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Abstract

We adapt BLiMP (Benchmark of Linguis-
tic Minimal Pairs) language model evalua-
tion framework to the context of poetry, in-
troducing the first of a series of tasks titled
Benchmark of Poetic Minimal Pairs (BPoMP).
The tasks presented herein use one genre of
English-language poetry, the limerick (five-
lines, rhyme scheme AABBA). Following the
BLiMP schema, the BPoMP tasks use 10,000
minimal pairs of limerick/corrupted limerick.
The latter is created by (1) shuffling two
rhyming end-of-the-line words, (2) shuffling
two rhyming lines, (3) replacing end-of-the-
line word by a non-rhyming synonym. Our
general task is detection of the original limer-
ick, which we believe tests a language model’s
capacity to utilize “end rhymes”, a common
feature of poetry. We evaluate Transformer-
based models by checking if they assign a
higher probability to the non-corrupted limer-
ick in each minimal pair. We find that the mod-
els identify the original limerick at rates better
than chance, but with a nontrivial gap relative
to human accuracy (average of 98.3% across
tasks). The publicly available curated set of
limericks accompanying this paper is an addi-
tional contribution. In general, we see this as a
first step to create a community of NLP activ-
ity around the rigorous computational study of
poetry.

1 Introduction

Machines — i.e., artificial intelligence – con-
tinue to make great progress toward the challenges
of machine-assisted and machine-written litera-
ture. Examples range from word auto-completion
algorithms to deep learning-based methods that

(sometimes) produce Turing Test-passing text
(Elkins and Chun, 2020) and even credible son-
nets (Ghazvininejad et al., 2016). Evaluating such
work uses a range of techniques, including auto-
matic metrics such as BLEU as well as – rightly or
wrongly – Turing Test-inspired human evaluation.

This paper focuses on testing if large models pre-
trained on gigabytes of text, such as GPT-2 (Rad-
ford et al., 2019) and Transformer-XL (Dai et al.,
2019)), are capable of “discovering” the rhyming
and basic narrative information inherently present
within a simple poetic form, the limerick, a five-
line poem, usually humorous, with rhyme scheme
AABBA and regular – albeit not fixed – metrical
structure. In particular, we test Transformer models
on various (suitably contextualized) forms of the
line completion problem for the limerick as well as
a fundamental narrative-oriented task. These tests
should be viewed as a first step toward a broader
goal of framing the rigorous interrogation of the
poetic (or more broadly, literary) capabilities of
language models. Given their formulaic structure
(e.g., AABBA rhyming scheme) and the relatively
small size of each unit, limericks present a good
testing ground as compared to longer or more com-
plex poems, such as Shakespearean sonnets (see
e.g., (Ghazvininejad et al., 2016)), or most broadly,
“literature”.

To this end we gathered a small data set of
99,000 limericks (filtered down further for quality
purposes), which we use to test three poetic fea-
ture: understanding the concept of a rhyme framed
as two kinds of line completion test, and one test
of narrative structure, framed as a line ordering
test, given the full limerick. The primary contri-
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butions of this paper are the instantiations of these
tests as “minimal pair” tasks and a curated and
publicly available dataset of limericks. The former
are designed in the spirit of the BLiMP (Bench-
mark of Linguistic Minimal Pairs) tests (Warstadt
et al., 2020) that are used to interrogate more gen-
eral linguistic capabilities of language models. Our
limerick-based test is a first construction that will
be part of a larger collection of tests of machine po-
etry capabilities, given the title BPoMP, or Bench-
mark of Poetic Minimal Pairs. As for the latter
contribution we hope that the availability of this cu-
rated data set inspires other computational studies
of this and other poetic forms.

Recognizing the basic ingredients of a limerick
(or any poetic form) are also part of being able to
produce a limerick and thus, we also see this as
a first step toward another larger goal: machine
composition of high-quality limericks, or any pre-
scribed poetic form.

