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Abstract

Natural language inference is a method of find-
ing inferences in language texts. Understand-
ing the meaning of a sentence and its infer-
ence is essential in many language process-
ing applications. In this context, we consider
the inference problem for a Dravidian lan-
guage, Malayalam. Siamese networks train the
text hypothesis pairs with word embeddings
and language agnostic embeddings, and the re-
sults are evaluated against classification met-
rics for binary classification into entailment
and contradiction classes. XLM-R embed-
dings based Siamese architecture using gated
recurrent units and bidirectional long short
term memory networks provide promising re-
sults for this classification problem.

1 Introduction

Textual entailment is a uni-directional relationship
between two text pairs. It is the method of identi-
fying the meaning from two sentences. Sentence
pairs are labeled as entailment pairs if a sentence
is inferred from the context of the other sentence
in the pair.

It is defined in different ways as classical def-
inition, applied definition, and mathematical def-
inition (Ghuge and Bhattacharya, 2014). In the
classical definition, a text entails a hypothesis if
the hypothesis is valid in all circumstances where
the text is true. In applied definition, text entails
hypothesis if the hypothesis is mostly true when a
human reads it. The mathematical definition (Glick-
man et al., 2005) is a text that entails a hypothesis
if the probability of the hypothesis is true given the
text is greater than the likelihood of the hypothesis
being true.

The sentence from which we derive the informa-
tion is called text, and the sentence which identifies
its information as derived from text is called a hy-
pothesis. Sentence pairs are named as entailed if
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the hypothesis has its meaning derived from the
text. Contradictory pairs indicate that the informa-
tion from the hypothesis is contradictory concern-
ing the information conveyed in the text.

Nowadays, textual entailment has become part
of the primary natural language processing tasks.
It is also called natural language inference. The
terms text and premise are used interchangeably.
The performance of the latest transformer-based
approaches is evaluated in NLP tasks like entail-
ment recognition, semantic textual similarity, and
paraphrase detection. Hence, textual entailment
recognition has also become an evaluation criterion
for many NLP tasks. It is also a necessary sub-task
in applications like multi-document summarization,
information retrieval, information extraction, and
question answering systems.

Many text entailment or natural language infer-
ence related works in English use different sized
datasets but not in the Malayalam language. Malay-
alam is a Dravidian language used in the southern
part of India. It is a language that has various
dialects and has many inflections. Malayalam lan-
guage computing is developing, with few resources,
namely stemmer, POS tagger, sandhi splitter, and
few datasets for paraphrasing, text classification,
and sentiment analysis. It has agglutinated lan-
guage structure, and new words are created through
word compounding and inflection, and hence there
can be many inferential compound words for a
word.

The main challenge of textual entailment recog-
nition in the Malayalam language is the absence
of a dataset. Dataset creation is a tedious task
that involves high costs and time. We used an
in-house dataset created by machines and humans
in the loop translation of the Stanford Natural Lan-
guage Inference dataset. It is a very cost-effective
method of dataset creation that can be adapted to
any low-resource language. This work attempts
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to use Siamese networks with bidirectional long
short term memory and gated recurrent units to
understand the similarities and differences of text-
hypothesis pairs for classification.

The remaining sections are organized as follows.
Section 2 briefs the works related to textual en-
tailment recognition. Section 3 details the dataset.
Section 4 discusses the design of the system for
classification. The experimental settings, results,
and discusses sentence similarity are in Section 5.
Section 6 concludes the work.

2 Related Works

Textual entailment recognition started with a Rec-
ognizing Textual Entailment (RTE)challenge in
2005 (Dagan et al., 2005). This challenge contin-
ued for years and used different-sized datasets. As
the dataset size increases, feature-based methods
such as word overlap, n-gram match, set-based sim-
ilarities, and syntactic similarities were replaced by
machine learning and deep learning methods using
different word and sentence representations.

