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Abstract

Differentially-private mechanisms for text gen-
eration typically add carefully calibrated noise
to input words and use the nearest neighbor
to the noised input as the output word. When
the noise is small in magnitude, these mecha-
nisms are susceptible to reconstruction of the
original sensitive text. This is because the near-
est neighbor to the noised input is likely to be
the original input. To mitigate this empirical
privacy risk, we propose a novel class of dif-
ferentially private mechanisms that parameter-
izes the nearest neighbor selection criterion in
traditional mechanisms. Motivated by Vickrey
auction, where only the second highest price
is revealed and the highest price is kept private,
we balance the choice between the first and the
second nearest neighbors in the proposed class
of mechanisms using a tuning parameter. This
parameter is selected by empirically solving
a constrained optimization problem for maxi-
mizing utility, while maintaining the desired
privacy guarantees. We argue that this em-
pirical measurement framework can be used
to align different mechanisms along a com-
mon benchmark for their privacy-utility trade-
off, particularly when different distance met-
rics are used to calibrate the amount of noise
added. Our experiments on real text classifica-
tion datasets show up to 50% improvement in
utility compared to the existing state-of-the-art
with the same empirical privacy guarantee.

1 Introduction

Over the past decade, privacy-preserving machine
learning has emerged as a hot topic in a variety
of real world speech and language applications.
In natural language processing (NLP), ensuring
data privacy in machine learning tasks is especially
challenging because text data tends to be rich in
sensitive and potentially identifiable information
about the users that contributed to these datasets.
The literature is replete with approaches pro-
posed for privacy-preserving text analysis, such
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as replacing sensitive information with general
terms (Cumby and Ghani, 2011; Anandan et al.,
2012; Sanchez and Batet, 2016), injecting addi-
tional words into original texts (Domingo-Ferrer
et al., 2009; Pang et al., 2010; Sanchez et al.,
2013), as well as k-anonymity and its variants
(Sweeney, 2002; Machanavajjhala et al., 2007; Li
et al., 2007). However, these methods are provably
non-private and have been shown to be vulnerable
to re-identification attacks (Korolova et al., 2009;
Petit et al., 2015). To ensure a quantifiable privacy
guarantee, differential privacy (DP) has become the
de facto standard for privacy-preserving statistical
analysis (Dwork et al., 2006; Dwork, 2008; Dwork
et al., 2014), with applications to text analysis.

At a high level, a randomized algorithm is differ-
entially private if the output distributions from any
two neighboring databases are (near) indistinguish-
able. This indistinguishability is controlled by a pri-
vacy parameter, which, in the case of text analysis,
is often scaled by the distance between neighboring
datasets to capture the semantic similarity between
different words (Feyisetan et al., 2019; Fernandes
et al., 2019; Feyisetan et al., 2020; Xu et al., 2020).
This calibration enables the mechanisms to enjoy
metric-DP (Andrés et al., 2013; Chatzikokolakis
et al., 2013), which was first introduced as a gener-
alization of local DP (Kasiviswanathan et al., 2011)
for protecting location privacy. Observe that a di-
rect application of local DP mechanisms will be too
restrictive because it requires that the probability
ratio between the output distributions of any two
words in the vocabulary be bounded by some fixed
constant. Due to the high dimensional nature of
textual tasks and very large vocabulary sizes (e.g.
2.2M words for GLOVE common crawl (Penning-
ton et al., 2014)), this can lead to adding a lot of
noise for achieving the desired privacy guarantees,
severely impacting the utility of the NLP task.

Comparing Metric-DP Mechanisms. In the con-
text of text analysis, we are given a vocabulary
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set VW and an embedding function ¢ : W — RP,
where p is the dimensionality of the embedding
model. For any € > 0, a mechanism M : W — W
is said to be e differentially private with respect to
a given metric d : RP x RP — [0, 00) if for any
w,w’, 1w € W, the following holds:

PriM(w) =@} _ cafo(w)sw))
Pr{M(w') = w} ~ '

The probabilistic guarantee in (1) ensures that
the log probability ratio of observing any out-
put @ given two inputs w and w’ is bounded by
ed{p(w), p(w')}. This makes metric-DP less re-
strictive in that the indistinguishability of the output
distributions is scaled by the distance between the
inputs. If d{¢(w),p(w")} = L(w # w'), then
metric-DP reduces to standard DP.

