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Abstract

In this work, we explore different approaches
to combine modalities for the problem of au-
tomated age-suitability rating of movie trail-
ers. First, we introduce a new dataset contain-
ing videos of movie trailers in English down-
loaded from IMDB and YouTube, along with
their corresponding age-suitability rating la-
bels. Secondly, we propose a multi-modal
deep learning pipeline addressing the movie
trailer age suitability rating problem. This is
the first attempt to combine video, audio, and
speech information for this problem, and our
experimental results show that multi-modal
approaches significantly outperform the best
mono and bimodal models in this task.

1 Introduction

Movie trailers can be found in abundance through-
out the web using services such as video streaming
platforms. However, not all types of content in
trailers are suitable for every audience. Specifically,
movie trailers may contain explicit, aggressive, or
violent content that may be harmful to the psyche of
young viewers. Previous research has documented
that some of the negative effects of mass media
in young viewers include aggression and anxiety
(Wilson, 2008; Chang and Bushman, 2019), as well
as increasing the risk of sexual onset and alcohol
and drug consumption, unwanted pregnancies, and
sexually transmitted diseases (Strasburger, 1989).

The Advertising Administration of the Motion
Picture Association of America (“MPAA”) es-
tablished guidelines for manually rating the age-
suitability of movie trailers (Motion Picture Associ-
ation). The rating of movie trailers is independent
of the rating of the movie itself, as a trailer in-
cludes only a short overview of the entire movie.
Due to the time consuming nature, as well as the
challenges to scale the MPAA rating process, au-
tomating the task is of practical value. Moreover,

automating the task poses interesting challenges to
multi-modal classification systems, as the source
of the objectionable content can come from any, or
the combination of, these sources: language (use of
bad words or discussion of adult themes), images
(graphic violent scenes, nudity, drug or alcohol
use), and audio (loud noises and music score de-
noting suspenseful content). A successful rating
approach should integrate evidence provided by the
multiple modalities when making the predictions.

In this paper, we study the performance of differ-
ent multi-modal deep learning methods, to automat-
ically predict the MPAA age-suitability rating of
movie trailers using cues from the video, audio, and
text modalities. Our goal is to show the feasibility
of automating the rating task, and in particular, the
relevance of multimodal solutions. We explore the
use of late fusion, feature concatenation fusion and
Gated Multi-modal Unit (GMU) Fusion (Arevalo
et al., 2017). Since the proposed pipeline does not
use any type of metadata for trailers or movies, it
can be easily extended to be applied to any type
of online video content. The main contributions
of this work are: (i) we introduce a new task in
multi-modal classification; rating videos based on
the MPAA rating metric for movie trailers; (ii) we
introduce the Multi-modal Movie Trailer Rating
(MM-Trailer) dataset that contains movie trailers
and their corresponding MPAA tags, audio files,
subtitles of the trailers, and the metadata of the tar-
get movie; and (iii) we demonstrate empirically that
combining the different modalities yields signifi-
cant improvements over the strongest monomodal
model. Our results show that both, the GMU and
late fusion approaches yield promising results.

2 Related Work

This work is related to four different areas, namely:
(i) text classification, (ii) video classification, (iii)
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audio classification, and (iv) movie classififcation
datasets.

Text Classification: In (Martinez et al., 2019), the
authors proposed an RNN-based architecture for
detecting violence in movies on a segment level as
well as the full movie level, by using the movie’s
script. In Shafaei et al. (2019), the authors pro-
posed an RNN-based architecture with an attention
mechanism that jointly models the genre and the
emotions in movie script to predict the MPAA rat-
ing of a full movie. The main difference between
our work and aforementioned papers is that they
only use scripts to predict the movie ratings (vio-
lence rating and MPAA ratings), while we employ
various modalities (audio, video, and text) to pre-
dict if a trailer (not the entire movie) is appropriate
or not for children. It should be noted that the
rating schema is different for trailers compared to
movies (details in Section 3), and movies are not
freely available on the internet.