2 Related Work

This paper is a part of the growing body of lit-
erature devoted to the formulation and execution
of tasks for probing language models, including
the “BERTology” literature that focuses on BERT
(see e.g., (Tenney et al., 2019; Michel et al., 2019;
Clark et al., 2019; Hewitt and Manning, 2019). In
formulation, it is directly modeled on the BLiMP
framework (Warstadt et al., 2020), wherein the
machine is a given a pair of instances, one cor-
rect, and another “minimally” modified (i.e., “cor-
rupted” in some very minor, but systematic way)
and the language model then outputs probabilities
(or some derivative thereof) signifying which is
the most likely. Our line completion tasks produce
line completion-based metrics, and thus are related
to the large body of work already devoted to the
sentence completion task (see e.g., (Mirowski and
Vlachos, 2015)). Our simple exploration of nar-
rative structure, interrogated through the minimal
pair of limericks, one an original and the other
with two rhyming lines swapped, is related to, but
different from work on next sentence prediction
(Cui et al., 2018), which presents two sentences of
text in original and swapped orders (but without
the fuller context that our minimal pair of limer-
icks provides) and produces probabilities for both
occurrences.

Our work also drew partial inspiration from
poetry generation literature (Ghazvininejad et al.,

2016; Li et al., 2018; Liu et al., 2019; Lau et al.,
2018). However, in this work we do not aim to
create machine poetry, but rather show the way in
which poetry can be used as a prism to evaluate
models which purport to be accurate models of a
wide variety of human-produced texts, i.e. texts
written in a variety of genres and registers.

3 Problem Statement

In the spirit of BLiMP (Warstadt et al., 2020), we
present the language model with a five-line limer-
ick and its corrupted counterpart and compare the
probabilities the model assigns to each of these text
blocks. Note that for each test we always include
a full limerick and full limerick with corruption
(which thus may or may not still be a limerick).
The corrupted limerick differs from its source in
several possible ways (in the order of increasing
difficulty): (1) two rhyming words swap places, (2)
two rhyming lines swap places, (3) one word is
changed, always an end-of-the-line rhyming word
which has been replaced by a synonym (see be-
low for details) that removes rhyming information.
Each of the three defines its own task. The diffi-
culty ordering is based on the amount of corruption
introduced into the limerick—from somewhat obvi-
ous to more subtle. Note however, that this doesn’t
necessarily correspond to empirical human rating
of difficulty. We mostly focus on causal models,
which allows us to infer the probability of sequence
(i.e. limerick), by multiplying estimated probabil-
ities of each token using previously seen tokens
as context (in practice we sum log-probabilities)
(Bengio et al., 2003):

P (S) =

|S|∏
i=0

P (wi|w<i)

where S is the limerick sequence and wi is the
token at the position i.

In some cases (i.e. BERT) we use a modified
pseudo-likelihood formulation we adapted from
(Lau et al., 2020), to compute “probabilities” using
bidirectional context:

P (S) =

|S|∏
i=0

P (wi|w<i, w>i)

This produces a simple experiment (and 3 tasks):
given two sequences, a limerick and its corrupted
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Original Shuffled rhyming word Shuffled line Corrupted rhyming word
Television or radio stations Television or radio nations Television or radio stations Television or radio stations
May broadcast to several na-
tions.

May broadcast to several
stations.

May broadcast to several na-
tions.

May broadcast to several
countries.

One can tell them apart One can tell them apart Through the call letters’
art—

One can tell them apart

Through the call letters’
art—

Through the call letters’
art—

One can tell them apart Through the call letters’
art—

Which provides their identi-
fications.

Which provides their identi-
fications.

Which provides their identi-
fications.

Which provides their identi-
fications.

Table 1: Example of a limerick and its corruptions. Each corruption type forms its own task type. Thus, in total
we have 3 tasks, but the experiment is the same in each task.

version, the model must correctly “guess” the orig-
inal by assigning a higher probability to it. Each
limerick pair then serves as a single test point. How-
ever, the source limerick may appear more than
once within the dataset, since we may have gener-
ated several corrupted versions.