There are numerous entailment recognition sys-
tems in English and other languages like French,
German, Italian, Spanish, and Arabic. Various
textual entailment frameworks have also been
developed in these languages, namely EXCITE-
MENT Open Platform (EOP) (Magnini et al.,
2014). EOP uses edit distance and classification
as its algorithms. Lexical level features, syntactic
and surface-level features, graph-based approaches
were used to recognize entailments. The increase
in datasize has helped to use machine learning and
deep learning strategies for this classification. Deep
learning methods are widely used for textual entail-
ment in English using different datasets.

SNLI (Stanford Natural Language Inference)
dataset is a collection of 570k sentence pairs mainly
collected through Amazon Mechanical Turk, refer-
encing the Flickr30k corpus. This dataset helped
in using deep learning techniques to text entail-
ment recognition. Sentence models with the sum
of words, recurrent neural networks, and long short-
term memory networks were discussed (Bowman
et al., 2015).

MNLI (Multi-Genre Natural Language Infer-
ence) dataset is a collection of 433k sentence pairs
from different written and spoken English genres.
Some of the genres are face-to-face, government,
telephone, letters, fiction, and travel. It is an im-
provement from SNLI with a more diverse col-

lection of sentence pairs, and hence its baseline
performance is low compared to SNLI (Williams
etal., 2018).

XNLI (Conneau et al., 2018) (Cross-Lingual Nat-
ural Language Inference) corpus is a collection of
data from MNLI, derived for 15 languages, includ-
ing some low resource languages like Urdu and
Swahili. It uses a translation-based approach with
multilingual sentence encoders and then aligning
sentence embeddings for inference identification.
Except for English, entailment recognition systems
exist for French, Spanish, German, Greek, Bulgar-
ian, Russian, Turkish, Arabic, Vietnamese, Thai,
Chinese, Hindi, Swahili, and Urdu. In languages
like Swahili, Thai and Urdu, transfer learning based
approaches are used, which is helpful for small-
sized datasets.

For the Malayalam language, there are works
related to paraphrasing, sentiment analysis, sum-
marization, whereas text entailment recognition is
seemingly a new area for Malayalam language pro-
cessing. The performance of different embedding-
based approaches is one work in this language for
entailment recognition (Renjit and Idicula, 2021).
In this work, LASER-based embedding represen-
tation showed improved performance results for
entailment recognition for the Malayalam language
compared with BERT and other models.

Bidirectional LSTM based dependent reading
represents text and hypothesis in encoding and
inference stage(Ghaeini et al., 2018). Siamese
network-based architecture with sentence embed-
dings from BERT experiments in the English lan-
guage (Reimers et al., 2019). A neural model based
on LSTM using the word by word attention is an-
other deep learning-based method for recognizing
entailments (Rocktéschel et al., 2015). Child-Sum-
Tree-based inference of texts generalizes well for
SNLI and other entailment datasets (John et al.,
2016). Text alignment based approaches along with
machine learning are used for entailment recogni-
tion in Arabic language (Boudaa et al., 2019). An-
other method used asymmetric word embeddings
to produce similarity based word-word interactions
for textual entailment (Ma et al., 2018).

Entailment recognition has been part of Compe-
tition on Legal Information Extraction / Entailment,
where sentence encoding and decomposable atten-
tion models perform entailment recognition in the
context of legal texts (Son et al., 2017). Automatic
translation-based approaches are used in the Italian
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dataset, where the dataset is translated into the En-
glish language for entailment recognition (Pakray
etal., 2012).

3 Dataset

The subset of the Malayalam Language Inference
(MaNLI) dataset is used for binary entailment
recognition. It consists of 7989 text hypothesis
pairs which are labeled as Entailment and Con-
tradiction. This dataset is created from Stanford
Natural Language Inference (SNLI) dataset. The
sentence pairs from the SNLI dataset are translated
to the Malayalam language with linguistic correc-
tions from the Department of Linguistics, Malay-
alam University, Kerala.

There are 4026 entailment pairs and 3963 con-
tradiction pairs in this dataset. The reason for the
creation of this dataset is the unavailability of en-
tailment datasets in Malayalam. Languages like
Malayalam have many inherent linguistic proper-
ties like inflections, agglutinative nature, dialect-
related differences, and no specific word order.

