
ICON 2021

The 18th International Conference
on Natural Language Processing

Proceedings of the
First Workshop on Parsing and its Applications

for Indian Languages
(PAIL)

December 16, 2021

©2021 NLP Association of India (NLPAI)

ii

Preface

A workshop on Parsing and its Applications for Indian Languages (PAIL-2021) was organized in
conjunction with 18th International Conference on Natural Language Processing held in NIT, Silchar,
India. The workshop was organized virtually as a one-day event with two sessions. The first session
included a keynote on "Computational Paninian Framework and Parsing Indian Languages" by Prof.
Dipti Misra Sharma, followed by the technical sessions of the accepted papers. The afternoon session
started with a keynote talk on "Parsing and its applications: Current Status and Future Perspectives" by
Prof Marie-Catherine de Marneffe. The workshop was concluded with an insightful panel discussion on
"Parsing and its applications: Current Status and Future Perspectives".

Annotated corpora are vital resources for deep learning application development and linguistic analyses.
In the case of Indian languages, sufficient annotated quality data are not available publicly for researchers
and developers to build upon. Although there are different levels of annotations, syntactically annotated
corpora or treebank are very resourceful, especially for Indian languages, which are morphosyntactically
rich. They are incorporated in downstream applications for various information extraction. Treebanks
are being created for only a few Indian languages, and still, there is a high requirement for building
more data in different domains while involving other languages. Indian languages do show language-
specific complexities that require special attention. When a handful of languages representing different
language families of India are ready with quality treebanks, those can be used to build resources for other
languages using different approaches like transfer learning and multilingual learning. There is no way to
start with or progress without annotated data; unsupervised approaches are not yet convincing enough,
even for resourceful languages like English. Apart from all these justifications, we need to work together
to make resources public and acceptable in a task like parsing and treebanking. Otherwise, we cannot
create a meaningful and quality impact.

In this context, the PAIL-2021 workshop was organized with the following objects: (i) to bring
researchers and developers together who work on treebanks, parsing, and related downstream natural
language processing applications. (ii) to provide a platform for researchers to discuss Indian language-
specific issues in the morphosyntactic analysis, and (iii) to encourage researchers to collaborate and
create more annotated resources

Keynote speeches

Two keynote speeches were arranged to introduce two widely used frameworks to annotate the treebanks
of Indian languages, namely, the Paninian framework and the Universal Dependencies framework. It was
fortunate to get professors who could speak on these topics as keynote speakers.

Professor Emeritus Dipti Misra Sharma from the International Institute of Information Technology
(IIIT), Gachibowli, Hyderabad, has spoken on "Computational Paninian Framework and Parsing Indian
Languages". Her talk started with the advantages of Paninian Dependency frameworks in encoding
syntactic and semantic relations between words in a sentence, especially for free word order languages
like Indian languages. She also touched upon different approaches used for dependency parsing, starting
from constraint-based parsing to the current neural network-based approaches. She also focused on
treebanks developed in different Indian languages using available dependency frameworks. She briefly
discussed the conversion of Paninian dependencies to Universal dependencies as well.

Professor Marie-Catherine de Marneffe from the Department of Linguistics, The Ohio State University,
delivered the second talk on the topic entitled "Universal Dependencies: the good, the bad and the
potential". She shared how the Universal Dependencies framework evolved and its philosophy first.
Then she covered in detail the important concepts and the Universality of the framework and how it
is used for various linguistics studies and the development of applications. Finally, she also set some
directions for further improvements to the framework.

iii

Technical sessions

Six papers were submitted for the PAIL-2021 workshop from India and Sri Lanka. Three experts
reviewed each paper. Based on the outcomes, four papers were accepted for the workshop. While
three of them covered the topic related to treebanking and parsing, one of them covered the application
of treebanks.

The accepted papers covered a wide variety of topics. One paper was on Treebanking for extremely low-
resource languages Braj and Magahi, and two papers were on syntactic parsing of Tamil and non-finite
clauses in Telugu using feature-based Malt parser and rule-based approaches, respectively. In addition,
there was a paper on Tamil grammar detection that touched on parsing usage.

Panel discussion

A panel discussion was also arranged to discuss a topic entitled “Parsing and its applications: Current
Status and Future Perspectives". The primary object of this panel was to disseminate knowledge on
parsing and treebanking and their importance and future. In addition, this was arranged to find out the
challenges in creating relevant resources for Indian languages and the best practices. The following
practitioners who participated in the panel discussion were well-experienced scholars in the area of
parsing, tree-banking, and their applications:

• Professor Amba Kulkarni, Department for Sanskrit Studies, University of Hyderabad.
Prof. Amba Kulkarni gave insights on parsing using Indian grammatical tradition and discussed
the history of research in parsing Indian languages in general and Sanskrit in particular. She
explained parsing complexities and the importance of including semantic information in parsing.

• Dr. Asif Ekbal, IIT Patna, India.
Dr. Asif described the importance of parsing in various NLP applications and the optimization
methods to integrate parsers in end-to-end neural network methods. He further discussed in detail
how to develop multilingual treebanks with current techniques.

• Dr. Dan Zeman, Institute of Formal and Applied Linguistics, Charles University, Czech Republic.
Dr. Dan Zemen, a parsing expert in Universal Dependencies (UD), discussed challenges in
maintaining cross-lingual treebanks, mapping other treebanks with UD and building a new UD
treebank. He explained the procedures of finding suitable texts with licence and the importance of
documenting language-specific decisions.

• Dr. Ritesh Kumar, Dr Bhimrao Ambedkar University, India.
Dr. Ritesh shared his experiences in treebank annotation for low-resourced languages such as
Braj and Magahi. He also shared the language-specific issues that were encountered and how
they are handled in the treebank building. He iterates that building treebank is a long-term
activity that requires understanding the language-specific features, guidelines, and selecting the
right annotation tool.

Acknowledgement: Organizers would like to thank everyone who supported us in organizing the first-
ever workshop on parsing and its applications for the Indian Languages. Specifically, the ICON-2021
organizers and the technical programme committee members need to be acknowledged for the workshop
facilitation and support in reviewing papers, respectively.

Kengatharaiyer Sarveswaran, University of Jaffna, Sri Lanka.
Parameswari Krishnamurthy, University of Hyderabad, India.

Pruthwik Mishra, IIIT-Hyderabad, India.

iv

Organizers

• Kengatharaiyer Sarveswaran, Department of Computer Science, University of Jaffna, Sri Lanka.

• Parameswari Krishnamurthy, University of Hyderabad, India.

• Pruthwik Mishra, MT & NLP Lab, LTRC, IIIT-Hyderabad, India.

Technical Programme Committee

• Amba Kulkarni, University of Hyderabad, India

• Anand M Kumar, National Institute of Technology - Surathkal, India

• Ashwath Rao, MIT - Manipal, India

• Asif Ekbal, IIT Patna, India

• Braja Gopal Patra, Weill Cornell Medicine, USA

• Dhanalakshmi V, RV Government Arts college, India

• Asif Ekbal, IIT Patna, India

• Gihan Dias, University of Moratuwa, Sri Lanka

• Govindaru V, C-DIT, Thiruvanathapuram, India

• Irshad Ahmad Bhat, Active Intelligence LLP, India

• Malhar A Kulkarni, Indian Institute of Technology Bombay, India

• Muralikrishna SN, MIT - Manipal, India

• Ritesh Kumar, Dr Bhimrao Ambedkar University, India

• S Mahesan, University of Jaffna, Sri Lanka

• Rajendran Sankaravelayuthan, Amrita Vishwa Vidyapeetham, India

• Samar Hussain, IIT Delhi, India

• Sowmya Vajjala, National Research Council, Canada

• Surangika Ranathunga, University of Moratuwa, Sri Lanka

• Taraka Rama, University of North Texas, USA

• Uthayasanker Thayasivam, University of Moratuwa, Sri Lanka

v

Table of Contents

Developing Universal Dependencies Treebanks for Magahi and Braj
Mohit Raj, Shyam Ratan, Deepak Alok, Ritesh Kumar and Atul Kr. Ojha . 1

Parsing Subordinate Clauses in Telugu using Rule-based Dependency Parser
P Sangeetha, Parameswari Krishnamurthy and Amba Kulkarni . 12

Dependency Parsing in a Morphological rich language, Tamil
Vijay Sundar Ram and Sobha Lalitha Devi . 20

Neural-based Tamil Grammar Error Detection
Dineskumar Murugesapillai, Anankan Ravinthirarasa, Gihan Dias and K Sarveswaran 27

vii

Workshop Program

Thursday, December 16, 2021 - 09:30 to 16:50 (IST)

09:30–09:45 Morning sessions - Inaugural address

09:45–10:45 Keynote speech: Computational Paninian Framework and Parsing Indian Lan-
guages
Professor Dipti Misra Sharma

10:45–11:15 Developing Universal Dependencies Treebanks for Magahi and Braj
Mohit Raj, Shyam Ratan, Deepak Alok, Ritesh Kumar and Atul Kr. Ojha

11:15–11:45 Parsing Subordinate Clauses in Telugu using Rule-based Dependency Parser
P Sangeetha, Parameswari Krishnamurthy and Amba Kulkarni

11:45–12:15 Dependency Parsing in a Morphological rich language, Tamil
Vijay Sundar Ram and Sobha Lalitha Devi

12:15–12:35 Neural-based Tamil Grammar Error Detection
Dineskumar Murugesapillai, Anankan Ravinthirarasa, Gihan Dias and Kengath-
araiyer Sarveswaran

14:00–14:10 Evening sessions - Welcome address

14:10–15:10 Keynote speech: Universal Dependencies: the good, the bad and the potential
Professor Marie-Catherine de Marneffe, Department of Linguistics, The Ohio State
University.