4 Experimental Setup

4.1 Dataset

We did not source published books of limericks, as
they lacked machine-readable editions and tended
to use dated language. Instead, we worked from
the website The Omnificent English Dictionary In
Limerick Form (OEDILF). OEDILF1, established
in 2004, publishes user-submitted limericks sub-
ject to approval by moderators. The topics are
generated by users and moderators. Our scrape
of OEDILF contains limericks by 1624 different
authors. The distribution of limericks by author
is not uniform, with the top 10 authors responsi-
ble for ca. 40 % of all limericks. We first filtered
limericks based on simple criteria: limericks must
have 5 lines and must use words (as opposed to
symbols, such as emojis or formulae). This ex-
cludes a range of unorthodox limericks such as
ASCII art limericks. The result was a corpus of
98,454 limericks (dated 1998–present). For our ex-
periment we further require all “limericks” satisfy
some simple machine-identifiable limerick criteria:
(a) end-of-the-line words must be in our rhyming
dictionary, (b) 2nd and 3rd lines must have fewer
syllables than other lines. Our first criterion is there
to ensure all our limericks can be identified as fol-
lowing the AABBA rhyme scheme. Our second
follows from the conventional definition of a limer-
ick (and is tied to metrical structure). Verification
uses CMUdict2 and a custom character-level RNN

1http://www.oedilf.com/db/Lim.php
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

model used to predict the number of syllables in
the words, trained on CMUdict and syllable count
information from Wiktionary3. The details of this
model can be found in the Appendix. This sec-
ond stage filtering leaves us with 29,853 limericks
to build the set of minimal pairs. This clean sub-
set contains 52,316 unique words, and a total of
879,653 tokens. Next, we discuss the corruption
process of the limericks for all of our tasks. Note
that in every case, we sample a limerick from the
clean subset and pair it up with its corrupted ver-
sion using procedures described below.

4.2 “Shuffled” Test Sets

Two of our tasks shuffle the contents of the orig-
inal limerick, by either swapping two words, or
swapping two lines. We generated these as follows.

Our first shuffled dataset, samples a limerick
and randomly swaps end-of-the-line two rhyming
words (as defined by AABBA scheme) within it.
Doing so, we aim to preserve rhyming informa-
tion but also to distort the semantics. Swapped
words are checked to belong to the same part of
speech during the replacement process. In certain
instances, rhyming words can in fact repeat within
the same limerick, but we found that these account
for only 0.05% of all altered limericks.

Our second shuffled dataset randomly swaps two
lines in a sampled original limerick. In this case,
we are trying to remove longer-horizon semantic
information, as well as to disturb the meter. As
previously, they must belong to the same part of
rhyming scheme, A or B. We make sure to remove
any obvious datapoints, such as lines that start a
quotation, or corrupted limericks that now end with
a non-line ending symbol, such as comma, as a
result of the swap.

For both of these test sets, we sample 10,000 test

3https://en.wiktionary.org/wiki/
Wiktionary:Main_Page

https://en.wiktionary.org/wiki/Wiktionary:Main_Page
https://en.wiktionary.org/wiki/Wiktionary:Main_Page


4

pairs of original and altered limerick.

4.3 Corrupted Rhyme Test Set

The corrupted rhyming word limerick dataset was
auto-generated using the following procedure. For
each limerick we replace the ith end-of-the-line
rhyming word, i ∈ {1, 2, 3, 4, 5} with a non-
rhyming synonym. To generate high-quality syn-
onyms we used Merriam-Webster’s Collegiate The-
saurus API.4 We were able to retrieve synonyms for
34,699 unique end-of-the-line words. Synonyms
were then filtered by part of speech (Merriam-
Webster provides different synonyms for each POS
the query word potentially belongs to and it has in
its database5). We utilize spaCy (Honnibal et al.,
2020) as our POS tagger. Once the set of synonyms
is found, we choose the synonym with the closest
contextualized representation (within the limerick)
to the representation of an original word provided
by BERTLARGE (Devlin et al., 2018). Separately,
we score each synonym using a different scheme:
we replace each end-of-the-line word with a syn-
onym using the same process described above, and
then use GPT-2 to score total limerick probabil-
ity of each potential corrupted limerick. We then
choose the highest probability replacement and see
if it agrees with the BERT replacement. In case of
agreement, we add the corrupted limerick to the
pool. We want to stress that at no point are we
comparing the corrupted limerick to the original in
terms of total sequence probability as this would in-
terfere with our experimental goals. In other words,
all comparisons are made between candidate syn-
onym replacements. This GPT-2 filtering ensures
that most of our replacements are of high quality.
Finally, we exclude all limericks whose tokens are
not in any of the models’ vocabularies, and then
sample 10,000 limerick pairs for the final test set.