A sample from the dataset is shown in Figure 1.

Premise Hypothesis Label
@6ME @RB)&UB HOMEISI® |@RE)E U8 HeTLESIgEld
2EME 630%0 MSOmYD). (T\mo%maﬂ&)gmg Entailment
@6ME @R)B)HUB HOTVSISIB |5)0 4] @RS HUB Ald .
2ETE 6'33%0 MSOmYD). nﬂlélmgm;.a Contradiction

Figure 1: Sample dataset

The English translation of the sample dataset is
provided in Table 1.

Premise Hypothesis Label
Two men on | People are | Entailment
bicycles. riding bikes.
Two men on | A few people | Contradiction
bicycles. are catching

fish.

Table 1: Sample Dataset translation in English

4 Proposed Architecture

The design of this system consists of neural net-
works of identical architecture consisting of an
embedding layer and bidirectional long short-
term memory/gated recurrent unit networks. The
Siamese network for sentence representation takes
each sentence from text-hypothesis pair to an em-
bedding layer. This layer uses different types of

embeddings, namely Word2Vec and LASER (Lan-
guage Agnostic Sentence Representations), and
XLM-R. The different layers in the system are:

4.1 Embedding

The first layer is the embedding layer, where each
sentence in text or hypothesis gets an efficient rep-
resentation that captures its meaning in high di-
mensional vector space. In this layer, we used
approaches, namely, Word2 Vec, language-agnostic
sentence representation (LASER), and XLM-R.

4.1.1 Word2Vec

Word2vec (Mikolov et al., 2013) is a word embed-
ding neural model that produces distributed rep-
resentation of words in vector space. The neural
model trains in two ways, namely skip-gram and
continuous bag of words, using hierarchical soft-
max or negative sampling (Rong, 2014). Words
having semantic similarity represented through vec-
tors are closer in high dimensional space. The em-
beddings from this model are input to the Keras
embedding layer in the form of an embedding ma-
trix to obtain text representation and hypothesis.

4.1.2 LASER

Language Agnostic Sentence Representations
(Artetxe and Schwenk, 2019) is a toolkit modeled
for more than 90 languages, including the Malay-
alam language. LASER embeddings are representa-
tions of sentences so that a sentence representation
in two or more languages will be close to each other
in their high dimensional vector space. It also uses
an encoder-decoder architecture based on neural
machine translation.

4.1.3 XLM-R

XLM-R (Conneau et al., 2019) is a self-supervised
model that is trained on cross-lingual representa-
tions. This transformer-based masked language
model is trained for 100 languages, including the
Malayalam language. The cross-lingual sentences
are taken from Common Crawl data.

4.1.4 Dimensionality Reduction using PCA

Principal component analysis (PCA) reduces the
sentence embedding obtained from the LASER
model. It compromises with accuracy, and hence
selecting an adequate number of features is criti-
cal to the model. Depending on the system’s con-
figuration, dimensions of 100, 500, and 1000 are
tested for 1024 dimensional LASER embeddings.
Dimension reduction of 100 leads to 0.87% loss
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of features, dimension 500 causes 0.488% feature
loss, and dimension 1000 led to 0.023% feature
loss.

4.2 BLSTM

The bidirectional LSTM layer consists of two
LSTM layers, one in forward and the other in the
backward direction for sequence processing. It is
used when a sequence of data is to be processed.
The text and hypothesis are passed through BLSTM
layers to obtain a sequence representation that em-
beds the complete information.

43 GRU

This layer has recurrent neural networks with a gat-
ing mechanism. It is similar to long short-term
memory networks, and it does not have output
gates. As such, it has less number of parameters
with good performance on small-sized datasets.

44 CONCATENATION

The sequence representation of text and hypothe-
sis are then concatenated in this layer, and batch
normalization is done. Dropout configurations are
then applied and passed to a Dense layer.

