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Abstract
The International Classification of Diseases
(ICD) is a system for systematically recording
patients’ diagnoses. Clinicians or professional
coders assign ICD codes to patients’ medical
records to facilitate funding, research, and ad-
ministration. In most health facilities, clinical
coding is a manual, time-demanding task that
is prone to errors. A tool that automatically
assigns ICD codes to free-text clinical notes
could save time and reduce erroneous coding.
While many previous studies have focused
on ICD coding, research on Swedish patient
records is scarce. This study explored different
approaches to pairing Swedish clinical notes
with ICD codes. KB-BERT, a BERT model
pre-trained on Swedish text, was compared
to the traditional supervised learning models
Support Vector Machines, Decision Trees, and
K-nearest Neighbours used as the baseline.
When considering ICD codes grouped into ten
blocks, the KB-BERT was superior to the base-
line models, obtaining an F1-micro of 0.80 and
an F1-macro of 0.58. When considering the
263 full ICD codes, the KB-BERT was outper-
formed by all baseline models at an F1-micro
and F1-macro of zero. Wilcoxon signed-rank
tests showed that the performance differences
between the KB-BERT and the baseline mod-
els were statistically significant.

1 Introduction

There are both administrative and statistical pur-
poses of ICD coding. Administrative to reimburse
the clinical unit or hospital, but also to plan health-
care. The codes are assigned by both treating physi-
cians and designated coders. The current version
of the ICD system, ICD-10, contains tens of thou-
sands of codes divided into 22 chapters (WHO,
2016).

ICD coding is time-consuming and error-prone,
either missing the main diagnosis or displaying er-
rors in the coding in up to 20 per cent of the patient

records (Jacobsson and Serdén, 2013). Therefore,
it would be valuable to have a supporting tool to
assist the physician or coder in choosing among the
codes.

In this article, Swedish patient records in the
medical speciality of gastrointestinal surgery and
their already assigned ICD-10 codes are used to per-
form supervised learning to predict ICD-10 codes.
More specifically, the part of the patient records
that summarises the patient’s care period at the time
of the discharge, the discharge summaries, and their
associated ICD-10 codes are used. The assigned
codes belong to the Swedish version of the ICD-
10 system known as ICD-10-SE (Socialstyrelsen,
2018). The codes considered are both full ICD
codes at the highest level of granularity and the
full codes grouped into ten blocks. The research
question is how the deep learning language model
KB-BERT, compared to the traditional supervised
learning models Support Vector Machines, Deci-
sion Trees, and K-Nearest Neighbours performs in
pairing discharge summaries with the correct ICD
codes.

2 Related Research

ICD coding has been a popular research area for
decades. The interest increased with a public chal-
lenge hosted by the Computational Medical Cen-
ter called the 2007 Computational Medicine Chal-
lenge, where contestants were asked to create a
system for pairing radiology reports with the cor-
rect ICD codes. Most submitted solutions used
hand-crafted rules, traditional supervised learning
models such as Support Vector Machines, or a com-
bination of these two approaches (Pestian et al.,
2007). One of the top-performing systems used a
combination of rule-based and machine learning
elements, achieving an F1-micro score of 0.89 by
utilising Decision Trees to generate rules automati-
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cally (Farkas and Szarvas, 2008).

Since 2007, ICD classification has shifted away
from rule-based techniques, and many recent stud-
ies use traditional supervised learning methods or
deep learning approaches. Examples of conven-
tional models used in previous ICD coding papers
are Support Vector Machines, Decision Trees, K-
nearest Neighbours, Naı̈ve Bayes, and ensembles
of these models. In Kaur and Ginige (2018), com-
paring these conventional models with Multi-layer
Perceptrons resulted in Decision Trees and Ad-
aBoost using Decision Trees being the superior
classifiers at F-scores of approximately 0.9. Hasan
et al. (2016) compared traditional models with Con-
volutional Neural Networks and concluded that
the results for the Convolutional Neural Networks
were comparable with the results of Support Vector
Machines, but that Support Vector Machines out-
performed Convolutional Neural Networks as the
number of classes increased. The best-achieved ac-
curacy score of Support Vector Machines in (Hasan
et al., 2016) was 0.75. For Bulgarian, Boytcheva
(2011) carried out ICD classification using Support
Vector Machines. She used 6,200 and 1,300 elec-
tronic patient records for training and evaluation,
respectively, obtaining a precision of 0.97, a recall
of 0.74, and an F-score of 0.85.