Note that while metric-DP allows for a flexible
privacy budget calibrated by not only € but also
the distance metric, this flexibility makes it harder
to interpret the privacy parameter €. For example,
in standard DP, ¢ = 30 essentially means negli-
gible privacy guarantee since €’ i

)

18 an astronom-
ically large probability ratio; however, € = 30 is
common in the metric-DP literature (Fernandes
et al., 2019; Feyisetan et al., 2020; Xu et al., 2020)
and still provides meaningful privacy guarantees.
This is because the pairwise distance in the word
embedding space can be small floating numbers,
which brings exp (30d{¢(w), #(w’)}) to a reason-
able scale. Thus, € alone cannot fully characterize
the privacy guarantee without the knowledge of
the underlying metric space. More importantly,
this indicates that the privacy guarantees from DP
mechanisms with respect to different metrics are
not directly comparable using only their e values.

Our Contributions. A common feature in the
existing metric-DP text generation mechanisms is
to add a calibrate noise to the input word embed-
ding and then output the nearest neighbor to the
noisy embedding as the output. However, when
the additive noise is small in magnitude, the input
word is likely to remain unchanged, which may
constitute an empirical privacy risk because it is
trivial for the adversary to reconstruct the original
word. To mitigate this issue, we present a novel
class of metric-DP text generation mechanisms in
this paper. Motivated by the Vickrey auction (Vick-
rey, 1961) scheme, also known as the second-price
auction, we refer to this class of mechanisms as
Vickrey mechanisms.
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Just as in a Vickrey auction, where only the sec-
ond highest price is revealed! and the highest price
is kept private, the proposed Vickrey mechanisms
generalize the noisy nearest neighbor selection by
including the second nearest neighbor in the selec-
tion pool using a tuning parameter. The inclusion
of the second nearest neighbor greatly reduces the
empirical reconstruction risk on the original word.

To select the tuning parameter above, we present
a strategy based on optimizing the empirical
privacy-utility tradeoff. The empirical privacy mea-
surement is constructed in the context of analysis
on de-identified text, which quantifies the risk on
how well an adversary can reconstruct the original
text based on the observed (possibly perturbed) text.
The better the reconstruction, the lower the empir-
ical privacy guarantee. This general framework
allows comparing text generation mechanisms that
use different distance metrics (see Section 3).

We emphasize that our empirical privacy metric
does not supersede the metric-DP guarantee; in-
stead, it provides a new dimension along which dif-
ferent metric-DP mechanisms can be aligned. We
say that, within the class of metric-DP mechanisms,
an optimal mechanism is the one that maximizes
the empirical privacy guarantee while keeping the
utility loss of the downstream task under some max-
imum tolerable budget. This definition for privacy-
utility tradeoff, modeled as a constrained optimiza-
tion problem, resembles the literature on protecting
privacy for location data (Shokri et al., 2011, 2012;
Clark et al., 2019). We extend the analysis for the
broader class of metric-DP mechanisms. Addition-
ally, in our experiments, we demonstrate that our
proposed Vickrey mechanisms outperform existing
mechanisms with respect to the empirical privacy-
utility tradeoff on real text classification datasets.

Related Work. Metric-DP (Andrés et al., 2013;
Chatzikokolakis et al., 2013; Laud et al., 2020),
an extended notion of local DP (Kasiviswanathan
et al.,, 2011), is a popular tool for privacy-
preserving text analysis. A text generation mecha-
nism that satisfies DP with respect to the hyperbolic
distance metric was proposed in (Feyisetan et al.,
2019). This mechanism requires specialized train-
ing of word embeddings in the high-dimensional
hyperbolic space. For word embeddings in the
Euclidean space, like GLOVE (Pennington et al.,
2014) or FASTTEXT (Bojanowski et al., 2017),
mechanisms like the Laplace mechanism (Lo met-

'to ensure incentive-compatibility



ric) (Fernandes et al., 2019; Feyisetan et al., 2020)
and the Mahalanobis mechanism (using a regular-
ized Mahalanobis metric) (Xu et al., 2020) have
been proposed. However, a structured comparison
of these different mechanisms remains unclear.