Video Classification: Early approaches, such as
(Karpathy et al., 2014) on video classification using
Deep Learning, explored the use of several tempo-
ral fusion methods for combining information from
multiple consecutive video frames using features
extracted from CNN architectures. The authors in
(Donahue et al., 2015) introduced an end-to-end
architecture based on a combination of CNNs used
for feature extraction from RGB frames. The CNN
features are then forwarded to an LSTM layer that
models the temporal variation of frames. A dif-
ferent approach is followed in (Tran et al., 2015),
namely 3D-CNN, where authors propose the use
of a CNN variant that takes into account convolu-
tions performed into both the spatial and temporal
domains of a video. An expansion of the 3D-CNN
approach was proposed by (Carreira and Zisserman,
2017), where the authors propose a two-stream 3D-
CNN architecture for video classification. Again
the two streams used as input RGB frame data and
Optical flow images.

Audio Classification: In past research, several
types of handcrafted feature extraction techniques
have been proposed for the audio modality (Davis
and Mermelstein, 1980; Geiger et al., 2013; Pa-
pakostas et al., 2017) with the ones being the
most prominently used in the literature being Mel-
frequency cepstral coefficients (MFCCs). However,
recently several approaches have been proposed
for combining audio features such as spectrogram
information with deep learning architectures to per-

form audio classification (Papakostas et al., 2017;
Hershey et al., 2017; Koutini et al., 2019). Audio
has been explored as a modality for classifying
movie content in several works such as (Rasheed
and Shah, 2002; Hebbar et al., 2018). However,
none of these methods has focused on the problem
of movie trailer age-suitability rating.
Movie Classification Datasets: Several movie
classification datasets have been proposed in the
past. In (Demarty et al., 2014), the authors intro-
duced MediaEval 2013 Violent Scene Detection,
which provided annotations for detecting violent
scenes in movies. In Constantin et al. (2020), the
authors proposed an evaluation framework, for Vi-
olent Scenes Detection in Hollywood and YouTube
videos along with a dataset (VSD96). Although
these datasets are relevant to our work, they only
cover the violence aspect and cannot address the
problem of age-suitability rating (violence is only
one of many aspects of age rating). In (Shafaei
et al., 2019), the authors proposed a movie dataset
focusing on the task of predicting the MPAA rat-
ing of the movie. However, the aforementioned
dataset only includes movie scripts and correspond-
ing metadata but does not include movie trailers
or related age-suitability tags (As we mentioned
earlier, the MPAA rating scheme is different for
movies and trailer). In (Cascante-Bonilla et al.,
2019), authors introduced Moviescope, a dataset
for movie genre classification. Similarly, it does
not include MPAA age-suitability rating labels for
movie trailers.

3 Dataset

To the best of our knowledge, there is no previous
trailer dataset with age-suitability rating. Thus, we
assembled the multi-modal Movie Trailer dataset
(MM-Trailer) 1 by collecting the rated trailers from
the IMDB website and YouTube. Typically trail-
ers are advertising movies soon to be released and
shown in theaters before a movie starts. Rating in
trailers is shown by a colored band (red, yellow,
green) and a message that appears at the beginning
of the trailer. The rating of the trailers adheres to
the rating of the movie being shown in the theater.
For instance, if the movie playing at the theater is
rated as NC-17 (no one under 17 is recommended
to watch this movie), the green band trailer that
is advertised before this movie may not be appro-
priate for children even if the color is green. The

1https://ritual.uh.edu/RANLP2021/
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Green Band Trailers Red Band Trailers Total Trailers
1,040 403 1,443

Table 1: Dataset statistics

yellow band is designed for trailers advertised on
the internet, and it indicates that the correspond-
ing trailer is suitable for “age-appropriate internet
users” as visitors to sites are mainly adults. The last
group of trailers are red band trailers; red color indi-
cates the content is only appropriate for a “mature
audience” or “restricted audience”.

Since our goal is to design an automated system
that is able to predict which movie trailers are not
recommended for children, we define only two
classes of trailers for the dataset:

1. Green-band trailers: this category includes
(i) trailers with the message “all audiences”,
and (ii) green band trailers with “appropriate
audience” whose associated movie is rated as
G and PG.

