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Abstract
Text classifiers are regularly applied to per-
sonal texts, leaving users of these classifiers
vulnerable to privacy breaches. We propose a
solution for privacy-preserving text classifica-
tion that is based on Convolutional Neural Net-
works (CNNs) and Secure Multiparty Compu-
tation (MPC). Our method enables the infer-
ence of a class label for a personal text in such
a way that (1) the owner of the personal text
does not have to disclose their text to anyone
in an unencrypted manner, and (2) the owner
of the text classifier does not have to reveal the
trained model parameters to the text owner or
to anyone else. To demonstrate the feasibility
of our protocol for practical private text clas-
sification, we implemented it in the PyTorch-
based MPC framework CrypTen, using a well-
known additive secret sharing scheme in the
honest-but-curious setting. We test the runtime
of our privacy-preserving text classifier, which
is fast enough to be used in practice.

1 Introduction

Text classification is inherently a two-party compu-
tation problem between the owner of a text classi-
fier and the owner of a personal text. Text classi-
fiers are used for a wide variety of purposes, such
as detection of spam and misinformation, sentiment
analysis, tailored advertising, surveillance, etc. In
these applications, the text classifier is often owned
by a company or organization who wants to keep
their model private because it offers a competitive
advantage and/or it was trained on a proprietary
dataset. Deep learning models in particular are
powerful enough to memorize specific examples
from the training data (Carlini et al., 2019), hence
disclosing a trained model can leak very specific
information about training data. Furthermore, in
applications such as spam or misinformation detec-
tion, disclosing the model would help adversaries
to develop strategies for evading detection.

The common practice nowadays is therefore for
the owner of the personal text to disclose their text

to the company or application developer. This in
turn also raises serious privacy concerns, stemming
from misuse of the data by the company for pur-
poses beyond the originally professed scope. Fur-
thermore, while most companies make reasonable
efforts to keep data private, the data itself is a valu-
able asset that is routinely sold when companies
undergo bankruptcy and/or it can become subject
of accidental or intentional public exposure (Canny,
2002; Solon, 2018; Thompson and Warzel, 2019).
Data breaches and intentional misuse of data have
given rise to new laws and regulations, such as
the European General Data Protection Regulation
(GDPR) and the California Consumer Privacy Act
(CCPA), and, orthogonal to this, the use of privacy-
enhancing technologies (PETs) for the develop-
ment of algorithms that do not leak personal infor-
mation about their inputs, thereby protecting the
privacy of all the users involved.

In this paper we propose such an algorithm
for private text classification that, as illustrated in
Fig. 1, allows the owner of a personal text (Bob)
to infer a label using Alice’s text classifier, without
requiring Bob to disclose anything about his text
in an unencrypted manner to Alice, and without re-
quiring Alice to show her trained model parameters
to anyone. To this end, we use Secure Multiparty
Computation (MPC) (Cramer et al., 2015), an um-
brella term for cryptographic approaches that allow
two or more parties to jointly compute a specified
output (the class label) from their private infor-
mation (the classifier and the personal text) in a
distributed fashion, without revealing the private
information to each other.

Initial solutions for private classification of un-
structured text with MPC have been proposed for
logistic regression models and tree based models
(Reich et al., 2019), and for Naive Bayes classifiers
(Resende et al., 2021). All of this existing work
relies on an MPC subprotocol for private feature
extraction, in which a boolean word occurrence
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Figure 1: Private text classification process

vector is created that indicates which words from
Alice’s predefined vocabulary occur in Bob’s text.
In contrast with this, and in line with the fact that
deep learning is current state-of-the-art for many
tasks in natural language processing (NLP), we
propose to perform MPC-based private text clas-
sification with a Convolutional Neural Network
(CNN) that has been trained to extract relevant fea-
tures automatically. To the best of our knowledge
this has not been explored yet in the literature.

The MPC protocols for text classification with
CNNs that we use in this paper, are very similar
to existing MPC protocols for image classifica-
tion with CNNs (Agrawal et al., 2019; Dalskov
et al., 2020; Juvekar et al., 2018; Kumar et al.,
2020; Mishra et al., 2020). The main distinguish-
ing aspect is that image classification is based on
2-dimensional (2D) CNNs, while for text classi-
fication it is common to use 1-dimensional (1D)
CNNs in which the filters move in only one direc-
tion. Existing MPC protocols for inference with
2D CNNs can be straightforwardly adjusted to 1D
CNNs. Our main contribution is therefore in de-
signing the first application of MPC protocols for
CNN-based text classification, and in particular in
addressing a question that has remained open in
the literature thus far, namely to what extent such
provably secure protocols can enable accurate and
fast text classification.