Empirical privacy measurements. A variety of
empirical techniques for privacy measurement have
been proposed for many different applications. In
the membership inference attack literature (Shokri
etal., 2017; Yeom et al., 2018; Salem et al., 2018;
Song and Shmatikov, 2019), an AUC based de-
tectability metric is commonly used to quantify the
information leakage from machine learning mod-
els about their training data. However, the model
trained on a given dataset can only serve as a proxy
to estimate its privacy guarantee. Moreover, the
detectability metric can vary across different ma-
chine learning models and implementations of the
inference attack based auditors.

Hypothesis testing based approaches have also
been proposed to empirically estimate e (Ding et al.,
2018; Gilbert and McMillan, 2018; Liu and Oh,
2019). However, the assumptions in these methods
constrain their general applicability. In a recent line
of work on privacy-preserving text analysis (Feyise-
tan et al., 2020; Xu et al., 2020), privacy statis-
tics defined as (i) probability of inputs not being
redacted, and (ii) number of distinct outputs given
a fixed input, have been used to characterize the
empirical privacy of a text generation mechanisms.
While those metrics are intuitive and descriptive,
there is not a direct association that relates them
to the privacy leakage. Within the class of metric-
DP text generation mechanisms, the corresponding
definition of empirical privacy-utility tradeoff is a
constrained optimization to maximize the empir-
ical privacy while keeping the utility loss under
a preset budget. This constrained setup can find
its precedent in the location data privacy literature
(Shokri et al., 2011, 2012; Clark et al., 2019). We
differ in their approach as we require the optimal
mechanism to also satisfy metric-DP.

2 The Class of Vickrey Mechanisms

To motivate our construction of the Vickrey mech-
anisms, we begin by discussing the limitations
of a general approach in the existing metric DP
text generation mechanisms. We denote by W =
{w1,...,wy,} the vocabulary set containing n dis-
tinct words, and by ¢ : VYW — RP a fixed embed-
ding function that maps each word in the vocabu-
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lary set to a p—dimensional real vector (referred to
as the embedding for the word).

A common first step is to sample an addi-
tive noise Z from a density function p(z) o
exp{—d(z,0)}, where d is the distance metric used
in the mechanism?. For example, the Laplace mech-
anism uses d(z,y) = ||z — y||2 (also known as
Euclidean or Lo distance), and the Mahalanobis
mechanism uses d(z,y) = \/(z — y)X"1(z — y)
(also known as Mahalanobis distance), where X is
the sample covariance of the word embeddings.

Once the noise is sampled, it is then added to
the input word embedding and the word with an
embedding that is nearest to this noised embedding
is chosen as the output:

Woutput = arg min d(¢(Winput) + Z, w).
weW

A limitation of this noisy nearest neighbor selec-
tion is that when | Z| is small (in particular, smaller
than half the distance from the input word to its
nearest neighbor), the first nearest neighbor to the
noised embedding is the same as the original input
word. The problem is exaggerated for rare words,
which exist in the sparse regions of the embedding
space and hence, do not get perturbed even for
larger noise scales. This makes it easier for an ad-
versary to reconstruct the original word, which may
contain sensitive information (e.g. street names).

The proposed Vickrey mechanisms generalize
the noisy nearest neighbor selection step by dis-
tributing the selection probability between the first
and second nearest neighbor® using a tuning pa-
rameter ¢ € [0, 1] (see Algorithm 1). Intuitively,
this generalization makes the reconstruction of the
original input word harder (see Figures 1 and 2).