2. Red-band trailers: all red-band trailers,
these include restricted and mature audiences
(not appropriate for children).

We also extracted separate audio files and trailer
subtitles. Subtitles include narrator and actor
speech. Some of the YouTube trailers include the
video subtitle. For these cases, we pre-process
the subtitles by removing timestamps to keep only
words. For trailers that do not include a subtitle file,
we use a python speech recognition tool (Zhang)
to automatically generate the subtitle from the au-
dio. Our dataset includes 11G of audio streams.
For each trailer the audio file is a combination of
background music and vocals together, so the du-
ration of audio is the same as the duration of the
trailer. The number of total words in all trailer
scripts is equal to 1,478,139 (on average, there are
576 words per trailer). Note that 20,783 words of
the vocabulary set are unique words. Table 1 shows
the statistics of our dataset.

4 Methodology

Our goal is to predict the age-suitability rating for
movie trailers following the guidelines of the Ad-
vertising Administration of MPAA for trailer rating.
The problem is formulated as a binary classification
task where trailers are labeled as either appropriate
for all audiences (green-band trailers) or restricted
audiences (red-band trailers). To achieve this goal,

the Multi-modal Movie Trailer Rating (MMTR)
system is proposed. Within this system, the trailers
are modeled as a fusion of three modalities: sub-
titles, audio, and video of the trailers. We train
Recurrent Neural Networks (RNNs) for subtitles
and audio, and a combination of Convolutional
Neural Networks (CNNs) with LSTM for video, as
separate streams in order to extract a representation
for each respective modality. Then, we combine
all stream representations using a fusion module to
take advantage of the cues coming from different
modalities. Figure 1 shows the overall design for
the system architecture.

Our approach is based on independently identi-
fying the best individual modality model and then
combining information from all three monomodal
models (subtitle, audio, and video) through one
of the following three fusion methods: (i) Gated
Multi-modal Unit (GMU) (Arevalo et al., 2017),
(ii) Feature Concatenation Fusion, or (iii) Late Fu-
sion. All modules of the system are described in
the following sections.

4.1 Text Stream

The subtitles of the trailers are a rich source of in-
formation. They can help in identifying the topic of
the video content. Moreover, the presence of spe-
cific words in the dialogue can be a strong indicator
for some types of sensitive content, while more sub-
tle cues can be inferred from analyzing the entire
transcript. To model the information originating
from the subtitles, we feed them to the following
modules:
BERT + Long Short-Term Memory (LSTM)
with Attention: We use BERT (Devlin et al.,
2018) to leverage the well-known power of
transformer-based word representations. The word
vectors are then passed to an LSTM layer to model
the sequence of the words in order to extract the
semantic information of the text. Afterwards, the
resulting hidden representation of the LSTM is
passed to an attention mechanism (Bahdanau et al.,
2014) to find the importance of each word in the
dialogue. Even though BERT has seen a series of
improvements (RoBERTa (Liu et al., 2019), AL-
BERT (Lan et al., 2019)), our goal in this paper is
to present empirical evidence that a multi-modal
approach can solve this task with acceptable per-
formance, the specific contextualized embeddings
used being of less relevance.
Emotion Vector: We expect to observe that
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Figure 1: Overview of the system: (i) A video subtitle is transformed into a vector representation using an Em-
bedding Layer and then forwarded to an LSTM network with an attention layer. We concatenate the output of the
attention layer with the feature vector from the DeepMoji Model. (ii) A video volume is passed through a CNN-
LSTM model that is used as a feature extractor, in order to obtain a single vector representation of the entire video.
(iii) Raw audio signal from the video is represented as a sequence of MFCC feature vectors, passed to an LSTM
layer. (iv) Lastly, information from all modalities is combined using one of the following fusion methods, namely
Gated Multi-modal Unit (GMU), Late Fusion and Feature Concatenation Fusion, before labeling the age-suitability
of each trailer. FC in the diagram stands for a fully connected layer.

strong negative emotions (fear, anger, sadness) cor-
relate more with red band trailers. Similarly, pos-
itive emotions, such as joy, are more correlated
with green band trailers. We made this assumption
following research by (Shafaei et al., 2019) where
they found promising results for using emotions in
a movie rating task.