4.4 Models

We assess a family of Transformer-based (Vaswani
et al., 2017) language models. Transformer is a
neural network that consists of several layers of
attention (Bahdanau et al., 2014) interspersed with
fully connected layers. For all Transformer models

4https://dictionaryapi.com/products/
api-collegiate-thesaurus. We publish a static
version of the set of minimal pairs so that all results reported
here can be verified easily.

5For example eye returns ‘noun’: [‘ring’, ‘navel’,
‘scrutiny’, ... , ‘consciousness’, ‘vision’, ‘loop’], ‘verb’: [‘de-
liberate’, ‘sight’, ‘ponder’, ‘meditate’, ‘perceive’, ... , ‘watch’,
‘wrestle (with)’]

we utilize Hugging Face’s transformers
(Wolf et al., 2020) library.

GPT-2 (Radford et al., 2019) is a causal language
model, meaning that it predicts a word based only
on preceding words. Thus, for line 3, the model
uses all words from lines 1 and 2, and potentially
uses rhyming information contained within the last
word of line 1. We use GPT-2-Medium that has
equivalent number of parameters (345 million) as
all other Transformer models we test. GPT-2 was
pretrained on a custom, 40 GB size dataset called
WebText, which includes various HTML pages
from around the web filtered so as not to include
Wikipedia text.

BERT (Devlin et al., 2018) uses bidirectional
self-attention, which in addition to looking
behind, also looks ahead in sequence. BERT is
trained on a masked language task, where in a
given sequence (a sentence, a paragraph) certain
words are masked at random are then predicted
given the surrounding context. We use uncased
BERT in the generation of corrupted synonyms,
and cased model in our experiments. In both
cases we use 340M model. BERT is trained
on a 3,300 million word combined corpus of
regular prose (BookCorpus, (Zhu et al., 2015)) and
an English Wikipedia dump scraped by the authors.

Transformer-XL (Dai et al., 2019) is another
causal language model that differs through the
addition of a recurrence mechanism: hidden
states from previous segments (a fixed-length
context window that the model uses to predict the
next word) are carried over to the next segment,
which theoretically extends the context length
that Transformer-XL can utilize. In addition to
support this recurrence mechanism the authors
propose a novel position embedding scheme.
Transformer-XL was pretrained on Wikitext-103
(Merity et al., 2016), a dataset of 103M tokens
scraped from English Wikipedia. We use the 340
million parameter version of Transformer-XL.

XLNet (Yang et al., 2019) differs from other mod-
els in the optimization objective: the model is
trained using a novel permutation language model
objective, where instead of a fixed-order (left to
right) context, the model is exposed to a randomly
permuted sequence, while predicting the last word

https://dictionaryapi.com/products/api-collegiate-thesaurus
https://dictionaryapi.com/products/api-collegiate-thesaurus
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(or last few words) of this sequence. Since the new
context includes tokens both from the left and right
of the original context of the target word, the model
is bidirectional. At the same time it is also causal as
the generation is still left to right. In addition, XL-
Net reuses segment level recurrence as introduced
in (Dai et al., 2019) to increase potential context
length. XLNet, is trained on BookCorpus, English
Wikipedia, but adds heavily filtered versions of
datasets Giga5, ClueWeb 2012-B, and Common
Crawl6 (Parker et al., 2011; Callan et al., 2009),
resulting in 33 billion subword-piece dataset. The
model we test has 340 million parameters.

5 Results

Our general experimental framework is as follows:
we ask if the models assign higher probability to
the uncorrupted limerick of the pair. Again, in
each test the “minimal pair” is a pair of five-line
texts, one the original limerick, the other a cor-
ruption, which may or may not still be a limerick.
We compare our models using simple count-based
accuracy: total number of correctly guessed pairs
(i.e., pairs where the higher probability is assigned
to the uncorrupted limerick) versus total number of
(minimal) pairs.