15:10–16:45 Panel discussion: Parsing and its applications: Current Status and Future Perspec-
tives
Prof. Amba Kulkarni, Dr. Asif Ekbal, Dr. Dan Zeman, and Dr. Ritesh Kumar

ix

Proceedings of the ICON 2021 Workshop on Parsing and its Applications for Indian Languages (PAIL) , pages 1–11
December 16, 2021. Silchar, India. ©2021 NLP Association of India (NLPAI)

Developing Universal Dependency Treebanks
for Magahi and Braj

Mohit Raj!, Shyam Ratan!, Deepak Alok+,
Ritesh Kumar!, Atul Kr. Ojha* ,+

!Dr. Bhimrao Ambedkar University, Agra +Panlingua Language Processing LLP, New Delhi
*Data Science Institute, National University of Ireland Galway, Ireland

mohiitraj@gmail.com shyamratan2907@gmail.com deepak06alok@gmail.com
riteshkr.kmi@gmail.com panlingua@outlook.com

Abstract
In this paper, we discuss the develop-
ment of treebanks for two low-resourced
Indian languages - Magahi and Braj -
based on the Universal Dependencies
framework. The Magahi treebank con-
tains 945 sentences and Braj treebank
around 500 sentences marked with their
lemmas, part-of-speech, morphological
features and universal dependencies. This
paper gives a description of the different
dependency relationship found in the
two languages and give some statistics
of the two treebanks. The dataset will
be made publicly available on Universal
Dependency (UD) repository (https:
//github.com/UniversalDependencies/UD_
Magahi-MGTB/tree/master) in the next
(v2.10) release.

1 Introduction
Magahi is an Eastern Indo-Aryan Language,
spoken mainly in Eastern Indian states includ-
ing Bihar and Jharkhand, along with some
parts of West Bengal and Odisha. Magahi is
classified under the Eastern group of the outer
sub-branch of Indo-Aryan language (Grierson,
1908). Scholars like Turner have clubbed
the ‘Bihari’ languages with Eastern and West-
ern Hindi (Masica, 1991). There is another
kind of classfication of Indian language in
which western Hindi is almost an isolated
group while Eastern Hindi, Bihari and other
languages of Eastern group are clubbed to-
gether (Chatterji, 1926). But the classifica-
tion in whichMagahi comes under the Eastern
group of the outer sub-branch of Indo-Aryan
language is the most widely accepted classifi-
cation.
Brajbhasha is classified in two ways. Ac-

cording to first classification, Brajbhasha is a

Western Indo-Aryan language that is spoken
in the states of Western Uttar Pradesh and
parts of Rajasthan (Jeffers, 1976). The other
classification puts Brajbhasha in the group of
Western Hindi of Central Group of Indo-Aryan
sub-family of Indo European language family
along with Hindustani, Bangaru, Brajbhaka,
Kanauji, Bundeli (Grierson, 1908).
The difficulty of tracing the exact historical

path of a large number of these Indo-Aryan
languages is discussed in detail by Masica
(Masica, 1991) and is evident by somewhat
incompatible classification given by Chatterji,
Turner, Katre, Cardona and Mitra and sev-
eral other scholar (Masica, 1991);(Chatterji,
1926); (Turner, 1966); (Katre, 1968); (Car-
dona, 1974); (Mitra et al., 1978). As such
the exact status of Magahi and Braj vis-a-vis
other Indo-Aryan languages (especially the
major ones like Hindi, Bangla and Odia) re-
mains hazy and controversial. This, coupled
with the imposition of Modern Standard Hindi
(MSH) over what is now popularly known as
‘Hindi Belt’ and what has historically been
established as a rather complex dialect con-
tinuum, with several languages and varieties
being spoken in different domains of usage
(Gumperz, 1957), has resulted in these lan-
guages mistakenly classified as varieties of
Hindi. This, in turn, has resulted in not only
minimal support from the Government for de-
velopment of different kinds of resources for
the language but also a negative attitude of
the speakers towards the language (Kumar
et al., 2018a).
However, despite this disadvantageous situ-

ation of the language, there has been some ef-
forts at developing language technologies and
resources for these languages, especially for
Magahi viz. monolingual written and speech

1

corpora (Kumar et al., 2014), Magahi part-of-
speech tagger (Kumar et al., 2012) and Mag-
ahi language identification system (Rani et al.,
2018). This paper describes another such ef-
fort towards developing a Universal Depen-
dency (UD) based treebank for the language
which may prove to be useful in processing
and analysing the language for different ap-
plications.

2 Universal Dependencies and
Low-resource Languages

Universal Dependencies framework provides
some unique advantages for low-resource lan-
guages both in terms of making the language
for cross-lingual comparison and studies as
well as making transfer learning and mul-
tilingual techniques for technology develop-
ment possible. As a result in recent times
we have seen the development of UD tree-
banks for quite a few low-resource languages
viz. Yorùbá (Ishola and Zeman, 2020), Latin
Treebank for UD (Cecchini et al., 2020), Hit-
tite (Andersen and Rozonoyer, 2020), Manx
Gaelic (Scannell, 2020), Laz (Tṳrk et al.,
2020), Albanian (Toska et al., 2020) and oth-
ers.
The UD treebanks have also been built for

Indian languages such as Bhojpuri, Hindi,
Marathi, Sanskrit, Tamil,Telugu and Urdu (Ze-
man and et al., 2021; Ojha and Zeman,
2020). Except Hindi, all of the (Indian) lan-
guages mentioned above are low-resourced
languages. Recently, Dash et al. (2021) re-
ported the development of a treebank in San-
thali, another low-resourced language spoken
in India.
However, one of the biggest challenges in

building treebanks for a large number of low-
resource languages is the absence of grammat-
ical descriptions and hence a reference point
for deciding on the analysis needed to give the
dependency relationships. There are many
treebanks that could be roughly classified in
two groups. Treebanks of well-known and
well-described languages like Hindi, English,
French etc and treebanks of lesser known
and sparsely described languages. Magahi
and Braj come in the second group which
are sparsely described languages. There have
been very few linguistic studies on these lan-

guages with both of these languages lack-
ing an exhaustive grammatical description or
even a dictionary. These are some linguistics
studies towards the description of Magahi: a
basic (although not completely accurate) de-
scription of Magahi is given by Shila Verma
(Verma and Verma, 1983; Verma, 1985), a
description of Magahi case system (Lahiri,
2021, 2014; Kumar et al., 2014), discus-
sion on Magahi honorific system within the
minimalist framework (Alok, 2021), morpho-
syntactic properties of nominal particle -wa
(Alok, 2014), and study on the Magahi spatial
postpositions (Alok, 2012).
For Braj, to the best of our knowledge, the

only modern linguistic studies are on its erga-
tivity under the minimalist framework (Chan-
dra and Kaur, 2020a,b). .
This lack of an exhaustive description of dif-

ferent aspects of Magahi and Braj morphosyn-
tax made the task of developing the tree-
bank quite challenging and required establish-
ing multiple grammatical analyses of the lan-
guages while working on the treebank. The
aim of this paper is to give a broad descrip-
tion of Magahi and Braj morphosyntax within
the Universal Dependencies framework with
respect to different syntactic dependency re-
lationships in the languages, along with a dis-
cussion on the process of the development of
this treebank.

3 Treebank Creation in Magahi and
Braj

We annotate the Magahi and Braj treebank
with lemma, Universal Parts-of-Speech (POS)
tags, a subset of morphological features and
the Universal dependency relation. The de-
pendency relation for Magahi and Braj are an-
notated using a subset of the 37 dependency
relations included in the Universal Depen-
dency tagset1. In the following sections, we
describe each of the features marked for build-
ing Magahi and Braj dependency treebank.
Most of these relationships follow the canoni-
cal patterns as discussed in the UD guidelines
(and as witnessed in common Indo-European
languages).

1https://universaldependencies.org/u/dep/

2

3.1 POS and Morphological Features
We use the Universal POS tags for annotating
the POS tags for the data. However, for mor-
phological features we mark only those fea-
tures which have explicit morphological re-
alisation in the two languages. Thus, for ex-
ample, we mark gender and number on Braj
verbs but not on Magahi verbs since there
is no number or gender agreement in Mag-
ahi. Table 1 gives a list of all the morpho-
logical features and their values that we mark
for each category of words in each of the lan-
guage 2.