We capture our intuition for the claim above in
Figure 1. For simplicity, the horizontal axis in both
plots represents the one-dimensional embedding
on a vocabulary containing only 5 words: (A, B,
C, D, E). The vertical axis represents the output
probability of each word through the mechanism.
The plots represent the output probability in the
mechanism for each of the 5 words, corresponding
to the potential noised embedding values on the
horizontal axis. The top plot represents the Laplace
mechanism when only the first nearest neighbor

2We use the standard definition of a metric, which requires
the distance function to satisfy (1) d(z, z) = 0 for all z; (2)
d(z,y) > 0 for y # x; and, (3) the triangle inequality.

3See Section 5 for a general construction using k nearest
neighbors and our experimental results for the same.
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Figure 1: Word probability in the Laplace mechanism
(top) and the Vickrey mechanism (bottom) at0 < ¢ < 1
for each of the 5 words as a function of the noised one-
dimensional embedding. The Vickrey mechanism in
this example always has two candidate words as output.

Algorithm 1: The Vickrey Mechanism

1 Input: String s = wyws ... wy, metric d, privacy
parameter €, tuning parameter ¢ € [0, 1]

2 for w; € sdo
3 Sample Z with density p(z) o exp{—ed(z,0)}.

Obtain ¢; < ¢p(w;) + Z.

4

s Let @i1 wg;ﬂg{'ygt}u@ — ¢(w)]|2, and
w22 A wel/eigf{gmwll}”d)l - d)(’lU)HQ
6 Set
;1 with prob. p(t, ¢;)

,where
with prob. 1 — p(t, ¢;)’

A=) 6(Ws2)— bill2 _
t)|p(@041)—dill2+(1—t) | ¢(Di2) —dill2
§=wiWs...Wny.

7 return

to the noised embedding is feasible for selection
(t = 0). In this case, all 5 curves are step functions
since only the nearest neighbors are returned. The
bottom plot shows the output probability for the
Vickrey mechanisms, which always impart plausi-
ble deniability with another word when the noised
embedding falls in any open interval.

Overview of Algorithm 1. We outline the main
steps for the class of Vickrey mechanisms in Al-
gorithm 1. For each word in the input, an additive
noise Z is sampled according to the density func-
tion p(z) o exp{—d(z,0)}. Then the Vickrey
mechanism will select both the first and second
nearest neighbor of the noised embedding as candi-
dates, and randomly output one of them according
to probabilities calibrated by their distances to the
noised embedding using a tuning parameter ¢. The
closer t is to 1, the more the Vickrey mechanism
favors the second nearest neighbor.

Privacy Analysis. We formally prove that the Vick-
rey mechanism M at privacy parameter € > 0
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enjoys € metric-DP guarantee for any ¢ € [0, 1].
Theorem 1. For any t € [0,1], € > 0, metric d
and w,w',w € W, the Vickrey mechanism Mf
from Algorithm 1 satisfies metric-DP:
Pr{M;(w) = i}
Pr{M(w) = 0}
Proof. Define Qy = {v € RP : ||v — ¢(w;)]|2 <

lo = ¢(w))llz2 < ity fusy} 0 — B(w)]2}
to be the set that has w; and w; as the first and
second nearest neighbors. Let p,,(z) be the density
function for the perturbed embedding conditional
on the input w:

Puw(2) o exp (—ed{z — ¢(w), 0})
Since metric d satisfies the triangle inequality,
¢(w'), 0} —d{z—¢(w),0} < d{d(w), p(w’
we obtain:

e—edlz=3(w)0} < ged{3(w)p(w)} ,—ed{z—o(w

< exp (ed{g(w), p(w')}) .

d{z— )}

1,0}

which is equivalent to the inequality p,(z) <
ecdio(). 0w}y | (z). For brevity, let

2= o)l + (1= )]z — o(w))ll>

and p(w,w) = Pr{Mf(w) = w}. Since p(w, W)
is a sum of partial probabilities in the areas where
w is either the first or the second nearest neighbor
to the noised embedding, we have:

=3 et
+z /

Clw.) [Z /Q ot
+3 /

as,
= C(w, w’) Pr{ M (v’

I(t, 2)dz

2){1 — oy, (t, z)}dz

oy’ (t,2)dz

2){1 — oy, (t, z)}dz

) =},
where C'(w, w') = e“He):2(W} a5 desired. [

For our experiments, we use the Euclidean dis-
tance for d so that the Vickrey mechanism reduces
to the Laplace mechanism when ¢ = 0. In general,
any distance function d that satisfies the triangle
inequality can be used to ensure the desired metric-
DP guarantee (quantified by the parameter ¢).