Table 2 summarizes our results. For the task of
differentiating between the original limerick and
its twin with shuffled rhyming words, GPT-2 wins
by a small margin over other Transformer models.
The differences are very small, with the exception
of Transformer-XL, which performed poorly (a
pattern that appears in other tasks). Overall, the
models were easily able to distinguish semantically
inconsistent corrupted limericks.

Next we take a look at the task of swapping lines
that rhyme. Since the semantic issues here are not
as apparent, we expected performance of all models
to dip compared to our first task. This largely has
proven to be true, as accuracy drops by an average
of 11% across all models. Here, as well, GPT-2
emerges to be superior in terms of performance.

Finally, we assess results on the most difficult
task, where we preserve the semantic information
but diminish rhyming information, by replacing
one word with a non-rhyming synonym. The ac-
curacy drops significantly, compared to first two
tasks, and the gap between human and model per-
formance is considerable. Here, BERT is the clear
“winner” is that it outperforms the favorite GPT-2

6https://commoncrawl.org/

by almost 5 percentage points. We theorize that the
better performance comes from BERT’s increased
bidirectional context. Based on these three experi-
ments, rhyming information seems to matter to a
non-trivial extent for these models.

5.1 Human Baseline

All models perform worse than human judges. Hu-
man readers correctly identify the original limerick
with probability 1 in shuffled rhyming words and
corrupted rhyming word tasks. The subjects em-
phasized that they identified corrupted limericks
after scanning end-of-the-line words to find the non-
rhyming word. On the shuffled line task they get
95% accuracy. The human experiments were per-
formed with 11 test subjects in corrupted rhyming
word task and 2 test subjects in the remaining two
tasks. All test subjects were native English speak-
ers and none poetry experts. Each test subject was
presented with 20 randomly sampled pairs of lim-
ericks presented in randomized order. Arguably,
in the shuffled line test, for both test subjects the
mislabeled limerick was still syntactically - and
metrically and rhyme scheme correct. We suspect
that a similar test performed with a larger sample of
human annotators would produce identical results.

5.2 GPT-2 Error Analysis: Synonym
Corruption Case Study

For a more detailed error analysis we focus on the
GPT-2 results within the corrupted rhyme task as
the model is the clearest in terms of optimization
task (next-word prediction) and performs well in
most tasks. To analyze the GPT-2 errors we consid-
ered the distribution of log-probability differences
between original and corrupted limericks, identi-
fying tail cases with largest difference.7 This is
a proxy for a measure of model prediction “confi-
dence.”

We hypothesize that difference in the n-grams
counts8 (n ∈ {2, 3, 4}) used in the last tokens of
the corrupted line is strongly correlated with the
log probability (the one model assigns to the entire
limerick) difference between the limerick pair.

First we consider examples where the model
assigned relatively high probability to the correct
(original) limerick. We expect to see that the orig-
inal bi-gram9 occurs with much higher frequency

7See Appendix.
8As observed in the Google Ngram dataset: https://

books.google.com/ngrams
9We start with bi-grams, and in some cases used 3- and

https://books.google.com/ngrams
https://books.google.com/ngrams
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Model
Accuracy

Shuffled rhyming
words

Shuffled rhyming
lines

Corrupted rhyming
word

BERT (cased) 0.9414 0.8321 0.7034
GPT-2 0.9423 0.8336 0.6557
Transformer-XL 0.8724 0.6623 0.6188
XLNet 0.9310 0.8227 0.6741
Human 1.0000 0.9500 1.0000

Table 2: Accuracy in all 3 tasks in which we stress test Transformer models, with last line showing the average (2
subjects) human performance. In shuffled rhyming word task, corrupted limerick has two rhyming end-of-the-line
words switch places. Shuffled rhyming lines, as the name implies, switches the position of two lines, e.g. line 1
and 5 trade places and corrupted limerick is rearranged in the line form 5,2,3,4,1. Lastly, in corrupted rhyming
word task we choose one end-of-the-line word at random and replace it with a non-rhyming synonym found in
Merriam-Webster dictionary.