Among deep learning architectures, our choice
for CNNs is deliberate. CNNs have been success-
fully applied for text classification (Kim, 2014)
and offer the important advantage of being com-
putationally less intensive than Long Short-Term
Memory (LSTM) networks or other state-of-the-
art architectures. As such, CNNs are an excellent
“MPC-friendly” starting point to explore deep learn-
ing based private text classification. In Sec. 2 we
describe a multi-channel CNN architecture that we
designed for sentiment analysis of product reviews.
The trained CNN F is owned by Alice in Fig. 1.

In Sec. 3 we describe our MPC protocol πTEXT
for private text classification of Bob’s text with

Quantity of reviews by star rating
1 2 3 4 5

23,783 6,890 8,308 46,693 46,410
negative positive

Table 1: Distribution of reviews by star rating

Alice’s CNN F . As the first step in this process,
Bob prepares his text using preprocessing steps
that are publicly known and do not depend on Al-
ice’s model F nor on the data that Alice used to
train F in any way. In our prototype, the prepro-
cessing consists of converting the text using a pub-
licly available sentence transformer (Reimers and
Gurevych, 2019). Below we refer to both Alice’s
CNN model parameters and Bob’s preprocessed
text simply as “data”. At the start of πTEXT, Al-
ice and Bob send each other encrypted shares of
their data. Subsequently both parties engage in
MPC computations and exchange intermediate en-
crypted results, without learning anything about
the values of the data. At the end of πTEXT, Alice
and Bob each have “shares” of the inferred class
label. The true class label is revealed only when
these shares are combined, e.g. when Alice sends
her shares to Bob.

In Sec. 4 we present results obtained with an
implementation of πTEXT in CrypTen (Knott et al.,
2020), a recently proposed MPC framework built
upon PyTorch. CrypTen realizes MPC through a
well-known additive secret sharing scheme (see
Sec. 3) that guards against honest-but-curious ad-
versaries. A party corrupted by such an adversary
still follows the instructions of the MPC protocol
but attempts to learn information about the data
from the intermediate values and communications
between the parties. A correctly designed MPC
protocol (as πTEXT) prevents such attacks from be-
ing successful. To implement πTEXT, we adapted
and extended existing functionality for private im-
age classification in CrypTen to text classification
with 1-dimensional (1D) convolutional layers and
1D max pooling. Our results in Tab. 2 demonstrate
the practicality of πTEXT as the runtimes are low
enough to be used in practice.

2 Text Classifier

Dataset. We trained Alice’s model on the Software
portion of the Amazon Customer Reviews Dataset.1

1https://s3.amazonaws.com/
amazon-reviews-pds/readme.html

https://s3.amazonaws.com/amazon-reviews-pds/readme.html
https://s3.amazonaws.com/amazon-reviews-pds/readme.html
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Figure 2: The structure of Alice’s CNN

The data consists of product reviews for software
offered on Amazon’s storefront. There are 132,084
reviews total, each with an associated star rating
ranging from one to five (see Tab. 1). The average
length of a review is 63.6 words. We split the data
into 80% for training and 20% for validation, using
a stratified split to ensure the distribution of the
star ratings is identical in both sets. As described
below, we trained a binary classifier for sentiment
analysis over this dataset, treating reviews with
star ratings ≥ 4 as positive instances, and the rest
as negative. We note that, with reproducibility of
results in mind, we used a publicly available dataset.
During deployment of our private text classification
solution, it can be replaced by proprietary text data.

Model Architecture. The text classifier con-
sists of two parts: a public sentence trans-
former and the private CNN belonging to Al-
ice. The sentence transformer we employ
is stsb-distilbert-base (Reimers and
Gurevych, 2019), a model fine-tuned to produce
sentence vectors. This takes as input the raw text
and outputs a 768 dimensional embedding vector.
As this transformer is public, Bob can also use the
sentence transformer to prepare his data for classifi-
cation by Alice’s model. Alice’s model consists of
three parallel series of convolution and pooling lay-
ers, followed by fully-connected layers, ending in
a sigmoid activated classification layer (see Fig. 2).
This model is then trained with a learning rate of
0.002 with a batch size of 50, and loss is calculated
using cross entropy. A dropout of 0.25 is added to
the concatenation layer. The trained model obtains
85% accuracy on the validation data.

3 Private Text Classification

Additive Secret Sharing MPC Scheme. Proto-
cols for Secure Multiparty Computation (MPC)
enable a set of parties to jointly compute the output
of a function over the private inputs of each party,
without requiring any of the parties to disclose their
own private inputs (Evans et al., 2018). MPC is
concerned with the protocol execution coming un-
der attack by an adversary which may corrupt one
or more of the parties. In this paper we assume
a set-up with two parties (Alice and Bob), one of
which may be corrupted by an honest-but-curious
adversary. “Honest-but-curious” means that a cor-
rupted party still follows the instructions of the
protocol, but the adversary attempts to learn private
information from the internal state of the corrupted
party and the messages that it receives. MPC pro-
tocols that are secure against honest-but-curious
adversaries prevent such leakage of information.