3.2 Core Dependency arguments
3.2.1 Nominal Subject : nsubj
Nominal subject in Magahi and Braj plays the
role of syntactic subject and it is dependent
on the verb. Let us take a look at the Figure
1 and 2.

• राजा लाल लेके रानी के दे देलन ।

rɑʤɑː lɑl leke rɑniː ke d̪e d̪elən .

King took the perl and gave to the queen.

• मैं एक गाँव कĢ पाठशाला में कक्षा दसूरी कँू पढ़ा रह्ौ
।

maiⁿ ek gɑⁿv kiː pɑʈʰʃɑlɑː meⁿ kəkʂɑː d̪us-
riː kuːⁿ pəɖʰəɑ̣ː rəɦjaːu .

I was teaching class second in a village
school.

3.2.2 Object : obj
Object of a sentence in the two languages is
also dependent on the verb. Let us take a look
at the Figure 1 and 2.

3.2.3 Indirect Object : iobj
The role and nature of indirect objects is simi-
lar to direct objects except the syntactic close-
ness with verbs. Indirect objects are also de-
pendent on verbs and this relationship is indi-
cated by iobj. Let us take a look at the Figure
1 and 2.

2In the table * indicate that the given feature or value
is marked only for Braj

3.2.4 Clausal complement : ccomp
Clausal complement occurs with complex
structure of sentence in Magahi and Braj.
When the sentence is formed with two clauses
(principle and subordinate), the root (gener-
ally, verb) of the subordinate clause depends
on the root of the principal clause. Subordi-
nate clause behaves like an object of the main
clause.
3.2.5 Open clausal complement : xcomp
Open clausal complement differs from the
clausal complement in that in this case the
head of the subordinate clause does not seem
to have an overt subject and as such there is a
dependence relation between the root of the
subordinate clause and a word of the higher
clause of Magahi and Braj.
3.3 Non-core dependents
3.3.1 Oblique Nominal : obl
Oblique is the nominal element of a sentence
which appears as an adjunctive argument and
it depends upon the main verb of the sentence.
Sometimes it adds extra information about a
verb, adjective and adverb so it functionally
acts as an adverbial attachment. Oblique is
grammatically categorised as a noun or pro-
noun and used as a temporal and nominal lo-
cational modifier as in the given example of
Magahi and passive agent are also labelled as
oblique. In another example from Braj, the
adverbial modifier also bears an obl relation
with the verb.
3.3.2 Adverbial clause modifier : advcl
Adverbial clause modifier is an entity of com-
plex structural sentences in which it is the
main predicate of a dependent clause. Like
an adverb, its functional role is to modify a
verb or other predicate such as an adjective
of principal clause or other clausal entity, but
the difference lies in the fact that adverbial
clause modifier establishes an interclausal re-
lationship.
3.3.3 Adverbial modifier: advmod
Adverbial modifier defines the relationship in
between main verb of a clause and the ad-
verb. In the given example of Magahi word
`खबु’/‘kʰubə’ is modifying the main verb or
root `नचबवऽ'/‘nəcəbəvə’ of sentence. Another

3

Feature UPOS Values
Case NOUN, PRON, ADP Nom, Acc, Dat, Gen, Erg*, Abl

Gender* NOUN, PRON, VERB, PROPN, Fem, Masc
Number* NOUN, PRON, VERB Sing, Plur
Person PRON, VERB 1,2,3
Tense VERB, AUX Pres, Past, Fut*
Aspect VERB, AUX Prog, Imp, Perf, Hab

Politeness PRON, VERB, AUX Form, Infm

Table 1: Feature values for Magahi & Braj grouped by UPOS

Figure 1: Braj Example for nsubj, obj, iobj

NOUN NOUN VERB NOUN ADP VERB VERB PUNCT
राजा लाल लेके रानी के दे देलन ।
rɑʤɑː lɑl leke rɑniː ke d̪e d̪elən .
king perl take queen to give give-ECV .

King took the perl and gave to the queen.

nsubj

obj

advcl
iobj

case

root

compound
punct

Figure 2: Magahi Example for nsubj, iobj, obj

kind of adverbial modifier is given in the Braj
example which is negating the act of event.
Let us take a look at the Figure 4 and 3.

• आउ हम खबु नचबवऽ ।

ɑːu ɦəm kʰub nəcbəvə .

And I will dance a lot.

• पै बूआ कहीं नाँय जाती।

pai buɑː kəɦiːⁿ nɑːⁿj ʤɑːti̪ː .

But the aunt did not go anywhere.

3.3.4 Auxiliary : aux
aux is the dependency relation between a ver-
bal predicate and the auxiliary in the two lan-
guages. Let us take a look at the Figure 5.

• या कारन मैं चुप्प खींच गयौ हो ।

jɑː kɑːrən maiⁿ cuppə kʰiːⁿc gəjaːu ɦo .
For this reason I remained silent.

4

CCONJ PRON ADV VERB PUNCT
आउ हम खबु नचबवऽ ।
ɑːu ɦəmə kʰubə nəcəbəvə .
and I alot dance .

And I will dance a lot.

cc
nsubj

advmod

root

punct

Figure 3: Magahi Example for advmod

CCONJ NOUN PRON PART VERB PUNCT
पै बूआ कहीं नाँय जाती ।
pai buɑ kəɦiːⁿ nɑːⁿj ʤɑːti̪ː .
but aunt anywhere not go .

But the aunt did not go anywhere.

cc

nsubj
obl

advmod

root

punct

Figure 4: Braj Example for advmod

DET NOUN PRON VERB VERB VERB VERB PUNCT
या कारन मैं चुप्प खींच गयौ हो ।
jɑː kɑːrən maiⁿ cuppə kʰiːⁿc gəjaːu ɦo .
this reason i silent remain ECV be .

For this reason I remained silent.

det
obl

nsubj

root

compoundcompound aux

punct

Figure 5: Braj Example for aux

3.3.5 Copula : cop
aux is the dependency relation between a non-
verbal predicate and the auxiliary in the two
languages. Let us take a look at the Figure 9
and 6.

• सीसर्क हौ " गोिबदं बढई " ।

siːrsək ɦau “ gobiⁿd̪ə bəɖʰəiː ” .

Title was Govind carpenter.

We found two type of copula in Braj (sim-
ple and complex). Simple copula (हतौ/ɦətɒ̪ː,
ह/ैɦai, ही/ɦiː) are like copula of Magahi, and
complex copula (̀नांओ'/‘nɑːⁿɒ’, `आओ'/‘ɑːɒ’,
`गओ'/‘gəɒ’) are not present in Magahi.

5

NOUN AUX PUNCT PROPN PROPN PUNCT PUNCT
सीसर्क हौ " गोिबदं बढई " ।
siːrsək ɦau “ goːbiⁿd̪ bəɖʰəiː ” .
title be ” Govind carpenter ” .

Title was Govind carpenter.

root

cop punct

nmod

flat punct

punct

Figure 6: Braj Example for cop

3.3.6 Marker : mark
Typically the subordinating conjunction de-
pends on the head of the subordinate clause
- such dependency relationships are called
mark.
3.4 Nominal dependents
3.4.1 Nominal modifier : nmod
The nominal modifier is noun or pronoun
and it is syntactically dependent upon another
noun or noun phrase and functionally cor-
responds to an attribute or genitive comple-
ment.
3.4.2 Numeral modifier : nummod
It is the relationship between a numeral and
the noun which is attached to the numeral.
Let us take a look at the Figure 1.
3.4.3 Clausal modifier of noun : acl
In the acl syntactic relation head is noun that
is modified and the dependent is the head of
the clause that modifies the noun.
3.4.4 Adjectival modifier : amod
amod defines the dependency relationship be-
tween the noun and the adjective.
3.4.5 Determiner : det
The relation between determiner and nominal
head is annotate with syntactic relation det.
Let us take a look at the Figure 7.

• मैं जा बहली में बठै बू पलट गई ।
maiⁿ ʤɑː bəɦəliː meⁿ baiʈʰ buː pələʈ gəiː .
The bullock cart I was sitting in over-
turned.

3.4.6 Classifier : clf
Numeral classifiers are used only in Magahi
and clf defines the relation between the nu-
meral and the classifier. Let us take a look at
the Figure 8.

• इधर राजा सात गो िबयाह कर लेलन ।

id̪ʰərə rɑʤɑː sɑːt ̪ go bijɑːɦ kər lelən .
Meanwhile king has married to seven
girl.

3.4.7 Case marker : case
Postpositions are the case marking elements
in both Braj and Magahi. The postpositions
are syntactically dependent on the noun to
which they attach and are related by the ’case’
relation.
3.5 Coordination
3.5.1 Conjunct : conj
In case of coordinating conjunction construc-
tion, the head of the second clause depends
upon the head of the first clause and are re-
lated by the ’conj’ relation.
3.5.2 Coordinating Conjunction : cc
The coordinating conjunction itself is depen-
dent upon the head word of the second clause
or phrase and have a ’cc’ relation. Let us take
a look at the Figure 10 and 9.