We model emotions with the use of the Deep-
Moji model (Felbo et al., 2017). This model was
trained using 1.2 billion tweets with emojis to un-
derstand how language is used to express emo-
tions. Recent work in abusive language detec-
tion shows promising results from using DeepMoji
(Safi Samghabadi et al., 2019), thus it seems rea-
sonable to expect good results in this task as well.
To incorporate this model into our system, the last
hidden layer representation of the pretrained model
was used to transfer the text to emotional feature
vectors. Finally, the emotion vector was concate-
nated with the output of the attention and the entire
vector was passed to a fully connected layer to
further fine-tune the joint representation.

4.2 Video Stream

The video modality is a rich source of visual and
temporal cues that are useful for analyzing multi-
media content. Specifically, in this task, video can
help for modeling the objectionable content such

as a depiction of nudity or bloody scenes and sug-
gestive elements. To this end, in order to learn spa-
tiotemporal video features, a CNN-LSTM model
based on the works by (Donahue et al., 2015) and
(Yue-Hei Ng et al., 2015) is adopted. Each video
is sub-sampled to a fixed number of frames, evenly
distributed across its duration to form a visual tem-
poral sequence. The raw RGB frames are used
as input to a CNN model. This CNN model pro-
duces a feature representation for spatial informa-
tion within each frame. The output of the final pool-
ing layer of the CNN is passed to an LSTM that
models temporal dependencies between frames.

4.3 Audio Stream

The audio of the trailer can help the model to learn
the genre and theme of the movie, and as a result,
it is a powerful tool to distinguish red-band trailers
from green-band ones. For example, horror and
thriller movies (that usually include suspenseful
music) are less likely to be suited for children. In
addition to the music score, the emotion conveyed
by the speakers’ tone and pitch can provide relevant
cues for rating the trailer. It should be noted that
the entire audio is used in our model (the music
and dialogue combined). To model the audio, the
Mel Frequency Cepstral Coefficients (MFCC) are
extracted from the audio stream. MFCCs are one of
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the most common feature representations for audio
classification (Andén and Mallat, 2011) and speech
recognition tasks (Tiwari, 2010). The entire au-
dio is divided to n chunks, n ∈ {10, 20, 50, 100},
then the MFCC feature vector is extracted for each
chunck. Moreover, by performing averaging over
the MFCC vector in each chunk, a fixed-length rep-
resentation for the entire audio, regardless of its
duration is obtained. The vector is then passed to
an LSTM module to model the MFCC variations
during the entire video. Lastly, by adding an atten-
tion mechanism, the model learns the importance
of each audio chunk and feeds the weighted aver-
age of LSTM hidden representation to a fully con-
nected layer that helps the model to be fine-tuned
for the task.

4.4 Fusion

The goal of the fusion module is to learn to predict
the rating of the trailer by integrating evidence from
the video, audio and text modalities. We evaluate
three established fusion methods in order to form a
unified representation for each trailer.

Gated Multi-modal Unit (GMU): The GMU al-
lows the model to learn an intermediate representa-
tion by combining the different modalities, where
the gate neurons learn to decide the contribution of
each modality to the intermediate representation. A
great advantage of the GMU model is its ability to
adjust the activation from each modality depending
on the specific instance. This method is inspired
by control flow in recurrent architectures. In RNN
models, the recurrent units decide how much the
current and previous evidence engage in building
the current state. In GMUs, the activation function
for building the output using different modalities is
measured, in order to form a unified intermediate
representation for all modalities.