An increasingly popular deep learning approach
to ICD coding tasks is using the language model
BERT (Bidirectional Encoder Representations
from Transformers) developed in 2018 by Devlin
et al. (2019). BERT was pre-trained on 3.3 billion
words from two English corpora – the BooksCor-
pus and the English Wikipedia – making it an ex-
pert in understanding general English. However,
BERT has also been adapted to domain-specific
language. For example, Lee et al. (2020) devel-
oped BioBERT – a BERT model pre-trained on
biomedical texts. When Amin et al. (2019) adopted
BioBERT to perform ICD coding, they reached
an F1-micro score of 0.73. Moreover, a BERT
model pre-trained on clinical text was developed
by Alsentzer et al. (2019) and used by Biseda
et al. (2020) for ICD classification, achieving an
F1-score of 0.75.

Since the original BERT and many of its domain-
specific adaptations are trained on English texts,
BERT has also been adapted to understand other
languages. In 2020, the National Library of Swe-
den pre-trained a BERT model on billions of
Swedish words, naming this model KB-BERT,

(Malmsten et al., 2020). Malmsten et al. (2020)
showed that KB-BERT outperformed the multi-
lingual version of the BERT model.

As discussed in a review paper by Stanfill et al.
(2010), it is difficult to compare previous ICD clas-
sification approaches since previous studies using
the techniques apply them differently. Previous
studies use different label sets, evaluate the classi-
fiers’ performance differently, and use texts written
in different languages. Therefore, it is favourable
to investigate the alternative ICD coding methods
in the context they will be used. Moreover, while
many studies explore rule-based methods, tradi-
tional supervised models, and deep learning ap-
proaches to solve ICD coding tasks, few studies
use Swedish data.

Henriksson et al. (2011) attempted automatic
ICD classification on Swedish data using co-
occurrences of words and ICD codes. Pairing clini-
cal notes with semantically correlated ICD codes
resulted in the correct ICD code being present in
the top ten suggested ICD codes in 20 per cent of
the cases. When considering codes at a lower level
of granularity, the correct ICD codes were found
in the top 10 suggested codes in 77 per cent of
the cases. Optimising the dimensionality improved
these results by 18 percentage points (Henriksson
and Hassel, 2013).

This study explores conventional supervised
learning methods and the deep learning Swedish
model KB-BERT for Swedish ICD classification.
The F1-micro is used to evaluate the different ap-
proaches. The F1-macro is also presented. A dis-
cussion of the results follows, addressing the impli-
cations of the study.

3 Methodology

3.1 Data
3.1.1 ICD Codes
The ICD system is hierarchical, and at the highest
level of granularity, the letter initiating each code is
followed by three digits. In Figure 1, the anatomy
of ICD codes is displayed.

A .
LETTER A-Z NUMBER 00-99 DIGIT 0-9

0 1 2
Figure 1: The anatomy of ICD codes.
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Health personnel assign three-digit codes like the
one exemplified in Figure 1 to the patient records,
and a clinical coding tool would benefit from sug-
gesting these full codes. However, since many
codes only have a few associated patient records
in the data available for this study, it might not
be successful to train models to predict full codes.
Therefore, to give the models a fair chance to per-
form and, thereby, be compared, both full codes at
the highest granularity level and codes grouped at
a higher level are considered in this article.