4.5 DENSE LAYER

The dense layer has its input from the concatenation
layer and has rectified leaky unit activation function.
It is then batch normalized, and dropout is applied
and flattened to feed to the following dense layer.

4.6 SIGMOID CLASSIFICATION

For binary classification, the sigmoid activation
function is used in the final dense layer. The sig-
moid function is given by

S(x) =1/(1+€7) (1)

The system design is shown in Figure 2. The
representations from the embedding layer is then
passed to a bidirectional LSTM / GRU layer where
each sentence gets a context representation. It is
performed for both text and hypothesis in Siamese
network architecture, followed by a concatenation
of the outputs from BiLSTM / GRU. The concate-
nated text hypothesis representation is then fed to
a Dense layer with "RELU” activation followed by
classification. Sigmoid function with binary cross-
entropy loss function performs the model training
and classification.

SIGMQID

DENSE (RELU)

CONCATENATE

BLSTM / GRU BLSTM f GRU

¥ 4

EMBEDDING EMBEDDING

TEXT HYPOTHESIS

Figure 2: System Design

5 Experimental Results

5.1 Experimental Setup

Implementations used Google Colab platform and
Spyder IDE using Python, Tensorflow, and Keras
library for machine learning and Scikit-Learn for
evaluations.

The parameter configurations for training the sys-
tem are 100 LSTM nodes, 100 dense units, RELU
activation function for dense layer, drop-out rate
of 0.17,0.25 for LSTM and 0.25 dropout for dense
layer.

5.2 Results

The results are evaluated in terms of classification
metrics, namely Precision(P), Accuracy, Recall(R),
F1-score(F1), and Support(S). Experimental results
of the Siamese network architecture detailed above
are shown in Table 2.

Class P R F1 | S
Contradiction 0.71 0.60 0.65 | 500
Entailment 0.65 0.76 0.70 | 500
Accuracy 0.68 | 1000
Macro average 0.68 0.68 0.68 | 1000
Weighted average | 0.68 0.68 0.68 | 1000

Table 2: Results based on LASER embedding with di-
mensions reduced to 1000.

From Table 3, we observe that reducing the em-
bedding dimension to 500 through the principal
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component analysis technique results in perfor- Class P R F1 | S
mance drops, as there is information loss. Contradiction 0.76 0.49 0.60 | 500
Entailment 0.63 0.85 0.72 | 500

Class P R F1 | S Accuracy 0.67 | 1000
Contradiction 091 0.19 0.31 | 500 Macro average 0.69 0.67 0.66 | 1000
Entailment 0.55 0.98 0.70 | 500 Weighted average | 0.69 0.67 0.66 | 1000
Accuracy 0.58 | 1000
Macro average 073 058 0.51 | 1000 Table 6: Results based on Word2Vec with Configura-
Weighted average | 0.73 0.58 0.51 | 1000 tion 2.

Table 3: Results based on LASER embeddings with
dimensions reduced to 500.

When the embedding dimension is reduced to
100, we obtain the results in Table 4. Hence dimen-
sions of 100 and 1000 yield good results compared
with dimension 500. It resulted due to a mismatch
in network configuration with embedding size.

Class | R F1 S
Contradiction 0.68 0.62 0.65 | 500
Entailment 0.65 0.71 0.68 | 500
Accuracy 0.66 | 1000
Macro average 0.66 0.66 0.66 | 1000
Weighted average | 0.66 0.66 0.66 | 1000

Table 4: Results based on LASER embeddings with
dimension reduced to 100.

Comparison with word2vec: The system de-
sign is compared with word2vec based embedding.
The dataset is trained using the Word2vec model
with dimension 100, minimum count of words 1.
The difference in configurations showed better re-
sults, as shown in the tables below.

Configuration 1: With negative sampling and
using a continuous bag of words approach for
Word2Vec model produced the results as in Table 5.

