -0.132

Table 6: Best configuration of hyperparameters discovered by BO for NeurLDA for each evaluation measure.

Activation Dropout Learn
Priors

Learning
Rate Momentum Num

Layers
Num

Neurons Optimizer Median

20NG

F1* sigmoid 0.046 1 0.0018 0.751 1 700 adam 0.361
IRBO* leakyrelu 0.145 0 0.0922 0.336 1 800 adam 0.998
KL-B* elu 0.013 0 0.0950 0.725 5 300 rmsprop 1.019
NPMI* selu 0.064 0 0.0065 0.945 1 1000 rmsprop 0.118

M10

F1* sigmoid 0.190 1 0.0087 0.091 2 800 adam 0.563
IRBO* sigmoid 0.084 1 0.0097 0.789 1 800 adam 1.000
KL-B* selu 0.088 1 0.0135 0.964 5 800 adam 0.937
NPMI* sigmoid 0.617 0 0.0010 0.308 1 800 sgd 0.055

Table 7: Best configuration of hyperparameters discovered by BO for CTM for each evaluation measure.

Activation BOW
norm Dropout Learning

Rate Optimizer Rho
size

Hidden
size

Weight
decay Median

20NG

F1* leakyrelu 1 0.315 0.006393 adam 200 800 0.000005 0.453
IRBO* sigmoid 0 0.919 0.000176 sgd 200 300 0.000004 0.996
KL-B* leakyrelu 1 0.044 0.027539 adagrad 300 300 0.000005 0.370
NPMI* leakyrelu 1 0.009 0.004234 adam 200 200 0.000005 0.080

M10

F1* rrelu 1 0.058 0.006062 adam 100 600 0.000001 0.534
IRBO* sigmoid 0 0.206 0.000003 adagrad 200 100 0.007168 0.997
KL-B* selu 0 0.602 0.003294 adam 300 1000 0.000155 0.532
NPMI* relu 1 0.500 0.005000 adam 300 300 0.000001 -0.028

Table 8: Best configuration of hyperparameters discovered by BO for ETM for each evaluation measure.
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Activation BOW
norm Dropout Learning

Rate Optimizer Hidden
size

Weight
decay Median

20NG

F1* elu 1 0.814 0.000008 adam 700 0.000190 0.471
IRBO* relu 0 0.918 0.000002 adam 600 0.001485 0.987
KL-B* selu 1 0.157 0.004597 adam 1000 0.000076 0.424
NPMI* elu 0 0.121 0.000331 rmsprop 1000 0.000004 0.089

M10

F1* softplus 0 0.182 0.000042 adam 800 0.000001 0.585
IRBO* selu 1 0.406 0.008958 adam 1000 0.002974 0.997
KL-B* leakyrelu 1 0.051 0.013990 adam 300 0.000002 0.201
NPMI* relu 1 0.500 0.005000 adam 300 0.000001 -0.070

Table 9: Best configuration of hyperparameters discovered by BO for ETM-PWE for each evaluation measure.

decreasing performance of the other metrics. In
Figure 1, we report the Spearman correlation co-
efficients between metrics using all the runs of a
given experiment.

Concerning LDA, when the model is optimized
for the KL-B*, NPMI*, or F1*, then the IRBO is
positively correlated with these metrics. It is then
sufficient to optimize one of the other metrics to get
also diverse topics. This occurs in particular for the
KL-B* and NPMI* on long documents (0.87 and
0.98 respectively). It is also interesting to notice
that optimizing for KL-B* does not imply a max-
imization for the F1 and NPMI on long texts. To
achieve better topic coherence and classification,
we should consider background topics as well.

Focusing on NeurLDA, ProdLDA, and CTM,
we do not observe substantial differences between
long and short documents. IRBO* is not strongly
correlated with the other metrics, especially for
long documents. This can be grasped by observing
the coefficients IRBO* vs F1, KL-B, and NPMI
reported in Figure (1f), (1h) and (1d). On the con-
trary, optimizing NeurLDA, ProdLDA, and CTM
for F1*, NPMI* or KL-B* guarantees, in most of
the cases, a good performance on all the metrics
both for short and long documents (Figure (1e),
(1f), (1g) and (1h)).

Concerning ETM, the difference between long
and short documents is clear: the optimization of
a given metric can be detrimental to the majority
of the other metrics when dealing with short doc-
uments. In fact, the optimization of ETM w.r.t.
IRBO* and NPMI* originates correlation values
with all the other metrics that are close to zero or
negative (Figure 1i). On the other hand, F1* and
KL-B* seem not to be affected by the difference of
the datasets. This suggests that maximizing KL-B*
or F1* implies good performance also for other
purposes. Focusing on long documents (Figure 1j),
the optimization of ETM w.r.t. F1*, KL-B*, and

NPMI* originates positive correlation values for
all the other metrics. On the other hand, we can
highlight that optimizing the topic diversity IRBO*
does not allow us to simultaneously obtain good
performance on topic coherence (NPMI) on long
documents. Regarding ETM-PWE, we do not no-
tice a clear difference between the two datasets.
The introduction of the pre-trained word embed-
ding into the training process of the model seems
to be beneficial for all the metrics.

To summarize, optimizing the neural models ac-
cording to the IRBO* is not always convenient and
may lead to incoherent topics or poor document
classification performance. Another important in-
sight concerns the optimization of F1*, which usu-
ally guarantees to maximize IRBO, KL-B, and
NPMI, for both short and long documents, except
for LDA.

5 Conclusions and Future Work

In this paper, we presented an empirical analysis
of Neural Topic Models to determine the relation-
ship between hyperparameters, document length
and performance measures. Three main research
questions have been addressed for understanding
under which conditions such Topic Models could
work for guaranteeing their best performance.

The main findings could help both practition-
ers on tuning the models according to their objec-
tives and researchers to explore the role of hyperpa-
rameters and document length with respect to any
given performance measure. Regarding the future
work, the problem of hyperparameter optimization
by considering multi-objective optimization (Horn
and Bischl, 2016) will be addressed for understand-
ing to which extent multiple metrics could be op-
timized according to the length of the documents
and the hyperparameters of the models.
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