The grouped codes considered are ICD codes at
a two-digit level, which are known as ICD blocks.
Using full ICD codes can illustrate the implica-
tions of training models when having many classes,
where many of the classes have few instances. On
the other hand, using ICD codes at the block level
can demonstrate the implications of solving an ICD
classification task at a lower level of granularity
with fewer classes and more instances per class.

This paper is delimited to ICD codes related
to gastrointestinal diseases. The digestive diseases
reside in ICD Chapter XI, containing codes starting
with a K. Chapter XI consists of ten blocks. In
Table 1, the two-digit ICD codes included in each
block in ICD Chapter XI and descriptions of the
diseases that the blocks cover are presented.

ICD Block Description of diseases
K00-K14 Diseases of the oral cavity, salivary glands, jaws
K20-K31 Diseases of oesophagus, stomach, duodenum
K35-K38 Diseases of appendix
K40-K46 Hernia
K50-K52 Noninfective enteritis, colitis
K55-K64 Other diseases of intestines
K65-K67 Diseases of peritoneum
K70-K77 Diseases of the liver
K80-K87 Disorders of gallbladder, biliary tract, pancreas
K90-K93 Other diseases of the digestive system

Table 1: ICD blocks of Chapter XI.

3.1.2 Multi-label Text Classification

A hospitalised patient seldom suffers from only one
disease. On the contrary, one patient can have many
diagnoses, implying that one discharge summary
often is paired with multiple ICD codes. Pairing
one text with numerous labels is a multi-label clas-
sification task, which is different from multi-class
tasks where the labels are mutually exclusive. In
Figure 2, an exemplary clinical note with multiple
assigned ICD codes is presented.

Discharge summary

Tidigare helt frisk kvinna med obehag i epigastrium och 
tilltagande smärta i arcus under 4 dagar. Konstaterat 
diafragmabråck. Beh för misstänkt gastroenterit utan 
framgång. CT visade tecken på akut kolecystit och operation 
genomfördes med framgång. Pat hemskickad med råd att vila 
i minst 2 v. Fettsnål kost och mindre portioner 
rekommenderas.

English translation: Previously completely healthy woman feeling 
discomfort in epigastrium with increasing pain in arcus for 4 days. 
Confirmed diaphragmatic hernia. Unsuccessfully treatm for 
suspected gastroenteritis. CT showed signs of acute cholecystitis. 
Successful operation. Pat sent home to rest for 2 w min. Low fat 
diet and smaller portions recommended.

Assigned ICD codes

K44.9 Diaphragmatic hernia, no obstruction or gangrene
K80.4 Acute cholecystitis

Figure 2: A partly made up and completely
pseudonymised exemplary discharge summary.

3.1.3 The ICD-10 Corpus
The data used in this study is called the Stock-
holm EPR Gastro ICD-10 Corpus version 2 (ICD-
10 Corpus)1. The ICD-10 Corpus resides in the
research infrastructure Health Bank – the Swedish
Electronic Health Record Bank2 which is located
at the Department of Computer and Systems Sci-
ences (DSV) at Stockholm University. Health Bank
contains over 2 million electronic patient records
from over 500 clinical units at Karolinska Univer-
sity Hospital in Stockholm between 2007 and 2014.
The ICD-10 Corpus was extracted from Health
Bank and consists of discharge summaries from
four gastrointestinal care units.

In the ICD-10 Corpus, there are only ICD codes
representing digestive diseases, which is ICD Chap-
ter XI, containing codes starting with a K (see Ta-
ble 1). Moreover, the discharge summaries were
filtered to those containing more than three tokens,
and discharge summaries belonging to the same pa-
tient and care period assigned the same ICD codes
were merged into one discharge summary.

In Table 2, the number of discharge summaries,
patients, tokens, unique tokens, full ICD codes, and
ICD blocks of the ICD-10 Corpus are presented.
Descriptive statistics of the number of tokens per
discharge summary are available in Table 3.

1This research has been approved by the Regional Ethical
Review Board in Stockholm under permission no. 2007/1625-
31/5.