In the additive secret sharing MPC scheme that
we use, all computations are done on integers mod-
ulo q, i.e., in a ring Zq = {0, 1, . . . , q − 1}. To
map real numbers, such as the trained CNN model
parameters, into this ring, we use a fixed point rep-
resentation with 16 bits of precision for the man-
tissa. A value x is secret-shared over Zq between
parties Alice and Bob by picking xA, xB ∈ Zq

uniformly at random subject to the constraint that
x = xA + xB mod q, and then revealing xA to
Alice and xB to Bob. We denote this secret sharing
by [[x]], which can be thought of as a shorthand for
(xA, xB).

Secret-sharing based MPC works by first having
the parties split their respective data in secret shares
and send some of these shares to each other. To any
individual party, their shares of x look like random
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noise. Only when all of the shares are combined
together is the true value of x revealed.

When Alice and Bob have secret-shared num-
bers [[x]] and [[y]], they can straightforwardly com-
pute [[x+ y]] by adding their own shares. To com-
pute [[x · y]], Alice and Bob run a secure multipli-
cation protocol πmul that requires communication
between the parties, using a well-known technique
with Beaver Triples (Beaver, 1997). These triples
can be generated by a trusted initializer (TI) that
distributes correlated randomness to Alice and Bob
and otherwise does not participate in the computa-
tions at all. This is the technique used in CrypTen
(Knott et al., 2020) and adopted in the experiments
in Sec. 4. Such a TI can be thought of as a third
party, next to Alice and Bob, making the setting
used in our experiments effectively a three-party
configuration. In case a TI is not available or desir-
able, the required triples can be pre-computed by
Alice and Bob in an online phase using an MPC pro-
tocol to emulate the TI (Damgård et al., 2012); this
method is currently not yet supported in CrypTen.

Building on the cryptographic primitives for ad-
dition and multiplication, MPC protocols for other
operations have been developed in the literature,
many of which we use in turn to build our protocol
πTEXT. Of note is the secure comparison protocol
πcomp, which works by computing the difference of
two secret-shared numbers [[x]] and [[y]] and extract-
ing the most significant bit, effectively returning
[[1]] if x < y, and [[0]] otherwise (more details in
(Knott et al., 2020)).

MPC Protocol πTEXT. At the start of the proto-
col for private text classification, Alice has a CNN
model with trained model parameters F , and Bob
has an embedding vector D of his text obtained
after preprocessing.

• Bob secret-shares vector D with Alice
• Alice secret-shares CNN parameters F with Bob
• Alice and Bob jointly perform computations on

the secret sharings [[F ]] and [[D]], following the
computational graph of [[F ]] on [[D]]. To this end,
for each operation on each layer of the CNN,
Alice and Bob execute the appropriate MPC sub-
protocols, which include:
– πConv1D: This operation reduces to the mul-

tiplication of secret-shared filter weights with
secret-shared input values, and is thus trivially
implemented with πmul.

– πMaxPool1D: The MaxPool operation is per-
formed through pairwise comparisons with

πcomp of secret-shared values in a tournament
style to determine secret shares of the maxi-
mum value for each window.

– πReLU : Alice and Bob compute the ReLU acti-
vation function of a secret-shared number [[x]]
by computing πmult ([[x]], πcomp ([[x]], 0)).

– πDense: Application of dense layers reduces to
multiplication of matrices with secret-shared
numbers, which is an extension of πmul.

– πSigmoid: Alice and Bob compute the sigmoid
activation function of a secret-shared num-
ber [[x]] using the approximation described by
(Knott et al., 2020).

• Alice and Bob execute πcomp on the secret-
shared output of the CNN to obtain secret shares
of the class label.

4 Results

We implemented πTEXT in CrypTen, taking advan-
tage of CrypTen’s architecture, which allows to
overwrite Torch functions with MPC protocols. All
subprotocols needed for πTEXT already existed in
the branch crypten-v0.1, barring the πConv1D and
πMaxPool1D protocols. We ported πConv1D from
the master branch of CrypTen, and we constructed
πMaxPool1D ourselves.

In our tests, using πSigmoid to approximate the
Sigmoid function made no statistically significant
impact on the accuracies. On a test set contain-
ing 20,417 instances, using πSigmoid resulted in
17,351 correct classifications, whereas its plaintext
counterpart provided 17,350 correct classifications,
i.e. an accuracy of 85% across the line. In other
words, our use of MPC does not cause accuracy
loss. The code we used to run our tests is located on
our fork of the CrypTen repository,2 on the branch
“crypten-v0.1”.