• जनै बड़ी मजबुत आउ बहादरु हल ।

ʤain bəɖəịː məʤbut ̪ ɑːu bəɦɑːd̪ur ɦəl .
Jain was very strong and brave.

6

PRON DET NOUN ADP VERB PRON VERB VERB PUNCT
मैं जा बहली में बठैौ बू पलट गई ।

maiⁿ ʤɑː bəɦəliː meⁿ baːiʈʰ buː plʈ gəiː .
i this bullock cart in sit that overturn ECV .

The bullock cart I was sitting in overturned.

nsubj

det
obj

case

root

nsubj
advcl

compound

punct

Figure 7: Braj Example for det

DET NOUN NUM PART NOUN VERB VERB PUNCT
इधर राजा सात गो िबयाह कर लेलन ।
id̪ʰər rɑʤɑː sɑːtə̪ go bijɑːɦ kər leːlən .

Meanwhile king has married to seven girl.

det
nsubj

nummod
clf

root

compound
compound

punct

Figure 8: Magahi Example for clf

• झारू बुहारी कपड़ा - लत्ा और रसौई ।

• ʤʰɑːruː buɦɑːriː kəpəɖəɑ̣ː - lətt̪ɑ̪ː aur
rəsauiː .
Broom, cloth and kitchen.

3.6 Multi Word Expressions
3.6.1 Flat multiword expression : flat
The flat is a syntactic relation that is used for
such multiword expression in which there is
no specific head word like in name(Sohan Lal
Mishra) or dates(2nd B.C.) etc.
3.6.2 compound : compound
A compound syntactic relation is used for
different kinds of multiword expressions
in Magahi and Braj including compound
nouns, compound verbs, conjunct verbs
(noun/adjective+verb), echo words, and
reduplication. While most of these construc-
tions are quite predominant in almost all of
the South Asian languages and could actually

have different kinds of syntactic and semantic
impacts, unfortunately UD provides very lim-
ited ways of distinguishing across these and
it proved to be one of the most challenging
aspects of building this treebank.
4 Magahi and Braj Treebank
We have used Magahi and Braj plain text to
prepare a treebank. Magahi plain text is part
of a large monolingual written and speech
corpora (Kumar et al., 2014), which is pre-
pared from the Magahi literature. Braj plain
text is also prepared from the literary domain
(Kumar et al., 2018b). We have used Conl-
lueditor (Heinecke, 2019) tool to build a tree-
bank. The tool facilitate us to attach several
kinds of information with words like UPOS,
lemma, morph feature and dependency rela-
tion among different word of sentence etc.
Currently, Braj treebank has a total of

around 5.8k tokens (excluding punctuations)
in a total of 500 sentences. Magahi, on the
other hand, has a total of over 12k tokens

7

PROPN ADV NOUN CCONJ NOUN AUX PUNCT
जनै बड़ी मजबूत आउ बहादरु हल ।
ʤain bəɖəịː məʤbut ̪ ɑːu bəɦɑːd̪ur ɦəl .
Jain very strong and brave be .

Jain was very strong and brave.

nsubj
advmod

root

cc
conj

cop
punct

Figure 9: Magahi Example for cc and cop

NOUN NOUN NOUN PUNCT NOUN CCONJ NOUN PUNCT
झारू बुहारी कपड़ा - लत्ा और रसौई ।

ʤʰɑːruː buɦɑːriː kəpɖəɑ̣ː - lətt̪ɑ̪ː aur rəsauiː .
Broom clean cloth - cloth and Kitchen .

Broom, cloth and kitchen.

compound
compound

compound
punct

root

cc
conj

punct

Figure 10: Braj Example for cc

UPOS Braj Count Braj % Magahi Count Magahi %
NOUN 1507 23.17 % 3203 24.01 %
VERB 1203 18.49 % 3040 22.78 %
PART 224 3.44 % 282 2.11 %
PRON 562 8.64 % 1172 8.78 %
CCONJ 113 1.73 % 330 2.47 %
ADV 83 1.27 % 273 2.05 %

PROPN 246 3.78 % 249 1.87 %
ADP 778 11.96 % 1681 12.60 %

SCONJ 112 1.72 % 418 3.13 %
NUM 253 3.89 % 356 2.67 %
ADJ 276 4.24 % 168 1.26 %
DET 181 2.78 % 385 2.89 %
AUX 230 3.53 % 440 3.30 %
INTJ 0 0 % 15 0.11 %

PUNCT 842 12.94 % 1331 9.98 %
TOTAL 6,610 100 % 13,343 100 %

Table 2: Braj & Magahi UPOS Category Statistics

from 945 sentences. Table 2 and Table 3 gives
the detailed statistics of each UPOS and UD
category and morphological features in the

two treebanks. As expected, nouns and verbs
form the most predominant POS categories in
both the languages, both of them together ac-

8

Dependency Relation Braj Count Braj % Magahi Count Magahi %
root 500 7.41 % 945 7.01%
obj 444 6.58 % 808 5.99%

nmod 547 8.11 % 531 3.94%
nsubj 578 8.57 % 1065 7.90%
obl 106 1.57 % 580 4.30%

advmod 169 2.50 % 419 3.11%
cc 113 1.67 % 313 2.32%
case 771 11.44 % 1861 13.81%
conj 516 7.65 % 320 2.37%
mark 126 1.86 % 419 3.11%
advcl 244 3.62 % 748 5.55%

nummod 117 1.73 % 293 2.17%
iobj 188 2.78 % 851 6.31%
det 172 2.55 % 338 2.50%

amod 211 3.11 % 166 1.23%
xcomp 28 0.41 % 76 0.56%
aux 146 2.16 % 296 2.19%
cop 96 1.42 % 126 0.93%

compound 577 8.56 % 1327 9.85%
dep 99 1.46 % 163 1.20%

ccomp 13 0.19 % 312 2.31%
acl 3 0.044 % 54 0.40%
flat 122 1.81 % 124 0.92%
clf 0 0 % 6 0.04%

punct 842 12.49 % 1331 9.87%

Table 3: Braj & Magahi Dependency Relation Statistics

counting for over 40% of the tokens. These
are followed by adpositions and pronouns as
the most frequent category of words in the
treebank.
5 Conclusion
In this paper, we have discussed the develop-
ment of treebanks for Braj and Magahi - two
extremely low-resource Eastern Indo-Aryan
languages spoken in India. The treebank is
annotated with lemma, UPOS, morphological
features and UD relations. As of now the Braj
treebank has 500 sentences (with around
5.8k tokens) while the Magahi treebank has
945 sentences (with over 12k tokens). A
comparative analysis of dependency relation
of Magahi and Braj treebank reveal that, as
expected, most of the syntactic relations are
shared across the two languages except the
two dependency relation in our available
dataset. The first one is copula (cop) relation
- Magahi has a simple syntactic structure of

cop while in Braj it could have a complex
structure and it may vary between two types
of lexical structure. The second dependency
relation is that of classifier (clf) - Magahi has
numeral classifier while this is not present in
Braj.

6 Future Work

The analysis of the two languages as well
as the development of the treebank is cur-
rently in progress - we are exploring the semi-
automatic means of further increasing the
treebank size such as developing and using
parsers for annotating the data and then man-
ually validating it. We are also exploring
ways of getting data from varied domains (in-
cluding narrations and conversational data)
for including in the treebank.

9

Acknowledgments
We would like to express our heartfelt grat-
itude to Panlingua Language Processing LLP
for supporting the creation of these treebanks
both academically and financially. We would
also like to thank Dr. Mayank for helping us
out in figuring out certain aspects of the Braj
grammar and annotation.
Atul Kr. Ojha would like to acknowledge the
EU’s Horizon 2020 Research and Innovation
programme through the ELEXIS project under
grant agreement No. 731015.

References
Deepak Alok. 2012. A language without articles:

the case of magahi.
Deepak Alok. 2014. The morpho-synatx of nomi-

nal particle-wa. Indian Linguistics, 75:39–44.
Deepak Alok. 2021. The morphosyntax of magahi

addressee agreement. Syntax, 24(3):263–296.
Erik Andersen and Benjamin Rozonoyer. 2020. A

small Universal Dependencies treebank for Hit-
tite. In Proceedings of the Fourth Workshop on
Universal Dependencies (UDW 2020), pages 1–7,
Barcelona, Spain (Online). Association for Com-
putational Linguistics.

George Cardona. 1974. The Indo-Aryan languages.
Flavio Massimiliano Cecchini, Timo Korkiakangas,

and Marco Passarotti. 2020. A new Latin tree-
bank for Universal Dependencies: Charters be-
tween Ancient Latin and romance languages.
In Proceedings of The 12th Language Resources
and Evaluation Conference, pages 933–942, Mar-
seille, France. European Language Resources
Association.