2See the Health Bank website (https://dsv.su.se/
healthbank) and Dalianis et al. (2015) for more informa-
tion.

https://dsv.su.se/healthbank
https://dsv.su.se/healthbank
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Number of discharge summaries 6 062
Number of unique patients 4 985
Total number of tokens 986 436
Number of unique tokens (vocabulary) 48 232
Number of unique full ICD codes 263
Number of unique ICD blocks 10

Table 2: Basic characteristics of the ICD-10 Corpus.

Min 4
Median 134
Mean 162.7
Max 1794
Std 120.5

Table 3: Number of tokens per discharge summary in
the ICD-10 Corpus.

Since both full ICD codes and ICD codes
grouped at the block level are considered in this
paper, the descriptive statistics of the number of
ICDs per discharge summary for each of the data
sets are presented in Table 4. The version of the
ICD-10 Corpus with full ICD codes is denoted Full
codes, and the version of the ICD-10 Corpus with
ICD codes at the block level is denoted Blocks.

Full codes Blocks
Min 1 1
Median 1 1
Mean 1.2 1.2
Max 6 4
Std 0.5 0.4

Table 4: Number of ICDs per discharge summary in the
Full Codes and the Blocks data sets.

3.2 Models
3.2.1 Baseline
A common approach to solving ICD classification
tasks is using traditional supervised learning mod-
els. The traditional supervised learning models
used in this study were Support Vector Machines,
Decision Trees, and K-nearest Neighbours. These
models were chosen since they are well-established
and frequently used in related studies.

The implementations of Decision Trees
and K-Nearest Neighbours used were the
DecisionTreeClassifier class from the
Scikit-learn library (Pedregosa et al., 2011) and the
MLkNN class from the Sckikit-multilearn library
(Szymański and Kajdanowicz, 2018), respectively.
Since the Scikit-learn implementation of Support
Vector Machines (class SVC) is not directly

suitable for multi-label data, one classifier per label
was trained using the Scikit-learn implementation
of one-vs-rest (class OneVsRestClassifier).
The default hyper-parameters were used.

For the baseline models to handle text in-
put, the text has to be represented as numeri-
cal features. For this purpose, tf-idf weights as
they are implemented in the Scikit-learn class
TfidfVectorizerwere used. tf-idf is short for
term frequency-inverse document frequency and
represents how important a word is in a specific
document, compared to the importance of that word
in all documents. Basic pre-processing steps in the
form of removal of punctuation and stop words and
de-capitalisation were also conducted. The list of
Swedish stop words was taken from the Natural
Language Toolkit (NLTK) (Bird et al., 2009).

3.2.2 KB-BERT

KB-BERT was used closely following the instruc-
tions in Devlin et al. (2019) for downstream tasks
and fine-tuning. More specifically, the architecture
takes advantage of the presence of a special token,
namely the [CLS] (classification) token represen-
tation, used initially for the NSP (Next Sentence
Prediction) task. This representation is utilised as
sentence representation and is assumed to contain
information describing each instance. The architec-
ture of the KB-BERT classifier includes at its core
the KB-BERT model (bert-base-swedish-cased)3

from which the [CLS] representation is used for
each sample through a ReLU (Rectified Linear
Unit) transformation as input to a fully connected
classification layer.

In the spirit of Devlin et al. (2019), a minimal
learning rate in the magnitude of 2 · 10−5 was used.
The number of warm-up steps was set to 155 for
the model to approximately see all the data before
the learning rate starts decaying. Due to memory
constraints, the batch size of 32 was achieved using
a batch size of 2 and a gradient accumulation of
16. The activation threshold binarising the floating
numbers the KB-BERT outputs was set to the stan-
dard value of 0.5. Adam was used as the optimiser.
The implementation of the KB-BERT classifier was
done using the Transformers (Wolf et al., 2020),
and Pytorch (Paszke et al., 2019) libraries.