3 Tuning Parameter Selection

We now discuss how to select the tuning parameter
in Algorithm 1. We do this by optimizing an em-
pirical formulation of the privacy-utility tradeoff.
We discuss the details of this formulation next.

3.1 General Framework for Empirical
Privacy Utility Tradeoff

Let M : W — W denote some privacy-preserving
text generation mechanism (that maps words to
their noised versions). Define fys(w'|w) =
Pr{M(w) = w'} to be the probability of observ-
ing w’ as the output of the mechanism M from the
input word w. Note that this probability is condi-
tioned on the knowledge of w. We assume a prior
probability measure 7 : YW — [0, 1], which repre-
sents the adversary’s domain knowledge about the
NLP task and distribution of words in the dataset
under consideration. Depending on the use case,
the prior distribution 7 can be chosen as uniform,
which means the user has no information on the
word distribution in the context; or 7 can be chosen
as the empirical word distribution in the corpus on
which the user wishes to perform text generation.

Given this formulation, we define the expected
utility loss for mechanism M as follows:

> w(w) fur(w'|w)dp (w,w'),  (2)

w,w' EW

Ly 2

where dr, : W x W — [0, 00) is a utility-specific
distance metric. The utility loss can be bounded
as Ly < C for some bound C > 0, depending on
the maximum tolerance for the underlying task.
To model the empirical privacy loss, we assume
an informative adversary A that uses the prior
7 and has full knowledge of the text generation
mechanism M and the parameter € used (similar
to (Shokri et al., 2011, 2012)). This adversary uses
the posterior probability of each word given the
observed perturbed output to make its inference:

m(w') far (@]w’)
> wew m(w).far (w'|w)’

Thus, from A’s perspective, the expected inference
error with respect to M is given by:

- N

ga(wlw') 3)

Ey= Y w(w)far(ww)ga(lo!)dp(i,w),

w,w’ W
“4)
where dg : W x W — [0,00) is some privacy-
specific distance metric. Our goal is, therefore,
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Algorithm 2: Empirical Parameter Selec-
tion for the Vickrey Mechanism

1 Input: Vocabulary WV, maximum utility loss C,
sampler for the Vickrey mechanism M at any
privacy parameter € > 0 and tuning parameter
te[0,1]

Initialize Fmax < 0,€ < €g,t < 0

while LMf 2 C do
| sete=2e

set Bmax E]\/[tf , €opt < €, Lopt < 0

fort € [0.05,0.1,...,1] do

If L]uts < C and E]u{ > Fmax,
set Fmax <— EMf, €opt < € Topt 1
return €qp¢, topt.

e N ! s W

to find a mechanism within the class of metric-
DP mechanisms M that maximizes the expected
inference error E); while keeping the utility loss
L below C:

5

Moptimal = arg ArJnea/\)il Ey, st Ly < C.
To compare different mechanisms, we will compare
their expected inference error F'y; under different
tolerance thresholds on the expected utility loss
Ljs. We favor mechanisms with high E;, while
maintaining L; < C.

Note that d;, and dg do not have to be the same
distance metrics. For instance, d;, can depend on
the downstream machine learning tasks, like the ab-
solute difference in classification error, perplexity
or even cross-entropy loss. From the privacy per-
spective, a natural choice is dg(w,w) = 1(w #
w), which means the adversary attempts to retrieve
the original word from the redacted output and con-
siders the inference attack successful if the inferred
word is the exactly same as the input word. Based
on applications, the adversary can also choose dg
to be the Euclidean distance such that the goal of
the inference attack is to have the inferred word as
close to the original word as possible.