Pritha Chandra and Gurmeet Kaur. 2020a. Braj in
the ergativity hierarchy. In Formal Approaches
to South Asian Languages.

Pritha Chandra and Gurmeet Kaur. 2020b. Macro
differences in dialects. University of Pennsylva-
nia Working Papers in Linguistics, 25:Article 8.

Suniti Kumar Chatterji. 1926. The origin and devel-
opment of the Bengali language. Calcutta Univer-
sity Press, Calcutta, India.

Satya Dash, Sunil Sahoo, Brojo Kishore Mishra,
Shantipriya Parida, Jatindra Nath Besra, and
Atul Kr Ojha. 2021. Universal dependency tree-
bank for santali language. SPAST Abstracts,
1(01).

George A. Grierson. 1908. Indo-Aryan Family: Cen-
tral Group: Specimens of the Rājasthānī and Gu-
jarātī, volume IX(II) of Linguistic Survey of In-
dia. Office of the Superintendent of Govern-
ment Printing, Calcutta.

John J. Gumperz. 1957. Language problems in the
rural development of north india. The Journal
of Asian Studies, 16:251–259.

Johannes Heinecke. 2019. ConlluEditor: a fully
graphical editor for Universal dependencies
treebank files. In Universal Dependencies Work-
shop 2019, Paris.

Olájídé Ishola and Daniel Zeman. 2020. Yorùbá
dependency treebank (YTB). In Proceedings of
the 12th Language Resources and Evaluation Con-
ference, pages 5178–5186, Marseille, France.
European Language Resources Association.

Robert J. Jeffers. 1976. The position of the bi-
hārī dialects in indo-aryan. Indo-Iranian Jour-
nal, 18:215–225.

S M Katre. 1968. Problems of reconstruction in
Indo-Aryan. Indian Institute of Advanced study,
Shimla, India.

Ritesh Kumar, Bornini Lahiri, and Deepak Alok.
2012. Developing a POS tagger for Magahi: A
comparative study. In Proceedings of the 10th
Workshop on Asian Language Resources, pages
105–114, Mumbai, India. The COLING 2012 Or-
ganizing Committee.

Ritesh Kumar, Bornini Lahiri, and Deepak Alok.
2014. Developing lrs for non-scheduled indian
languages. pages 491–501.

Ritesh Kumar, Bornini Lahiri, and Deepak Alok.
2018a. Descriptive study of eastern hindi: A
mixed language. Linguistic Ecology of Bihar.

Ritesh Kumar, Bornini Lahiri, Deepak Alok,
Atul Kr. Ojha, Mayank Jain, Abdul Basit, and
Yogesh Dawar. 2018b. Automatic identifica-
tion of closely-related indian languages: Re-
sources and experiments. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Paris,
France. European Language Resources Associa-
tion (ELRA).

Bornini Lahiri. 2014. A typological study of cases
in eastern indo-aryan language. Ph.D. thesis.

Bornini Lahiri. 2021. The Case System of Eastern
Indo-Aryan Languages: A Typological Overview, 1
edition. Routledge India.

C.P. Masica. 1991. The Indo-Aryan Languages.
Cambridge Language Surveys. Cambridge Uni-
versity Press.

10

Asok Mitra, Raj Nigam, and Sukumar Sen. 1978.
Grammatical sketches of Indian languages with
comparative vocabulary and texts. Number v. 1
in Census of India ... language monograph.

Atul Kr. Ojha and Daniel Zeman. 2020. Universal
Dependency treebanks for low-resource Indian
languages: The case of Bhojpuri. In Proceedings
of the WILDRE5– 5th Workshop on Indian Lan-
guage Data: Resources and Evaluation, pages 33–
38, Marseille, France. European Language Re-
sources Association (ELRA).

Priya Rani, Atul Kr. Ojha, and Girish Nath
Jha. 2018. Automatic language identifica-
tion system for hindi and magahi. CoRR,
abs/1804.05095.

Kevin Scannell. 2020. Universal Dependencies for
Manx Gaelic. In Proceedings of the Fourth Work-
shop on Universal Dependencies (UDW 2020),
pages 152–157, Barcelona, Spain (Online). As-
sociation for Computational Linguistics.

Marsida Toska, Joakim Nivre, and Daniel Zeman.
2020. Universal Dependencies for Albanian. In
Proceedings of the Fourth Workshop on Univer-
sal Dependencies (UDW 2020), pages 178–188,
Barcelona, Spain (Online). Association for Com-
putational Linguistics.

Utku Tṳrk, Kaan Bayar, Ayşegṳl Dilara É”̤zercan,
Go̤rkem Yiğit É”̤ztṳrk, and Şaziye Betṳl É”̤zateş.
2020. First steps towards Universal Dependen-
cies for Laz. In Proceedings of the Fourth Work-
shop on Universal Dependencies (UDW 2020),
pages 189–194, Barcelona, Spain (Online). As-
sociation for Computational Linguistics.

Ralph L. Turner. 1966. A comparative dictionary
of the Indo-Aryan languages (CDIA L), volume 3.
Oxford University Press, London.

Sheela Verma. 1985. The Structure of the Magahi
Verb. New Delhi:Manohar.

Sheela Verma and Manindra K. Verma. 1983. The
auxiliary with special reference to Magahi, vol-
ume 44. Pune.

Daniel Zeman and et al. 2021. Universal depen-
dencies 2.8.1. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied
Linguistics (ÚFAL), Faculty of Mathematics and
Physics, Charles University.

11

Proceedings of the ICON 2021 Workshop on Parsing and its Applications for Indian Languages (PAIL) , pages 12–19
December 16, 2021. Silchar, India. ©2021 NLP Association of India (NLPAI)

Parsing Subordinate Clauses in Telugu using Rule-based Dependency
Parser

1Sangeetha Perugu, 2Parameswari Krishnamurthy, 3Amba Kulkarni
1,2Centre for Applied Linguistics and Translation Studies, 3Centre for Sanskrit Studies

University of Hyderabad
1geethanjali.sheldon@gmail.com, {2pksh, 3ambakulkarni}@uohyd.ac.in

Abstract

Parsing has been gaining popularity in recent
years and attracted the interest of NLP re-
searchers around the world. It is challenging
when language under study is a free-word or-
der language which allows ellipsis like Tel-
ugu. In this paper, an attempt is made to parse
subordinate clauses especially, non-finite verb
clauses and relative clauses in Telugu which
are highly productive and constitute a large
chunk in parsing task. This study adopts a
knowledge-driven approach to parse subordi-
nate structures using linguistic cues as rules.
Challenges faced in parsing ambiguous struc-
tures are elaborated alongside providing en-
hanced tags to handle them. Results are en-
couraging and this parser proves to be efficient
for Telugu.

1 Introduction

Parsing, the word derived from Latin (pars ora-
tionis), was originally used in elementary schools
for grammatical explication of sentences (Nivre,
2006). Currently, parsing is a well-known and
well-researched area in natural language processing
(NLP) which involves analyzing sentences syntac-
tically or syntactico-semantically. Building parsers
and treebanks have attracted several researchers
for its utility in various larger NLP applications.
An efficient and ready-to-use parser for languages
like Telugu, one of the most widely spoken Dravid-
ian languages is still under development, though a
handful of resources are traced.

Telugu is a south-central Dravidian language
with free-word order and well-known for its ag-
glutinating morphology. Agglutination allows car-
rying multiple grammatical information on words
in Telugu. This grammatical information is quite
helpful in parsing and stands as a rationale be-
hind building the rule-based parser, despite mul-
tiple challenges. Parsing free-word order and ag-

glutinating languages like Telugu is particularly
challenging as they allow pro-drops, ellipsis and
complex constructions. Earlier attempts in devel-
oping Telugu dependency parsers include mostly
data-driven approaches (Ambati et al., 2009; Hu-
sain, 2009; Bharati et al., 2009; Kesidi et al., 2013;
Kanneganti et al., 2016; Gatla, 2019; Nallani et al.,
2020; Rama and Vajjala, 2018). Among the at-
tempts made, UDPipe for Telugu1 which is trained
using Telugu-MTG UD treebank (Rama and Vaj-
jala, 2018) is the only publicly accessible parser.
There is an attempt in developing a rule-based
parser with linguistic knowledge-driven approach
(Sangeetha et al., 2021) for simple sentences. In
this paper, we present our experiment in parsing
subordinate clauses, particularly, non-finite verb
clauses and relative participle clauses in Telugu
using rule-based dependency parser.