3https://huggingface.co/KB/bert-base-
swedish-cased

https://huggingface.co/KB/bert-base-swedish-cased
https://huggingface.co/KB/bert-base-swedish-cased
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3.3 Experiment Design

To test how well the KB-BERT, Support Vector
Machines, Decision Trees, and K-Nearest Neigh-
bours perform in pairing Swedish discharge sum-
maries with the correct ICD codes, 90 per cent of
the data was used for training the models. 10-fold
cross-validation was utilised to get more reliable
estimates of the models’ performance and to be
able to test if the observed differences in classifier
performance are statistically significant. The final
performance of the KB-BERT and the best perform-
ing baseline model was estimated by training on all
training data and testing on the 10 per cent of the
data (the held-out set) not used for comparing the
classifiers.

Performance was represented by the F1-micro
score. Micro averaging was chosen over macro
averaging since it was considered of greater interest
to train a classifier that correctly can classify as
many discharge summaries as possible, rather than
as many ICD codes as possible. However, macro
averaged scores are presented as well.

The Wilcoxon signed-rank test (Wilcoxon, 1945)
suitable for small dependent samples was used to
test the statistical significance of classifier perfor-
mance. The null hypotheses that the distribution of
the F1-micro scores are equal were tested against
the alternative hypotheses that the distribution of
the F1-micro scores are not equal for the compared
classifiers. The significance level was set to 0.01.

4 Results

4.1 Full ICD codes

The combined macro and micro averaged Precision
(P), Recall (R), and F1-score (F1) of the KB-BERT
and the baseline models during the 10-fold cross-
validation when training the models using the Full
codes version of the ICD-10 Corpus (263 ICD-10
codes) are presented in Table 5.

Macro Micro
Classifier P R F1 P R F1

KB-BERT 0.00 0.00 0.00 0.00 0.00 0.00
SVM 0.06 0.01 0.01 0.85 0.05 0.10
DT 0.10 0.09 0.09 0.30 0.28 0.29
KNN 0.11 0.03 0.05 0.55 0.17 0.26

Table 5: Combined scores for the Full codes data set
during the 10-fold cross-validation.

Overall, the results were poor. All models un-
derperformed, and the best performing model for

the full codes was the Decision Trees, achieving an
F1-micro of 0.29 and an F1-macro of 0.09. The KB-
BERT failed to perform at all, obtaining F1-scores
of zero.

1 2 3 4 5 6 7 8 9 10
Fold of the Data

0.0

0.1

0.2

0.3

F 1
-m

icr
o KB-BERT

SVM
DT
KNN

Figure 3: F1-micro for the Full codes data set during
each fold of the data.

As becomes evident from Figure 3, the classi-
fier ranks remained constant during the 10-fold
cross-validation, resulting in the smallest possible
Wilcoxon test statistic, 0, for all pairwise compar-
isons of classifiers. This means that there is rea-
son to trust that the differences in classifier perfor-
mance observed in Table 5 were not only due to
chance but reflect actual characteristics of the data
set.

For the KB-BERT, early stopping was used dur-
ing the 10-fold cross-validation, and convergence
was achieved with respect to the Binary Cross-
Entropy (BCE) loss function at ten epochs during
most runs. Therefore, when training the KB-BERT
on all of the training data and testing it on the held-
out test set, it was trained for ten epochs. Still,
the KB-BERT failed to perform and obtained an
F1-micro and F1-macro of zero. When training
the best-achieving baseline classifier, the Decision
Trees, on the full training set and testing it on the
held-out test set, it achieved an F1-micro of 0.31
and an F1-macro of 0.09.