than the corrupted bi-gram, which would translate
to higher difference in bi-gram counts. The Pear-
son correlation for seven tail end cases was 0.71.
This suggests that bi-gram frequency difference is
a moderately good predictor of the log-probability
difference10. Next, we considered examples in
which the model was very confident and wrong. In
all such cases the GPT-2 output could be explained
by bi-gram counts, with correlation of 0.89 for five
extreme tail cases. In other words, the corrupted
bi-grams displayed much higher frequency than
their correct (original) counterparts. Note however,
that this proxy falls apart as correlation reduces
to −0.39 once we include more cases where the
model isn’t as confident.11 Thus, for high confi-
dence scenarios bi-gram statistics explain the dif-
ferences in probabilities the model assigns to either
original or a fake.

6 Conclusion

In this paper we have introduced a first instance of
a Benchmark of Poetic Minimal Pairs (BPoMP), a
framework for the testing of the poetic “knowl-
edge” of a language model. Using a curated
set of limericks we interrogate the abilities of
four Transformer-based language models on three
poetry-based tasks (end-of-the-line rhyme replace-
ment, rhyming word swapping, and rhymed line
swapping) framed as distinguishing a limerick from
a minimally corrupted version. In each case the

4-grams.
10We find a few outliers (with negative frequency differ-

ence) farther from the tail end, where our hypothesis fails.
Table 4 – see the Appendix – presents these outliers as well as
a 3- and 4-gram comparison that supports our hypothesis.

11For correct cases the correlation quickly drops to 0 if
log-probability differences close to 12 are included.

Transformer-based models succeed at a rate better
than chance, but much worse than the perfect and
near-perfect human baseline. The limerick dataset
is made publicly available.

Future near-term contributions to the BPoMP
framework include meter, assonance, and allitera-
tion tested in more complex short poetry. While
the limerick may appear to be a “simple” textual
form, it is in that way a perfect kind of “model
organism” for a more general study of poetry and
even literature. A five-line poem of this form can
still articulate a range of narrative structure and
sophisticated literary devices, but is of a size that
admits relatively easy modification and interroga-
tion – e.g., through the minimal pairs framework.
We hope that this paper and the concomitant data
set release inspire such future work.
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A Appendix

A.1 Compute Resources

For most of the model testing and synonym gen-
eration work we used 2 NVidia Titan X graphics
cards with 12GB of VRAM, running CUDA 11.2.
In parallel, we also used Google Colab with T4
instances that sport 16GB of VRAM and also run
CUDA 11.2.

A.2 OEDILF Description

The limericks are organized according to two cate-
gories: (a) included words contained and (b) topics.
The latter are tags provided by both the managers
of the website and the people who submitted the
limericks. The dictionary part of the website refers
to these words that could be found within a limer-
ick, that is for any word in this dictionary there is a
corresponding limerick that contains this word.

A.3 Identifying Number Of Syllables

Not all words in the vocabulary of our dataset are
present in CMUDict, which only includes 133,779
examples. The full 98,454 limerick dataset (recall
that there were two filtering steps to get us from this
full set to the set used in the experiments) produces
a vocabulary of 110,650 words, of which 55% are
not present in CMUdict. To estimate the number
of syllables in the vocabulary we trained a small
(∼ 9800 parameters) character-level RNN12. The
model consists of an embedding layer, a one-layer
LSTM, with hidden size of 30, and a final linear
layer that outputs back to characters. We train our
charLSTM to be a classifier over 20 classes where
each class determines the number of syllables in a
word. The number 20 was set as an upper bound of
number syllables based on the fact that the longest
syllable word known in dictionaries has 19 sylla-
bles. A simple regression model did not work, nor
did it optimize very well, displaying mode collapse-
like behavior (i.e., consistent prediction of the av-
erage value, which is not useful for our discrete
scenario).

12We based the code from https://github.com/spro/char-
rnn.pytorch

Original Corrupted
To the town, folks from near
and from far

To the town, folks from near
and from way

Come to shop at the weekly
bazaar.