2 A Rule-Based Dependency Parser

This study uses a rule-based parser (RBP) which
takes input from sentences that are morphologically
analysed. Telugu POS tagger, pruning and pick-
one-morph modules are used to select one analysis
per token (Rao, 1999). The RBP follows depen-
dency approach based on the Indian theories of ver-
bal cognition where three factors viz. ākānksā (ex-
pectancy), yōgyata (meaning compatibility), and
sannidhi (proximity) are used and implemented ini-
tially for Sanskrit (Kulkarni, 2019). Telugu RBP is
adopted from Sanskrit RBP and modified for Tel-
ugu parsing (Sangeetha et al., 2021). We model
the parser as a tree where the nodes of a tree cor-
respond to a word and the edges between nodes
correspond to a relation between the corresponding
words. Parser is implemented using the functional
programming language Ocaml 2 to write rules and

1http://lindat.mff.cuni.cz/services/
udpipe/

2https://ocaml.org/

12

Perl to generate dependency trees as graphs. The
figure 1 explains the architecture of the RBP.

Telugu Sentence

Morphological analysis

Select one morph

Apply rules

Convert to graphs

If
 multiple relations

Filter

Dependency tree

Telugu RBP rules

Database

POS tagging

Pruning
Pickone morph

Yes

No

Figure 1: Architecture

In parsing simple sentences, 29 dependency labels
are used and they are divided into kāraka(K) re-
lations (for example, kartā (roughly equivalant to
subject) (k1), karmā (object) (k2) etc.) and non-
kāraka (for example, genitive (r6), associative(ras)
etc.) labels. The dependency tree for the sentence
(1) is seen in figure 2.

(1) mā
our

nānna
father

rēpu
tomorrow

ūri
village

nuMci
from

vas-tā-ru
come-FUT-3.SG.HON.
‘My father will come from village tomor-
row’

3 Subordinate Clauses in Telugu

Subordinate clauses in Telugu include non-finite
verb clauses, relative participle clauses and com-
plementizer clauses. Subordinate clauses in Tel-
ugu do express ambiguity with different syntactico-
semantic relations.

Non-finite verb clauses are highly productive

vastāru

nānna

k1

rēpu

k7t

ūru

k5

mā

r6

nuMci

psp

Figure 2: Dependency tree for sentence(1)

in the formation of sentences in Telugu and they
constitute a large chunk in parsing task. They
are dependent clauses which cannot stand alone
in a sentence. They are realised as subordinate
clauses which are derived from simple sentences
with certain structural changes and precede the
matrix clause by occurring to their left side. The
verb of subordinate clause is syntactically the head
of the clause but does not exhibit person-number-
gender agreement with respective subjects, how-
ever it is marked for appropriate tense, aspect and
mood. They are classified into conjunctive partici-
ples, conditionals, concessives and infinitives in
Telugu (Krishnamurti and Gwynn, 1985). Conjunc-
tive participles are divided into past, durative and
negative. Conditionals and concessives clauses can
have both affirmative and negative forms whereas
infinitives can have only affirmative form.

Relative participle clauses are primarily noun
phrases which are further divided into past, dura-
tive, future/habitual and negative participles. Nega-
tive participles do not differentiate for tense. Com-
plementizer clauses are formed by the quotative
form i.e. ani ‘that’ which links both finite clauses.
Figure 3 provides the classification of subordinate
clauses in Telugu. Examples of various types of
subordinate clauses are provided in the table 1.

In this paper, we present challenges in pars-
ing non-finite verb clauses and relative participle
clauses using rule-based parsing. We use the an-
ncora tagset for tagging the dependency relations
(Version 2.5) (Bharati et al., 2009). There is a great
requirement for the enhancement of tags for Telugu
to disambiguate various functions of subordinate
clauses. An attempt is made to build enhanced tags
and implemented using linguistic cues as rules in
RBP.

13

Subordinate Clauses

Non-finite verb
 clauses

Relative Participle
 clauses

Complementizer
 clauses

Conjunctive
 Participles Conditional Concessive Infinitive

 (-an)
Past
 (-inā)

Durative
 (-tunna)

Fub/hab
 (-ē)

Negative
 (-ani)

Past
 (-i)

Durative
 (-tū)

Negative
 (-aka/-akuMḍā)

Affirmative
 (-tē)

Negative
 (-akapōtē)

Affirmative
 (-ina)

Negative
 (-akapōinā)

Figure 3: Types of non-finite clauses in Telugu

Type of subordinate clause Example
I. Non-finite verb clauses
Conjunctive Participle
Past tin-i ‘having eaten‘
Durative tin-t.ū ‘along with eating‘
Negative 1 (-akuMd. a) tina-kuMd. ā ‘not having eaten‘
Negative 2 (-aka) tin-aka ‘due to not having eaten‘
Conditional
Affirmative tin-tē ‘if one eats‘
Negative tin-akapōtē ‘if one does not eat‘
Concessive
Affirmative tin-inā ‘inspite of having eaten‘
Negative tin-akapōinā ‘inspite of not having eaten‘
Infinitive tin-(an) ‘to eat‘
II. Relative Participle
Past tin-ina abbāyi ‘the boy who ate‘
Durative tin-tunna abbāyi ‘the boy who is eating‘
Future-habitual tin-ē abbāyi‘the boy who will eat‘
Negative tin-ani abbāyi ‘the boy who did not eat‘

Table 1: Examples of subordinate clauses
.

4 Challenges in Parsing Subordinate
Clauses

Subordinate clauses in Telugu are ambiguous
across certain sub-types. These ambiguous con-
structions pose various parsing challenges mainly
due to multiple functions or interpretations of a
non-finite marker which causes ambiguity. Cer-
tain ambiguous constructions with non-finite verb
clauses and relative participle clauses in Telugu are
discussed in this section.

4.1 Conjunctive participle clause

The conjunctive participle clause occurs as a subor-
dinate clause and modifies the matrix clause. This
conjunctive participle clause can be used to express
verbal modifier (vmod) functions such as serial ac-
tion, manner and simultaneous action in Telugu.
Example (2) explicates conjunctive participle as
a serial verb. The figure 4 is shown with the tag
vmod:cp serial for the sentence (2) with con-

junctive participle expressing serial action.

(2) rāmud.u.∅
Ram.NOM

annaM.∅
food.ACC

tin-i
eat-CP.PST

pad.ukunn-ā-d. u
sleep-PST-3.SG.M
‘Ram ate food and slept’

paḍukunnāḍu

rāmuḍu

k1

tini

vmod:cp_serial

annaM

k2

Figure 4: Dependency tree for (2)

The conjunctive participle can express manner as
explicated in the sentence (3) with the Figure 5.
Here, the verb class i.e. motion verbs is used as a
cue to identify the manner in the verb modification
with the tag vmod:cp manner.

(3) vimala.∅
vimala.NOM

āphı̄su-ku
office-DAT

nadic-i
walk-CP.PST

vel.t-uM-di
go-HAB-3.SG.F
‘Vimala goes to office by walk’

The conjunctive participles express simultane-
ous action when the participle is durative as in the
sentence (4).

14

veḷḷiMdi

vimala

k1

āphīsuku

k2p

naḍici

vmod:cp_manner

Figure 5: Dependency tree for (3)

(4) prakāsh.∅
prakash.NOM

sinimā
cinema

cūs-tū
watch-CP.DUR

cūldriMk
cool-drink

tāg-ā-d. u
drink-PST-3.SG.M

‘Prakash drank cool drink while watching a
cinema’

Figure 6 shows a dependency tree of the sentence
(4) adding a new tag vmod:cp simul.

tāgāḍu

Prakāṣ

k1

kūl ḍriMk

k2

cūstū

vmod:cp_simul

sinimā

k2

Figure 6: Dependency tree for (4)

However, when the active form of conjunctive
participle verb is followed by the passive matrix
verb, it renders an ambiguous interpretation. Con-
sider example (5) from (Ramarao, 2017, pg. 116)
and its dependency tree in the Figure 7.

(5) sujāta
sujata.NOM

tiraskariMc-i
reject-CP.PST

avamāniMc-a-bad. -iM-di
insult-PASS-PST-3.SG.F
‘Sujata rejected (someone) and was insulted’
or ‘Sujata got rejected and was insulted’.

Example (5) is ambiguous due to argument ellipsis.
This can be interpreted in two different ways by
supplying either a passive subject (as in (6)) or
the object (as in (7)) in the non-finite clause. This
ambiguity is represented in Figure 7.

(6) sujāta
sujata.NOM

vād. i
he

cēta
by

tiraskariMc-(abad̄)i
reject-(PASS).CP.PST

avamāniMc-abad. -iM-di
insult-PASS-PST-3.SG.F
‘Sujata got rejected by him and was insulted’

(7) sujāta
sujata.NOM

vād. i-ni
he-ACC

tiraskariMc-i
reject-CP.PST

avamāniMc-abad. -iM-di
insult-PASS-PST-3.SG.F
‘Sujata rejected him and was insulted’

avamānin̄cabaḍindi

sujāta

k2:pass tiraskariMc(abaḍi)i

vmod:cp_serial

k1/k2:pass

Figure 7: Dependency tree for (5)

Other cases include constructions with negative ma-
trix verb percolating its features to the conjunctive
participle resulting in ambiguity as in the sentence
(8).