4.2 ICD Blocks

For the Blocks version of the ICD-10 Corpus, com-
paring the F1-micro of the KB-BERT with the base-
line models during the 10-fold cross-validation,
the KB-BERT was superior to the baseline mod-
els. The Support Vector Machines was the baseline
model with the highest F1-micro. Macro and micro
averaged Precision (P), Recall (R), and F1-score
(F1) of the KB-BERT and the baseline models dur-
ing the ten folds are presented in Table 6.
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Macro Micro
Classifier P R F1 P R F1

KB-BERT 0.67 0.55 0.60 0.87 0.77 0.82
SVM 0.76 0.33 0.41 0.90 0.61 0.72
DT 0.54 0.50 0.52 0.72 0.69 0.71
KNN 0.63 0.41 0.48 0.79 0.64 0.71

Table 6: Combined scores for the Blocks data set dur-
ing the 10-fold cross-validation.

Looking at Figure 4, one can see that, as was the
case with the Full codes version of the data set, the
classifier ranks comparing the KB-BERT and each
baseline classifier remained intact throughout the
10-fold cross-validation for the Blocks version of
the data set. This implies that these Wilcoxon test
statistics were 0 and that the observed differences
between the KB-BERT and the baseline classifiers
are likely to reflect that the KB-BERT and the base-
line models perform differently on this data set.
However, unlike in the case with full codes, the
baseline classifiers are not statistically distinguish-
able.

1 2 3 4 5 6 7 8 9 10
Fold of the Data

0.65

0.70

0.75

0.80

0.85

F 1
-m

icr
o

KB-BERT
SVM
DT
KNN

Figure 4: F1-micro for the Blocks data set during each
fold of the data.

Compared to the Full codes version of the data
set, when running the KB-BERT using the Blocks
version of the data set, KB-BERT was trained for
seven epochs until the BCE loss converged. There-
fore, KB-BERT was trained for seven epochs when
trained on the full training set and tested on the
held-out set. For this final evaluation, the KB-
BERT obtained an F1-micro of 0.80 and an F1-
macro of 0.58. When training the baseline model
that obtained the highest F1-micro score during
the 10-fold cross-validation, the Support Vector
Machines, on all of the training data and testing it
on the held-out data set, it reached an F1-micro of
0.71 and an F1-macro of 0.42.

5 Discussion

5.1 KB-BERT
The results showed that at a block level, the state-
of-the-art BERT model trained on Swedish text,
KB-BERT, has the potential to be a successful
classifier used in an ICD coding tool. It would
be interesting to explore if the performance could
be further improved by, for example, fine-tuning
hyper-parameters such as the activation thresh-
old. It would also be relevant to try other ver-
sions of BERT, for instance, a BERT pre-trained
on Swedish clinical texts.

While the KB-BERT was the best performing
classifier on the block level, it failed to classify full
codes. One explanation for this could be that deep
learning models are more data-hungry than tradi-
tional supervised machine learning models, mean-
ing the KB-BERT suffers the most from moving
from ICD blocks to less frequent full codes.

It should also be noted that, like other deep learn-
ing models, KB-BERT takes substantially longer to
train than the baseline models, resulting in a larger
carbon footprint. For example, when considering
codes at the block level, it took 300 minutes for
a GPU to train (fine-tune) and test the KB-BERT
using 10-fold cross-validation. The corresponding
number for the slowest baseline model, the Sup-
port Vector Machines, was 22 minutes on a regular
laptop computer, meaning the actual training time
difference probably is even greater than our estima-
tions. While one may argue that the prediction time
matters the most, training time might still matter
if the idea is that the ICD coding tool should keep
learning with time.

5.2 Code Frequencies, Granularity, and
Combinations

One finding that stands out is the difference be-
tween the classifiers’ performance when consider-
ing the 263 full ICD and ICD codes grouped into
ten blocks. Comparing the results in Section 4.1
and Section 4.2, the best F1-micro changes from
0.31 to 0.80 when going from full codes to block
codes.

There are several possible explanations for the
great difference between the results at a full code
level and a block level. Firstly, many of the full
codes have very few associated discharge sum-
maries, meaning there are few examples to learn
from. Some codes only have one associated dis-
charge summary, leaving no instances to test on,



1164

which leads to F1-scores of zero. In turn, having
many low-frequency codes explains the discrep-
ancy between F1-micro and F1-macro scores.