Come to shop at the weekly
bazaar.

Corn and cabbage and milk Corn and cabbage and milk
Can be found beside silk, Can be found beside silk,
As much as can fit in the car. As much as can fit in the car.

Table 3: Example of bigrams we captured for the anal-
ysis. Bigrams are highlighted in color. The limerick
comes from a tail case when the model is correctly very
confident.

Initially, we trained using pure CMUdict and
around 15,000 words were used as a validation set,
with another 118,000 used as as a training set. For
our test set we decided to predict the number of
syllables within lines of 21 limericks (which we la-
belled manually), as it emulates our scenario more
closely than pure prediction of syllables in unseen
words. We removed all of the words present in
limericks from the training set. After analysis we
determined that CMUdict did not contain many
words with more than 11 syllables, so we supple-
mented it with another source: Wiktionary, an open
source dictionary with user-submitted definitions
of words. Wiktionary contains statistics with re-
gards to number of syllables per word13 that can be
scraped quite easily. We were able to obtain train-
ing examples with up to 19 syllables. In total that
gave us additional 40789 training examples. We
trained the model using ADAM optimizer, setting
learning rate to 0.001 until validation loss went be-
low 0.2 (around 10-12 epochs depending on the
optimization curve).

A.4 GPT-2 Analysis And Bi-gram Outliers
In this section we present various supporting ma-
terials we used in our analysis of cases where
the model assigned high probability to a limerick
within a test pair. Table 3 presents an example
limerick pair from our test set, in which GPT-2
correctly guessed the original with high confidence.
We highlight the bigrams we used in our analysis
section 5.2.

13https://en.wiktionary.org/wiki/
Category:English_words_by_number_of_
syllables

https://en.wiktionary.org/wiki/Category:English_words_by_number_of_syllables
https://en.wiktionary.org/wiki/Category:English_words_by_number_of_syllables
https://en.wiktionary.org/wiki/Category:English_words_by_number_of_syllables
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Ngram Original Corrupted
2-gram your senses

6e-07
your feelings
1.73e-06

3-gram to your
senses
1.5-07

to your feel-
ings 6.2e-08

4-gram come to your
senses 9.5e-
08

come to your
feelings NA

2-gram your court
1.3e-07

your yard
1.4e-07

4-gram ball’s in your
court 6e-9

ball’s in your
yard NA

2-gram a time 4.8e-
05

a moment
7.3e-05

3-gram at a time
1.8e-05

at a moment
1e-06

2-gram the hip 1.8-
06

the cool 4.2e-
06

3-gram from the hip
1.3e-07

from the cool
7.4e-08

2-gram for broke
6.9e-08

for poor 1.3e-
06

3-gram go for broke
4.1e-08

go for poor
3.7e-10

2-gram to cheese
4.1e-08

to trash 7.9e-
08

3-gram due to cheese
2.4e-10

due to trash
1.2e-10

Table 4: Outliers: target end-of-the-line word and its
preceding neighbor taken from original and corrupted
limericks which GPT-2 labelled correctly, but whose
bi-gram frequency is higher for the corrupted limerick.
This violates our hypothesis that bi-gram frequency
would be higher for the original limerick. Upon closer
examination we realize that 3- and 4-grams still fit our
hypothesis. If frequency is listed as NA then it was
not found in enough documents within Google Ngram
corpora. Bigger n-grams (compared across rows) are
bolded. The outliers were found when analyzing set of
log-probabilities farther from the tail of empirical dis-
tribution.

Figure 1: Histogram plotting log-probability differ-
ence between original and corrupted limerick. Since
we are plotting correctly identified limerick pairs we
are taking the difference between logP (original) −
logP (corrupted) which is positive. Note the tail cases
that start around 15.12 mark.

Figure 2: Histogram plotting log-probability differ-
ence between original and corrupted limerick. Since
we are plotting incorrectly identified limerick pairs we
are taking the difference between logP (corrupted)−
logP (original) which is positive. Note the barely vis-
ible tail cases that start around 12 mark.