The original GMU was successfully applied to a
movie dataset of plot synopsis and movie posters
to predict genre. In the original paper, the authors
implemented a bimodal system (the equation is
provided in the Appendix). We follow their formu-
lation to extend the model to include three modali-
ties using the straightforward approach discussed
in their paper. The exact formulation is shown in
Equation 1; where Wi, Yi are learnable parame-
ters, xi is the feature vector for modality i and [., .]

stands for concatenation.

h1 = tanh(W1.x1)

h2 = tanh(W2.x2)

h3 = tanh(W3.x3)

z1 = σ(Y1.[x1, x2, x3])

z2 = σ(Y2.[x1, x2, x3])

z3 = σ(Y3.[x1, x2, x3])

h = z1 ∗ h1 + z2 ∗ h2 + z3 ∗ h3

(1)

Feature Concatenation Fusion: One popular fu-
sion method is generating a joint multi-modal
representation through feature concatenation (Bal-
trušaitis et al., 2018) where the representation vec-
tors of each modality are concatenated, and the
unified representation is passed through multiple
hidden layers or used directly for the prediction.
Late Fusion: Another vastly used fusion method
is late fusion (Fu et al., 2015). In late fusion, dif-
ferent modalities are merged in the decision level
using various rules (e.g., majority voting, averag-
ing) (Baltrušaitis et al., 2018). Here, the average of
all modality outputs is calculated and used as the
final output.

Before performing either feature concatenation
or GMU based fusion, information from each
modality is represented with a feature vector ex-
tracted from pretrained models, acting as modality
streams. Then, we transform the vectors from all
modalities into a single vector using the GMU or
concatenation module. Finally, we pass the fused
representation to a fully connected layer, creat-
ing a vector of size two (we have two classes).
The sigmoid function is then applied to the two-
dimensional vector to assign a label to each trailer.
For late fusion, we capture the output of each single
modality model before the sigmoid function (vec-
tors of size two) and compute the average. Lastly,
we pass the single representation to a sigmoid func-
tion for the classification.

5 Experiments

The goal of this section is to demonstrate that a
multi-modal approach is an effective way to solve
the task. We, therefore, compare the prediction
performance of single modality models against all
multimodal variations of the system.

As mentioned in the dataset section, the MM-
Trailer dataset is imbalanced. Thus, to obtain reli-
able results, 5 fold cross-validation was selected as
an evaluation method. In each fold, we select 10%
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of the train sent as the validation set to obtain the
best model. It should be noted that the dataset was
split using the stratified approach, so as to ensure
that each set has the same proportion of examples
from each class. The metric used to evaluate the
performance is the weighted F1 score, averaged
over all 5 folds for each experiment.

5.1 Baseline Methods

Most Frequent Baseline: The first baseline is a
naive approach to show that the problem is not easy
to solve. In this model, we assign the most frequent
class to all the instances in the validation and test
sets, and we measure the F1 score by considering
the ground truth label.

Text Baseline - Traditional Machine Learning:
For the text baseline model, we provide a tradi-
tional machine learning method with hand-crafted
features. We extract unigram and bigram features
from subtitles and apply term frequency-inverse
document frequency (TF-IDF) as the weighting
scheme. Then, the feature vectors are passed to an
SVM model for classification. We chose an SVM
model as it performed well on the similar task of
violence detection (Martinez et al., 2019).

Text Baseline - BERT + Attention + NRC: A
popular resource to extract the emotion in the text
is the NRC emotion lexicon (Mohammad, 2011).
This dictionary maps words to eight different emo-
tions (anger, anticipation, joy, trust, disgust, sad-
ness, surprise, and fear) and two sentiments (posi-
tive and negative). Using this dictionary, we com-
pute the normalized count of words per emotion
over the entire subtitle and create a vector of size 10
for each trailer. We use this vector as an alternative
to DeepMoji vector in the model.

Text Baseline - DeepMoji + fully connected
layer: To show how much emotion by itself can
contribute to the prediction of rating, we only use
the DeepMoji vector as the input and pass it to a
fully connected layer and sigmoid classifier for the
prediction.