Secondly, as Blanco et al. (2020) suggest, the
granularity itself can be a predictor of performance.
This means that going from full codes to codes on
the block level could have a greater impact than de-
creasing the number of possible label combinations.
Of course, the number of possible label combina-
tions itself also could have impacted the results.
One way to address the difficulties associated with
ICD coding at the full code level is to combine
KB-BERT with the per-label attention mechanism
proposed in the article by Blanco et al. (2021).

5.3 Generalisability
One should note that this study’s classifier com-
parison only is valid for the specific discharge
summaries used and that they might not represent
Swedish gastrointestinal discharge summaries in
general. For example, since the discharge sum-
maries were written between 2007 and 2014, it may
be the case that the writing style has changed since.
Moreover, the four units that the discharge sum-
maries were created at may not represent Swedish
gastrointestinal care units in general.

Furthermore, the results are conditional on the
specific instantiations of the classifiers used, and
both the KB-BERT and the baseline models may
have benefited from hyper-parameter optimisation.

The results of this study are also difficult to com-
pare with the results from other related research
since the data sets used differs, and they are often
not publicly available because of privacy reasons.

5.4 ICD Coding Tool
This research’s long-term goal is to develop a
Swedish ICD coding tool to use in health facili-
ties. Since health personnel assign full codes to
the patient records, it would be favourable if the
tool suggests full codes. Therefore, it would be
suitable for future work to improve the results of
this study obtained for codes at the highest level of
granularity.

Moreover, it would be interesting to explore how
such a tool could incorporate explainability mech-
anisms. Explainability could be used both as a
measure to make the tool trustworthy and to help
the coder decide among the suggested codes.

Furthermore, a coding tool would benefit from
being developed in close contact with the end-users.
Therefore, a design science study with an iterative

research approach would be reasonable. In such a
study, classifier requirements, such as the desired
trade-off between precision and recall, could be
discussed.

6 Final Remarks

6.1 Summary

To summarise, the KB-BERT outperformed the
baseline classifiers when the full ICD codes of the
ICD-10 Corpus were grouped into ten ICD blocks,
achieving an F1-micro of 0.80 and an F1-macro of
0.58. These results can be compared to the baseline
classifier with the highest F1-micro, the Support
Vector Machines, which reached an F1-micro of
0.71 and an F1-macro of 0.42. When considering
the 263 full codes, the KB-BERT could not perform
at all, obtaining zero F1-micro and F1-macro. For
the data set with the full codes, the best performing
classifier was the Decision Trees that reached an
F1-micro of 0.31 and an F1-macro of 0.09.

The discrepancy between the results when con-
sidering full ICD codes and codes at a block level
can partly be because many full codes had very few
associated discharge summaries (low frequency).
Furthermore, the granularity itself could have im-
pacted the results since distinguishing one full code
to another very similar full code is different from
distinguishing one ICD block to another, not that
similar, ICD block. The fact that one of the tasks
had more than 20 times more labels than the other
could also have influenced the results.

6.2 Conclusion

In conclusion, this paper contributed to the insuffi-
cient knowledge about performing ICD classifica-
tion on a Swedish corpus by exploring how differ-
ent classifiers solved a Swedish ICD classification
task. One main finding is that KB-BERT showed
great potential in predicting few high-frequency
ICD codes grouped at the block level. Another
main result is that the classifiers, especially the
data-hungry KB-BERT, struggled when consider-
ing many low-frequency, finely-grained codes.

Since it is desirable for an ICD tool to suggest
full codes rather than grouped codes, future work
on Swedish ICD classification should focus its ef-
forts on training models that perform well in pre-
dicting full codes. One recommendation is to get
hold of data with many training examples per each
full ICD code to achieve this goal, thereby avoid-
ing the low-frequency issue. Moreover, future stud-
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ies would benefit from looking into different ways
for classifiers to handle a great amount of finely-
grained ICD codes.
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