For our tests, we set up three VMs on Azure,
namely one for Alice, one for Bob, and one for the
TI. The VMs are Standard L16s_v2, with 16 vC-
PUs, 128 GiB memory, and an expected network
bandwidth of 6400 Mbps. In our experiments, de-
spite having access to large amounts of memory,
the parties never used more than 5 GiB at a time.

The TI never sees Alice’s or Bob’s data. Since
the TI’s activities are independent of the data that
is used as input for the MPC protocols, MPC proto-
cols can be separated in an off-line phase – during
which the TI generates correlated randomness and
distributes it to Alice and Bob – and an online

2https://github.com/SamuelDAdams/
CrypTen

https://github.com/SamuelDAdams/CrypTen
https://github.com/SamuelDAdams/CrypTen
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L16s: Private Text Classifier Runtimes
# Instances Sequential (sec) Batched (sec)

200 151 21
400 296 44
600 445 65
800 596 88

1000 734 110

Table 2: Runtime results (in seconds) to privately clas-
sify “#Instances” using πTEXT on Standard L16s_v2
VMs. “Sequential” denotes the protocol is run one in-
stance at a time, and “Batched” shows the runtime to
classify all instances in a single batch. All results are
an average over 5 runs.

phase – during which Alice and Bob execute the
MPC protocols. In CrypTen this separation is not
made, hence the results in Tab. 2 include both the
offline and the online phase.

Tab. 2 shows the runtime results of πTEXT when
privately classifying various amounts of instances
(texts). On average, it takes roughly 0.74 sec-
onds to classify a single instance using the sequen-
tial method, and 0.11 seconds using the batching
method. Batching the classification task outper-
forms classifying data sequentially by a wide mar-
gin. This is because when batching, the parties
can also batch communication rounds during the
protocol execution, reducing the communication
complexity. The time it takes to classify text is
reasonably low, and would lend itself to real life
applications, showing that MPC-based private text
classification with deep learning models is feasible
in practice.

5 Conclusion and Future Work

We have presented and evaluated the first applica-
tion of MPC-based privacy-preserving text classi-
fication with CNNs. Our solution involves model
owner Alice, who has a multi-channel CNN for text
classification, and text owner Bob who transforms
his text into an embedding vector using a publicly
available BERT model. Next Alice and Bob secret
share their inputs and run an MPC protocol to label
Bob’s text with Alice’s model in a provably privacy-
preserving manner. Our protocol takes ∼ 0.74 sec
to classify a text when run in sequential mode, and
∼ 0.11 sec when run in batch mode on Standard
L16s_v2 Azure virtual machines with an expected
bandwidth of 6400 Mbps. These runtimes are inde-
pendent of the length of the text, as the embedding
vector has a fixed length.

Our work serves as a baseline for MPC-based
text classification with deep learning that can be
improved upon in many ways. From an NLP point
of view, we have assumed that Bob can preprocess
his text based on public knowledge, in particular
with a sentence transformer model that is in no way
dependent on Alice’s training data or model param-
eters. While many text preprocessing algorithms
are standard and publicly available to all parties
(e.g. for stemming, tokenization, etc.), others may
involve proprietary information. Pre-trained ver-
sions of language representation models that are
publicly available can for instance be fine-tuned
by model builders (such as Alice) on task specific
data, leading to proprietary word or sentence em-
bedding models that the model owners would not
want to disclose. The development of effective and
efficient MPC protocols for converting raw text
into embedding vectors with state-of-the-art trans-
former architectures is an open problem.

From a security perspective, there exist a variety
of MPC schemes beyond the one we considered in
this paper, designed for different numbers of par-
ties and offering various level of security that corre-
spond to different threat models and come with dif-
ferent computational costs. Regarding threat mod-
els, besides honest-but-curious adversaries, there
exist MPC schemes that protect against malicious
adversaries that corrupt parties to deviate from the
protocol instructions. Regarding the number of
parties, some of the most efficient MPC schemes
have been developed for three computing servers,
out of which at most one is corrupted (i.e. honest
majority) by an honest-but-curious or a malicious
adversary. While text classification is inherently a
(dishonest majority) two-party computation prob-
lem between the model owner Alice and the text
owner Bob, MLaaS (machine learning as a service)
set-ups in which Alice and Bob secret share with,
and outsource the computations to, three servers in
the cloud are growing in popularity in the privacy-
preserving ML literature because of their efficiency
(Dalskov et al., 2020; Kumar et al., 2020; Riazi
et al., 2018; Wagh et al., 2019; Patra and Suresh,
2020). The use of these different MPC schemes for
privacy-preserving text classification is an interest-
ing direction for future work.
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