Video Baseline: Our video baseline is based on
the deep 3-dimensional convolutional network (3D
CNN) architecture proposed by (Tran et al., 2015).
The 3D-CNN architecture applies 3D convolution
and 3D pooling operations on video volumes in-
stead of images. Each video is sub-sampled to an
18 evenly distributed frames that are used as input

to the model. The training was performed for 50
epochs, using a 0.5 dropout rate, with a learning
rate of 10−5 and a batch size of eight samples.

Audio Baseline: CNNs have shown promising
results for audio classification (Hershey et al.,
2017). To this end, for each full video, the log-Mel
spectrogram is extracted from the audio using the
LibROSA python library (McFee et al., 2015) and
then used as input to a CNN architecture. For the
log-Mel spectrograms 128 Mel-spaced frequency
bins were used, while for the CNN model for this
baseline, Inception V3 was adopted. The CNN
model was trained for 100 epochs using a batch
size of 64 samples and a learning rate of 10−5. An
early stopping policy was used during training to
avoid over-fitting.

6 Results

Table 2 summarizes the results of our experiments.
To examine the contribution of each modality for
the rating task, we report the results for all single
modality models; Audio only Model (A-MFCC),
Text only Model with DeepMoji (T-BAD), and
Video only Model (V-CNN/LSTM ). As expected,
our experimental results confirm that by leverag-
ing all modalities we achieve a better result. As
noted in Table 2 the highest weighted F1 score,
86.06%, is achieved by the GMU Fusion variant of
the MMTR model with all modalities. This result
improves the weighted F1-score of the best single
modality model (T-BAD) over 3 percentage points
(P < 0.05 based on t-test).

We also report the result for different combi-
nations of two modalities using all fusion meth-
ods to show the effect of engaging all modalities
(T-BAD + A-MFCC, T-BAD + V-CNN/LSTM ,
A-MFCC +V-CNN/LSTM , T-BAD + A-MFCC +
V-CNN/LSTM). Based on the results, the combi-
nation of two modalities works better than every
single modality, yet not as good as the combination
of all modalities.

When comparing the different fusion approaches,
we can see that GMU fusion outperforms the con-
catenation fusion systems. We speculate that the
gains from GMU come from the ability of the gated
unit to dynamically adapt the contribution of each
modality to the intermediate representation. Statis-
tical significance testing using t-test, demonstrated
a significant difference between GMU and feature
concatenation fusion (p−value < 0.05). However,
the test does not confirm a significant difference
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Model Test-WF

Single Modality
Baselines

Most Frequent Baseline 60.37
Text Baseline - Traditional Machine Learning 75.02
Text Baseline - BERT+ Attention (T-BA) 81.99
Text Baseline - BERT+ Attention+ NRC 81.67
Text Baseline - DeepMoji+FC 68.23
Video Baseline 75.33
Audio Baseline 72.62

Single Modality
Models

Audio- MFCC (A-MFCC) 73.86
Text- BERT+ Attention+ DeepMoji (T-BAD) 82.67*
Video- CNN/LSTM (V-CNN/LSTM) 79.41

Late
(Fusion using two modalities)

T-BAD + A-MFCC 82.41
T-BAD + V-CNN/LSTM 84.12
A-MFCC + V-CNN/LSTM 79.68

Concatenation
(Fusion using two modalities)

T-BAD + A-MFCC 82.17
T-BAD + V-CNN/LSTM 82.80
A-MFCC + V-CNN/LSTM 78.70

GMU
(Fusion using two modalities)

T-BAD + A-MFCC 83.37
T-BAD + V-CNN/LSTM 83.34
A-MFCC + V-CNN/LSTM 80.35

Fusion
using all Modalities (MMTR)

Late (T-BAD + A-MFCC + V-CNN/LSTM) 85.60
Mid (Concat) (T-BAD + A-MFCC + V-CNN/LSTM) 82.75
Mid (GMU) T-BAD + A-MFCC + V-CNN/LSTM 86.06*

Table 2: Evaluation of the different variants of the MMTR system and other baselines using the MM-Trailer dataset.
WF stands for weighted F1 score and results are averaged over 5 folds. A ‘*’ indicates that the difference between
the two classifiers’ performance is shown to be statistically significant.

between late fusion and GMU. Thus, we can claim
that for the trailer age-suitability problem, late fu-
sion can generalize as good as GMU fusion.