(8) ravi.∅
Ravi.NOM

kāphı̄.∅
coffee.ACC

tāgi
drink-CP.PST

skūl-ki
school-DAT

vel.l.-a-lēdu
go-PST-NEG

‘Ravi drank coffee but he did not go to
school/ It is not coffee that Ravi drank (but
something else) and went to school’

Since disambiguating senses in (8) is not in the
scope of parsing and it requires deep semantic anal-
ysis, the dependency tree does not show the differ-
ence in meaning as in the figure 8.

However, the occurrence of the particle kūd. a
‘also’ after the participle form helps in disambiguat-
ing and the negative percolation from the matrix to
subordinate clause is prevented.

(9) ravi.∅
Ravi.NOM

kāphı̄.∅
coffee.ACC

tāg-i
drink-CP.PST

kūd
¯
a

also
skūl-ki
school-DAT

vel.l.-a-lēdu
go-PST-NEG

‘Ravi drank coffee but he did not go to
school’

15

veḷḷalēdu

ravi

k1

skūlki

k2p

tāgi

vmod:cp_serial

kāphī

k2

Figure 8: Dependency tree for (8)

4.2 Conditional clauses

Conditional clauses in Telugu not only express con-
ditional sense but also show other interpretations
leading to several parsing analyses. Such construc-
tions are identified and tagged differently in the
RBP.

Sentences (10) and (11) differ with the use of
tense in finite verb and render different senses. If
the finite verb of a complex sentence is in non-past
tense, it is considered as a conditional clause and
will be tagged with vmod:cond. Whereas, if the
matrix verb is in the past tense, the conditional
verb expresses the serial action and is given the tag
vmod:cond serial as the sentence (11).

(10) rāyi-tō
stone-INST

kod. i-tē
hit-COND

kāya
fruit-NOM

kiMda
down

padu-tuM-di
fall-NON.PST-3.N.SG
‘If you hit with a stone, the fruit falls’

(11) rāyi-tō
stone-INST

kod. i-tē
hit-COND

kāya
fruit-NOM

kiMda
down

pad-iM-di
fall-PST-3.N.SG
‘The fruit fell when hit with a stone’

Other exceptional case of conditional suffix ren-
dering non-conditional sense include the causal
meaning. In the sentence (12) (Ramarao, 2017,
pg. 129), the verb of non-finite clause tiM-tē ex-
presses the cause for the main action and can be
alternated with conjuctive participle form tini ‘hav-
ing eaten’. The subject subbārāvu ‘Subbarao’ is
shared with both non-finite and matrix clauses.
Shared subject constraint is used as a syntactic
cue in order to parse these constructions and tag

vmod:cond cause is attached in the depen-
dency tree as in 9.

(12) subbārāvu
Subbarao-NOM

gud. lu
eggs

tiMt.e
eat-NF-COND

balis.-ā-d. u
fat-become-PST-3.SG.M
‘Subbarao became strong by eating eggs’

balisāḍu

subbārāvu

k1 tiMṭē

vmod:cond_cause

k1

guḍlu

k2

kōḍi

nmod

Figure 9: Dependency tree for (12)

4.3 Concessive clauses

Concessive clauses in Telugu are formed by adding
the suffix -inā to the verb stem and express the
meaning ‘even if/even though’. It functions as
adverbial modifiers to the matrix verb. The neg-
ative concessive form is formed by the suffix
‘akapoyinā’. This clause is tagged as vmod:conc
in the rule-based parser.

(13) nēnu
I-NOM

cadiv-inā
study-NF-CONC

pāsu

avva-lēdu
become-NEG
‘Even after studying, I did not pass (the examina-
tion)’

4.4 Infinitive clauses

Infinitive clauses are not very common in Telugu.
The infinitive suffix in Telugu is -an and the tag
vinf:k1 is used in tagging infinite clauses when
they occur in the subject position as in the sentence
(14) and the respective dependency tree in Figure
11.

16

avvalēdu

pāsu

pof

nēnu

k1

cadivinā

vmod:conc

Figure 10: Dependency tree for (13)

(14) mı̄ru
I-HON

nā-tō
I-INST

ā
that

vis.ayaM
matter

cepp-an
tell-INF

akkar-lēdu
need-NEG
‘You need not tell me that matter’

lēdu

ceppan

vinf:k1

akkara

pof

mīru

k1

nātō

k4

viṣayaM

k2

ā

det

Figure 11: Dependency tree for (14)

4.5 Relative Participle Clauses

A simple sentence can be changed into a relative
clause by replacing its finite verb by a relative
participle (or verbal adjective) in the correspond-
ing tense-mode and shifting the noun that it quali-
fies as head of the construction (Krishnamurti and
Gwynn, 1985). Relative participle clauses occur
immediately before nouns which they qualify. In
Telugu, they show the distinction in tense in affir-
mative construction whereas in negative they do
not show the tense.Relative participles are tagged
as nmod:relcl in RBP. nmod:relcl is added
with the argument relation of the noun which is
relativized. In the sentence (15), the relativized
nouns holds the object (k2) relation with the rel-
ative participle whereas the sentence (16) with
the subject (k1) relation. There are tagged as

nmod:relcl k2 and nmod:relcl k1 respec-
tively in Figures 12 and 13.

(15) nēnu
I.NOM

cūs-ina
see-RP.PST

manis.i
man

iMt.i-ki
home-DAT

vacc-ā-d. u
came-PST-3.SG.M
‘The man whom I saw came home’

(16) nan-nu
I-ACC

cūsina
see-RP.PST

manis.i
man

iMt.i-ki
home-DAT

vacc-ād. u
come-PST-3.SG.M
‘The man who saw me came home’

vaccāḍu

maniṣi

k1

iMṭiki

k2p

cūsina

nmod:relc_k2

nēnu

k1

Figure 12: Dependency tree for (15)

vaccāḍu

maniṣi

k1

iMṭiki

k2p

cūsina

nmod:relc_k1

nannu

k2

Figure 13: Dependency tree for (16)

Relative participle clause constructions are am-
biguous when the noun in the relative clause has
the potential to be an agent followed by the relative

17

participle form of the verb which is transitive.

(17) nēnu
I.NOM

tin-ina
eat-RP.PST

kaMcaM
plate

pāta-di
old-3.SG.N

‘The plate in which I ate is old‘/‘The plate
which I ate is old’

root

kaMcaM

k1

pātadi

k1s

tinina

nmod:relc_k2/k7

nēnu

k1

Figure 14: Dependency tree for (17)

The token kaMcaM ‘plate’ can be inter-
preted with the tag k7 (location) as well as
nmod:relc k2 as in figure 14. However, we
use selectional restriction rules to rule out one of
the analysis as eating kaMcaM ‘plate’ with the tag
nmod:relc k2 is semantically not possible.

5 Enhanced Anncora Tagset

Anncora guidelines (Bharati et al., 2009) suggest
the tag vmod for conjunctive participles, conces-
sives, conditionals and nmod for relative participles.
In this study, we have used multiple linguistic cues
and enhanced subordinate clause tags as shown in
the table 2. Around 41 rules with linguistic cues
have been used to parse both simple and subordi-
nate clauses in Telugu.

6 Evaluation

Rules of RBP are framed based on the model
sentences collected from various Telugu grammar
books Krishnamurti and Gwynn (1985), Ramarao
(1975), Krishnamurti (2003) & (Ramarao, 2017).
The purpose of choosing grammar texts for build-
ing rules is due to the wide-range of exceptions
that are covered. These exceptions enabled us to
segregate several cases of subordinate clause oc-
currences and providing fine-grain tags. Around

Subordinate clause Enhanced Tag for Telugu
conjunctive participle vmod
serial action vmod:cp serial
simultaneous action vmod:cp simul
Manner vmod:cp manner
conditional clauses
condition vmod:cond
serial action vmod:cond serial
cause vmod:cond cause
concessive clause vmod:conc
infinitive clause vinf:k1
Relative participle clause
relativization of subject nmod:relcl k1
relativization of object nmod:relcl k2
relativization of location nmod:relcl k7

Table 2: Dependency Tags for Subordinate Clauses in
Telugu

250 sentences were collected from news paper data
for testing subordinate clauses. The labelled attach-
ment score (LAS) is 72% and unlabelled attach-
ment score is 81%. The Table 3 shows the LAS
and UAS various sub-type of subordinate clauses.

Type of clauses LAS UAS
Conjunctive participle clauses 77.7% 86.2%
Conditional clauses 70.5% 82%
Concessive clauses 69.6% 80%
Infinitive clauses 64% 64%
Relative participle clauses 66.7% 73.2%

Table 3: Results of various subordinate clauses

RBP works on the linguistic cues (ver-
bal/nominal databases, grammatical information)
provided to it. RBP fails when these linguistic
cues are not included as part of database or when
it encounters an exception. But these cues can be
updated as and when RBP encounters a new cor-
pus. Another case in which RBP fails to deliver
a correct parse is when pre-processing tools like
morphological analyser, POS, pruning, pick-one
morph provide an erroneous output.