3.2 Selecting the Tuning Parameter

We outline the main steps for optimizing the pri-
vacy parameter € as well as the tuning parameter ¢
in Algorithm 2. This optimization is with respect to
the empirical privacy-utility tradeoff as laid out in
(5). We initialize with the privacy parameter € = €g
at some small initial value €y and tuning parameter
t = 0, so that the initial mechanism is essentially
a metric-DP mechanism that implements the noisy
first nearest neighbor selection. Next, we incre-
mentally double the value of € until the expected



utility loss Ly < C' (recall that a smaller e typi-
cally has larger utility loss*). Once the maximum
€ 18 obtained, we iterate over different values of ¢
between 0 and 1 (since a monotonicity assumption
cannot be made here in general for the behavior of
Er). The final parameters €,,; and ¢,,; chosen pro-
vide the highest empirical privacy while keeping
the utility loss within the specified budget. More
importantly, Theorem 1 ensures that the selected
mechanism enjoys at least as much metric DP as
the initial mechanism, which implements only the
nearest neighbor selection.

4 Experimental Results

Setup. We evaluate the performance of the pro-
posed Vickrey mechanisms in terms of the empiri-
cal privacy-utility tradeoff on three datasets:

* The Product Reviews dataset consists of a list
of 2,006 positive sentiment words and 4,783
negative sentiment words extracted from cus-
tomer reviews (Hu and Liu, 2004). This is
a word-level dataset and the metric dj, in
expected utility loss is 1{sentiment(w’) #
sentiment(w)}, i.e., the loss is incremented
when a positive sentiment word is redacted
into a negative sentiment word, or vice versa.

The IMDb Movie Reviews dataset (Maas et al.,
2011) has a total vocabulary size of 145,901,
where a pre-specified set of 26,078 words
are subject to redaction in the text generation
mechanism (those are the words selected for
adversarial model training in (Jia et al., 2019)).
The utility task is the sentence-level binary
sentiment classification, where the underlying
model is a bidirectional LSTM using 90% of
the data for training and 10% for testing.

The Twitter dataset contains 7,613 tweets,
with a vocabulary of 22,013 words’. Each
tweet is associated with a label indicating
whether the tweet describes a disaster event or
not. The classification model is a bidirectional
LSTM using 9:1 data split for training/testing.

For all three datasets, we consider both 300-
dimensional GLOVE embeddings (Pennington

* An implicit assumption we make in Algorithm 2 is that
L increases monotonically with e, following the intuition
that a larger noise scale leads to larger utility loss. We defer
the discussion around relaxing this assumption to future work.

Shttps://www.kaggle.com/c/
nlp-getting-started
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et al., 2014) and 300-d FASTTEXT embeddings
(Bojanowski et al., 2017). The empirical privacy
measurement uses the adversary’s expected infer-
ence error rate, i.e. dg(w,w) = 1(w # w). The
utility-specific metric dy, is chosen to be the mis-
classification error rate. The prior word distribution
is chosen to be the empirical word distribution in
the dataset, because we want to assume an infor-
mative adversary so as not to underestimate the pri-
vacy risk. In the Vickrey mechanism, the distance
function is the Euclidean distance, so that ¢ = 0
is equivalent to the Laplace mechanism (Feyisetan
et al., 2020). We also compare our results with the
Mahalanobis mechanism (Xu et al., 2020).