The results for T-BAD and T-BA indicate that
DeepMoji is a relevant feature for the rating task,
and it helps the model to better discriminate red-
band trailers from green-band ones. However, the
result of DeepMoji+FC shows that the DeepMoji
model is not sufficient to solve the task.

To obtain a better understanding of fusion results,
we also provide other evaluation metrics using the
MMTR system variant with GMU Fusion in Table
3 (as GMU version is the winner approach based
on the result table). Based on the detailed result,
most of the incorrectly predicted instances are red-
band trailers. The first potential explanation behind
this observation is that there are fewer instances
of red-band trailers in our training set compared
to green-band. As a result, it is more difficult for
the model to capture all patterns in this class. The
second reason may be the diversity of video content
in red-band trailers. Recall that this class covers
any content that is not appropriate for children.

It is thus reasonable to assume that this class is
more heterogeneous than the green band class. We
plan to explore the possibility of a fine-grained
classification of objectionable content as the next
steps in this work.

7 Discussion

To analyze the weaknesses and strengths of the
MMTR system, we first investigate the incorrectly
predicted cases using the most effective version of
the system (GMU Fusion) on each fold of the data.
By averaging results over all folds, about 35% of
incorrectly predicted cases with the MMTR system
are also incorrectly predicted by each and every
modality independently, fusion is thus unlikely to
help in this case. We found that in about 50%
of the instances where two modalities predict the
wrong rating, the MMTR system justifiably trusts
the single modality that is correct. In about 93%
of the cases where only one modality is wrong, the
MMTR GMU Fusion variant predicts the correct
label, relying on the other two modalities.

After averaging results among all folds, we no-
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Model precision recall F1-score
Green 87.4% 95.0 % 91.0 %
Red 83.6% 65.0 % 72.8 %
Macro avg 85.6% 79.8 % 82.0 %
Weighted avg 86.6 % 86.4 % 86.0 %

Table 3: Performance of the MMTR system using al-
ternative metrics by performing 5 fold cross-validation
evaluation method. The results are averaged over 5
folds.

tice that the MMTR GMU Fusion variant system
is not able to predict about 38 out of 294 instances
per fold. We watched 40 incorrectly classified trail-
ers (selected across all folds) to analyze why the
model is not able to successfully predict the label.
We introduce the following hypothesis for each of
the individual modalities:

1) Text Modality: One main source of errors in
text modality comes from the output of the speech
recognition tool. First, the free version of the tool
only works on short audio files. As a result, we
split the whole audio to 10-second chunks. Thus,
it is possible that we miss some words if the audio
is cut off in the middle of the word. Also, low-
quality audio impacts the word recognition rate of
the automatic speech recognition system, which
in turn cause the model not to recognize the spe-
cific bad words present in the video or the other
way around, generate bad words by mistake (detect
“please” as “pussy”). However, in some cases, the
trailer either has very little speech (less than 10
words) or there is really no sensitive content in the
language used. Not surprisingly, the text modality
cannot work properly. Finally, in some green band
videos, we observed that the trailer subtitles have
the words “gun” and “shot”, thus they are predicted
incorrectly by the text modality. It seems that the
text model is biased against the occurrence of these
words that are presumably strongly correlated with
violent content.

2) Video Modality: One main reason that the
video modality model misses the sensitive content
may relate to the video sampling rate. The inap-
propriate/violent scenes in these trailers disappear
fast, or they may appear with a low frequency. As
a result, we may miss them during sampling the
frames in our model. The second potential reason
is the quality of the trailers. We recognized that
some of the trailers are old or are available in small
files, so the frames are blurry, and even in some
cases, not very clear to the human viewer. Lastly,
we found out, there are some green-band trailers

that still include brief sensitive content like the de-
piction of guns and blood, and our video modality
model predicts them as red-band. These instances
are mostly the R-rated movies that are sanitized
for the trailer. However, the theme of the movie
reflects itself in some frames. We can conclude
that sometimes a single rating is not sufficient for
expressing the type of the content, and as future
work, we can predict a list of sensitive material in
the video instead of a single label.