Class P R F1 |S
Contradiction 0.60 0.43 0.50 | 500
Entailment 0.56 0.71 0.63 | 500
Accuracy 0.57 | 1000
Macro average 0.58 0.57 0.57 | 1000
Weighted average | 0.58 0.57 0.57 | 1000

Table 5: Results based on Word2Vec with Configura-
tion 1.

Configuration 2: With hierarchical softmax and
skip-gram based approach resulted in Table 6. We

infer that Word2Vec of 100 dimensions with hierar-
chical softmax and LASER embedding reduced to
1000 dimension shows good performance. Hence
Word2vec is better for this Siamese network based
architecture based on its performance with lesser
dimensional embeddings.

Comparison with GRU For the same archi-
tecture, when BiLSTM is replaced with GRU,
Word2Vec based system showed the same perfor-
mance as below.

Class P R F1 |S
Contradiction 0.76 0.51 0.61 | 500
Entailment 0.63 0.84 0.72 | 500
Accuracy 0.67 | 1000
Macro average 0.69 0.67 0.66 | 1000
Weighted average | 0.69 0.67 0.66 | 1000

Table 7: Results based on Word2Vec with GRU layer
instead of BiILSTM

LASER based GRU system shows the below
results for classification as in Table8.

Class P R F1 |S
Contradiction 0.73 029 0.42 | 500
Entailment 0.56 0.89 0.69 | 500
Accuracy 0.59 | 1000
Macro average 0.64 0.59 0.55 | 1000
Weighted average | 0.64 0.59 0.55 | 1000

Table 8: Results based on LASER with GRU layer in-
stead of BILSTM

Comparison with XLLM-R embeddings XILM-
R is a masked language model trained for 100 lan-
guages, including Malayalam. This transformer-
based architecture produced the results shown in
Table 9. The default dimension is 768, which is
reduced to 100 dimensions.

XLM-R is also used with BiLSTM layer and the
results are shown in Tablel10.
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Table 9: Results based on XLM-R with GRU layer in
Siamese architecture.

Class P R F1 |S
Contradiction 0.75 0.65 0.70 | 500
Entailment 0.69 0.79 0.74 | 500
Accuracy 0.72 | 1000
Macro average 0.72 0.72 0.72 | 1000
Weighted average | 0.72 0.72 0.72 | 1000

Table 10: Results based on XLM-R with BiLSTM layer
in Siamese architecture.

Table 11 shows the accuracy values obtained for
different configurations of Siamese networks. It
also includes the previous densenet based system
results also.
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Model Accuracy
Siamese+BiLSTM+100D Word2Vec 0.67
Siamese+BiLSTM+100D LASER 0.68
Siamese+BiLSTM+1000D LASER  0.68
Siamese+GRU+100D LASER 0.59
Siamese+GRU+100D Word2Vec 0.67
Siamese+GRU+100D XLM-R 0.70
Siamese+BiLSTM+100D XLM-R 0.72
Densenet + 1024D LASER 0.77

(Renjit and Idicula, 2021)

Table 11: Summary of different model configurations
applied and their accuracies.

5.3 Sentence Similarity

As part of this classification, similarities of sen-
tences with respect to text hypothesis pairs are
measured quantitatively as entailment confidence.
For example, the similarity score obtained for the
classification of instances is shown in Figure 3.
The entailment confidence score is helpful for sen-
tence similarity tasks to identify the extent to which
the pairs are similar. Thus it also aids in multi-
document summarization tasks, in which we can
avoid similar sentences in summary based on the
entailment/similarity score.

Figure 3: Similarity scores example where C label
denotes contradiction and E label denotes entailment
class.

6 Conclusion

In this work, we focused on the application of
Siamese network architecture to recognize entail-
ment in Malayalam language. The results shows ad-
equate performance. The use of newer embedding
models leads to better accuracy but the embedding
dimension is a limiting factor with the network con-
figuration. As the embedding dimension increases,
the time and space complexity increases in Siamese
model architecture, where text and hypothesis are
processed as sequences parallely.

Through this work, we aim to depict the per-
formance of Siamese network based entailment
recognition with respect to Malayalam language,
which is a low resource Dravidian language.
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