Results and Observations. In Figure 2(A) -
2(D) shows the empirical privacy-utility tradeoff
on the Product Reviews between the Laplace mech-
anism, Mahalanobis mechanism, and the Vickrey
mechanisms with tuning parameter at to 0.25, 0.5,
0.75, and 1. The vertical axis in all plots represents
the adversary’s inference error in the mechanism.
The error bars are computed over 100 runs. In
the 2(A), the horizontal axis is the privacy bud-
get e. When € approaches 0, the inference error
in all mechanisms approach 1, which is expected
because magnitude of the additive noise is large.
When € increases, the inference error drops, but
the drop in Laplace mechanism is much faster than
the other mechanisms. It is worth noticing that
the curves for Laplace mechanism and the Vickrey
mechanisms are mostly parallel with each other:
when ¢ increases from O to 0.75, a higher value of
t is better in terms of empirical privacy at the same
€; but when ¢ increases to 1, the empirical privacy
will not further increase since the randomness in
noisy selection between the first and second nearest
neighbor is replaced by the deterministic selection
of the second nearest neighbor, which makes the
adversary’s inference attack easier by finding the
second nearest neighbor. However, Vickrey mecha-
nism at ¢ = 1 still dominates Laplace mechanism
which only selects the noisy first nearest neighbor
for redaction. The slope for the Mahalanobis mech-
anism is different from the rest, where intersects
with Vickrey mechanisms with different ¢ at differ-
ent e. At e = 100, the baseline Laplace mechanism
has negligible inference error, which means the ad-
versary can almost always make correct guesses,
whereas in the other mechanisms the error is still
substantial.

Figure 2(B) plots inference error vs. misclassi-
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Figure 2: (A): empirical privacy vs € on Product Reviews using 300-d GLOVE. (B): empirical privacy vs utility loss
on Product Reviews using 300-d GLOVE. (C): empirical privacy vs € on Product Reviews using 300-d FASTTEXT.
(D): empirical privacy vs utility loss on Product Reviews using 300-d FASTTEXT. (E) - (H) are for IMDD reviews,

and (I) - (L) are for Twitter dataset.

fication error of words (positive words to negative
words, or vice versa). When vertically slicing the
plot, we see that for each utility loss budget greater
than 0.1, a larger value of ¢ will result in a better
privacy guarantee. When capped at a maximum
€ = 100, the curves with a higher ¢ value will have
a higher minimum feasible misclassification error,
which is around around 0.02 for ¢ = 0.25 and Ma-
halanobis, about 0.04 for ¢ = 0.5, about 0.06 for

= 0.75, and about 0.1 for ¢ = 1. This is ex-
pected because as more weight is put on the second
nearest neighbor, the utility loss becomes larger
at large ¢ values (small noise), because it is more
likely that the original word will get changed to its

17

neighbors. But this loss is upper bounded by the
nearest neighbor replacement, which tends to be
small as is shown in the experiments in the paper.
The plot suggests that if the user has a maximum
utility loss budget of 0.06, they should go with the
Vickrey mechanism at ¢ = 0.75 because when slic-
ing vertically at misclassification error of 0.06, the
green curve for ¢ = 0.75 attains a higher empiri-
cal privacy than the other mechanisms. However,
when the utility loss budget is 0.02, the user should
choose ¢t = (.25 because the green line is on top
of the other curves (red and black) that can achieve
the utility loss of 0.02 (the blue, cyan, and purple
curves cannot achieve utility loss within 0.02 when



€ is capped at 100). Figure 2(C) and 2(D) on Prod-
uct Reviews using 300-d FASTTEXT embedding
show similar patterns as those in 2(A) and 2(B) in
terms of the privacy-utility tradeoff.

The results and interpretations are qualitative
similar in Figure 2(E) - 2(H) on IMDb Movie Re-
views and in Figure 2(I) - 2(L) on Twitter. In em-
pirical privacy vs € plots, the Laplace mechanism
consistently has a lower value of empirical privacy
measure than the Vickrey mechanism and the Ma-
halanobis mechanism. This gap in adversary’s in-
ference error becomes wider as e increases. In the
privacy vs utility loss plots, the difference between
mechanisms is more significant on Twitter than on
IMDb reviews. The patterns are consistent across
plots, which both show that the Vickrey mechanism
can improve the privacy-utility tradeoff beyond the
baseline mechanism.

The difference in the result between GLOVE and
FASTTEXT, particularly in 2(E) vs. 2(G) and 2(I)
vs. 2(K), is due to the difference in inter-word
distance distributions between the two embedding
spaces (see Figure 1 in (Feyisetan et al., 2020)). In
particular, the inter-word distances are generally
smaller in FASTTEXT than in GLOVE, so that for a
fixed noise scale ¢, the inference error is expected
to be larger in FASTTEXT than in GLOVE.