3) Audio Modality: In some cases, the music of
the trailer is not compatible with the content. For
example, we encountered musical movies with a
high level of violence, but with smooth jazz mu-
sic. Thus, it is difficult for the audio modality to
distinguish between appropriate and inappropriate
content. Moreover, in audio modality (similarly
to the video modality), we capture samples from
the continuous stream. Hence, if the intense audio
(such as a scream or a gunshot) happens in a short
period, our model may miss that.

We also investigated the genre of incorrectly pre-
dicted trailers in one of the data folds. The inter-
esting point is that, for incorrectly classified red-
band trailers, 55% are categorized as “Thriller” or
“Horror” movies and 30% as “Comedy” (based on
IMDB metadata). We do not incorporate metadata
into our model to make the model suitable for any
kind of online content. This observation shows that
the genre of the movie can be a potential feature
for the model if we have metadata available.

8 Conclusion

In this paper, we present a deep learning system
named MMTR for automating the task of movie
trailer age-suitability rating. MMTR fuses informa-
tion from the video, audio, and text modalities. We
also introduce a new data set to support research
in this area. This dataset contains movie trailer
videos along with their rating and metadata. The
results of comparing our model with strong base-
lines demonstrated that the task is not easy, and a
complicated multi-modal systems (GMU and late
fusion) can achieve performance gains compared
to other baselines. Beyond the practical use of a
binary classification system, we are interested to
move to the more challenging task of detecting
the type of objectionable content and introducing
explainability elements within the MMTR System.
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A Appendices

A.1 Implementation Details
This section discusses how the different streams
of the MMTR system were implemented. For all
experiments, we used the ADAM optimizer and
the Cross-Entropy Loss function. Hyperparame-
ter values were selected using manual tuning of
the model using the best value of the weighted F1
Score for the validation partition, as the criterion.
Text Stream: For the BERT model we used the im-
plementation provided by (Wolf et al., 2019). The
LSTM layer consisted of 256 RNN units. Training
was performed for 50 epochs, using a 0.3 dropout
rate, with a learning rate of 10−5 and a batch size
of eight samples.
Video Stream: For each movie trailer, frames were
extracted with a rate of one frame per second, from
which 18 evenly distributed frames were used to
represent each video within the model. For the
CNN feature extractor, we used the Inception V3 ar-
chitecture pre-trained with ImageNet (Russakovsky
et al., 2015). The model was trained using a learn-
ing rate of 10−5 and a batch size of 64 samples
and by using an early stopping policy to avoid over-
fitting.
Audio Stream: For each trailer, the audio was split
in 20 chunks. For the LSTM layer 256 RNN units
were used. Training was performed for 50 epochs,
using a 0.1 dropout rate, with a learning rate of
10−5 and a batch size of eight samples.
System Specifications: All models were devel-
oped using the Tensorflow (Abadi et al., 2015),
Keras (Chollet et al., 2015) and PyTorch (Paszke
et al., 2019) libraries on a machine with Ubuntu
14.04 LTS as the operating system. The system had
an Intel Core™ i7 CPU running at 2.67GHz with
four cores and 8 GB RAM memory. The video
card used was a GeForce GTX 1080 Ti.

A.2 The GMU model:
The original equation of the GMU is represented in
Equation 2; where Wv, Wt, and Wz are learnable
parameters, xv and xt are modality feature vectors
and [., .] stands for concatenation.

hv = tanh(Wv.xv), ht = tanh(Wt.xt)

z = σ(Wz.[xv, xt]])

h = z ∗ hv + (1− z) ∗ ht
(2)

Note that in the extension to more than two
modalities, the model ends up having more pa-

rameters as the the gates are no longer tied. But
as shown empirically, this does not seem to be a
problem for the model.