S Generalizing Vickrey Mechanism
Beyond the Second Nearest Neighbor

By a random selection of both the first and the sec-
ond nearest neighbor to the noised embedding, we
have shown that the Vickrey mechanism can empir-
ically improve the privacy-utility tradeoff upon the
existing Laplace and Mahalanobis mechanisms. A
natural generalization is to extend the selection to
k > 2 nearest neighbors (see Algorithm 3).
Algorithm 3 presents the outline of the gener-
alized Vickrey mechanism that randomly chooses
among the noisy k nearest neighbors as output,
where the selection probability is inversely associ-
ated with their distance to the noised embedding.
Similar to Algorithm 2, the tuning parameters are
selected as to optimize for the empirical privacy-
utility tradeoff, but the selection process will be
more challenging because the optimization space
is unbounded. We defer the details of this opti-
mization to future work. However, we formally
state in Theorem 2 the metric-DP guarantee from
the generalized Vickrey mechanism in Algorithm
2. Due to space constraints, we defer the details of
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Figure 3: (A): empirical privacy vs € on Product Re-
views using 300-d GLOVE. (B): empirical privacy vs
utility loss on Product Reviews using 300-d GLOVE.
(C): empirical privacy vs € on Product Reviews using
300-d FASTTEXT. (D): empirical privacy vs utility loss
on Product Reviews using 300-d FASTTEXT.

Algorithm 3: Generalized Vickrey Mechanism

1 Input: String s = wiws . .. wy, metric d, privacy
parameter ¢, tuning parameters ¢1,...,tx > 0

2 for w; € sdo

3 Sample Z with density p(z) o exp{—ed(z,0)}

4 Obtain ¢;  ¢(wi) + Z

s | Let@in <yt — d(w)l2

arg min

Wik 4= 1u€W\{wi,1E7'1,m,1Z;7¢k}||¢i - ¢(w)“2

6 Set w; <— W, with prob. pr(t1,... k, ¢i), where
7 — _exp{—trl|é(@ir—dill2}
prty,...k 6i) S, explt, (i, —p1lla} 1OF
all r € [k].

7 return s = wWiWs ... Wny.

the proof since it is similar to that for Theorem 1.

Theorem 2. For any t = [t1,...,t;] € [0,00)F,
ke€Zy, e>0andw,w ,w €W, the generalized
Vickrey mechanism M from Algorithm 3 satisfies
€ metric-DP for any metric d.

In Figure 3 , we compare 5 generalizations of the
Vickrey mechanism that deterministically select the
noisy 1%, ..., 5" neighbors as the output on the
Product Reviews data using both 300-d GLOVE
and 300-d FASTTEXT. We can see that the im-
provement is most significant between the 15! and
274 nearest neighbor. It also shows that there is
benefit in introducing the 3" nearest neighbor into
the selection pool, while no big difference is found
beyond the 3" neighbor.



6 Discussion and Conclusion

In this paper, we present a measurement framework
to quantify the empirical privacy-utility tradeoff
for metric-DP text generation mechanisms, where
the empirical privacy metric is the reconstruction
risk of the original text based on the redacted text.
We adopt a constrained optimization setup, where
within the class of metric-DP mechanisms, we max-
imize the empirical privacy guarantee while keep-
ing the machine learning utility loss under a pre-
specified tolerance. A novel class of Vickrey mech-
anism is proposed, which not only enjoys metric-
DP but also optimizes the privacy-utility tradeoff
within the constraint. We apply our methodology
to the three text classification datasets and demon-
strate how to empirically compare the privacy-
utility tradeoff as well as how to choose the optimal
parameter setting according to the constrained opti-
mization. Our results show superior performance
when compared to existing mechanisms.

Our analysis in this paper leaves ample room
for further investigation. An ongoing work we are
exploring is the inclusion of contextual informa-
tion into the probability calibration between the
two nearest neighbors. We leave it as an interest-
ing open problem to explore how the choice of
k" neighbor impacts the tradeoff in this scenario,
since contextual signals will likely restrict the set
of candidate words we can choose from.
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