7 Conclusion

Parsing of non-finite verb clauses and relative par-
ticiple constructions in Telugu is attempted in this
paper using a rule-based parser. It is observed that
knowledge-driven parser works better for agglu-
tinating languages like Telugu as many linguistic
cues can be seen in the structure. Parsing of sub-
ordinate clauses is challenging due to its diverse
interpretations and usage. Various ambiguous con-
structions are considered in this paper alongside

18

adding enhanced/fine-grain tags to the existing An-
ncora tagset. These tags are beneficial as the tag
vmod is quite under-specified. Results prove that
RBP serves as an efficient parser for Telugu and
addition of linguistic cues can improve the perfor-
mance further. Parsing of other complex structures
will be carried out in the future work.

Acknowledgments

We thank the reviewers for their critical comments
which immensely helped us in improving this
paper.

References
Bharat Ram Ambati, Phani Gadde, and Karan Jin-

dal. 2009. Experiments in indian language depen-
dency parsing. Proceedings of the ICON09 NLP
Tools Contest: Indian Language Dependency Pars-
ing, pages 32–37.

Akshar Bharati, Dipti Misra Sharma, Samar Husain,
Lakshmi Bai, Rafiya Begum, and Rajeev Sangal.
2009. Anncorra: Treebanks for indian languages,
guidelines for annotating hindi treebank. LTRC, IIIT
Hyderabad, India. Version 2.

Praveen Gatla. 2019. Dependency parsing for telugu
using data-driven parsers. Language in India, 19(1).

Samar Husain. 2009. Dependency parsers for indian
languages. In Proceedings of ICON09 NLP Tools
Contest: Indian Language Dependency Parsing.

Silpa Kanneganti, Himani Chaudhry, and Dipti Misra
Sharma. 2016. Comparative error analysis of parser
outputs on telugu dependency treebank. In In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 397–408.
Springer.

Sruthilaya Reddy Kesidi, Prudhvi Kosaraju, Meher Vi-
jay, and Samar Husain. 2013. Constraint-based hy-
brid dependency Parser for Telugu. Ph.D. thesis, Ph.
D. thesis, International Institute of Information Tech-
nology Hyderabad.

Bhadriraju Krishnamurti. 2003. The dravidian lan-
guages. Cambridge University Press.

Bhadriraju Krishnamurti and John Peter Lucius Gwynn.
1985. A grammar of modern Telugu. Oxford Univer-
sity Press, USA.

Amba Kulkarni. 2019. Sanskrit Parsing: Based on the
Theories of Śābdabodha. DK Printworld (P) Ltd.

Sneha Nallani, Manish Shrivastava, and Dipti Misra
Sharma. 2020. A simple and effective dependency

parser for telugu. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: Student Research Workshop, pages 143–
149.

Joakim Nivre. 2006. Inductive dependency parsing.
Springer.

Taraka Rama and Sowmya Vajjala. 2018. A depen-
dency treebank for telugu. In English Conference
Papers, Posters and Proceedings, 8, pages 119–128.

C Ramarao. 1975. Telugu vākhyam. A.P. Sahitya
Academy.

Chekuri Ramarao. 2017. A reference grammar of mod-
ern Telugu. EMESCO books Pvt. ltd., Hyderabad.

G. Uma Maheshwar Rao. 1999. A Morphological Ana-
lyzer for Telugu. (electronic form). Hyderabad: Uni-
versity of Hyderabad. Accessible at.

P Sangeetha, Parameswari K., and Amba Kulkarni.
2021. A rule-based dependency parser for telugu:
An experiment with simple sentences. Translation
Today, 15(1).

19

Proceedings of the ICON 2021 Workshop on Parsing and its Applications for Indian Languages (PAIL) , pages 20–26
December 16, 2021. Silchar, India. ©2021 NLP Association of India (NLPAI)

1

Abstract

Dependency parsing is the process of

analysing the grammatical structure of a

sentence based on the dependencies

between the words in a sentence. The

annotation of dependency parsing is done

using different formalisms at word-level

namely Universal Dependencies and

chunk-level namely AnnaCorra. Though

dependency parsing is deeply dealt in

languages such as English, Czech etc the

same cannot be adopted for the

morphologically rich and agglutinative

languages. In this paper, we discuss the

development of a dependency parser for

Tamil, a South Dravidian language. The

different characteristics of the language

make this task a challenging task. Tamil, a

morphologically rich and agglutinative

language, has copula drop, accusative and

genitive case drop and pro-drop.

Coordinative constructions are introduced

by affixation of morpheme ‘um’.

Embedded clausal structures are common

in relative participle and complementizer

clauses. In this paper, we have discussed

our approach to handle some of these

challenges. We have used Malt parser, a

supervised learning- approach based

implementation. We have obtained an

accuracy of 79.27% for Unlabelled

Attachment Score, 73.64% for Labelled

Attachment Score and 68.82% for

Labelled Accuracy.

1 Introduction

Dependency parsing is the process of analysing

the grammatical structure of a sentence based on

the dependencies between the words in a

sentence. It gives the necessary information for

various sophisticated NLP tasks such as

Information Extraction, Machine Translation, and

detailed Sentiment Analysis etc. Extensive

research in development of Dependency

Treebanks and Dependency parsers are done in

languages such as English, Czech, French,

German, Arabic, Turkish etc. The annotation of

dependency relations is done using different

formalisms at word-level namely Universal

Dependencies and inter and intra chunk-level

namely AnnaCorra. In Indian languages,

particularly, in Hindi, Telugu and Bengali, there

are a good number of publications on

Dependency parser development compared to

other Indian languages. Lack of dependency

relation annotated corpus in most of the Indian

languages is the prime reason. In this paper, we

have described dependency relation annotation

task and the development of dependency parser

for Tamil using a Data-driven approach.

The paper is structured as follows. In section

2, we have discussed the previous attempts in the

development of dependency parsers in various

Indian languages. A brief introduction on the

characteristics of Tamil language is given in

section 3. In section 4, we describe the annotation

of dependency relations in Tamil sentences.

Section 5 has the details of our approach for the

development of Tamil dependency parser. This is

followed by a section containing the details of the

experiment, results and discussion. The paper

concludes with the conclusion section.

2 Recent Works

Dependency Treebank work in Indian languages

started with development of annotation schema

for Indian languages developed by Bharati et. al.

(2006). Few of the initial works in Indian

Dependency Parsing in a Morphological rich language, Tamil

Vijay Sundar Ram R and Sobha Lalitha Devi

AU-KBC Research Centre

MIT Campus of Anna University

Chennai

sobha@au-kbc.org

20

2

languages in Dependency parser are as follows.

Bharati et. al. (2008) has proposed a framework

for dependency parsing for Indian languages

using a grammar-driven methodology. They have

presented how the rules made for one language

can be effectively transferred to other similar

languages. Bharati et. al. (2009) presented a two-

stage constraint-based approach to dependency

parsing. Here the different grammatical

constructions were processed at appropriate

stages. This algorithm was tested with Hindi

Dependency Treebank data.

ICON Tool Contest on Dependency Parsing

during 2009 and 2010 boosted the Dependency

parser research in languages namely Hindi,

Telugu and Bengali. Different Dependency

parsers using Grammar-driven approaches, Malt

parser and MST parser and hybrid approaches

were developed. The detailed report on the tool

contents is available in Husain S. et. al. (2009)

and Husain S. et. al. (2010). There are substantial

works in these languages using the data released

in these tool contests. Few of the notable work in

these languages are as follows.

Kesidi R. S. et. al. (2011) has presented a two-

stage constraint-based approach to Telugu

dependency parser, where they perform a

selective identification and resolution of the

dependency relation at different stages. The

ranking strategy using S-constraints is used to get

the best parse. Praveen Gatla (2019) has presented

a work on development of Telugu annotated

corpus and their experiment in developing Telugu

dependency parser using Malt parser and MST

parser. The annotated treebank had 2424

sentences. Nallani.S et. al. (2020) has presented a

simple and effective dependency parser for

Telugu using BERT model built using Telugu

Wikipedia corpus. They have attempted to use

contextual vector representations instead of hand-

crafted features using linguistic information such

as part-of-speech and morphology.

Naman Jain (2016) has done a considerable

study on Hindi Dependency parser development.

He has explained two different ensembling

approaches namely re-parsing algorithm and

word-by-word voting algorithm in improving the

Malt parser. Dhar A. et. al. (2012) came up with a

two-stage dependency parser for Bengali, where

in the second stage, Bangla specific constraints

using Bangla verb frames were used.

Morphological features, Part-of-speech, Chunk

and Named Entity information were used in both

stages.

 In Tamil, there are very few published works in

Dependency parser. Ramaswamy L. and

Zabokrtsky Z. (2011) attempted to build Tamil

dependency parser using rule-based technique and

also using Malt parser and MST parser. Their

annotation schema was partially based on Prague

Dependency Treebank (PDT). They annotated a

corpus of 3000 words. They observed that the

both the rule-based and corpus-based approaches

performed poorly in identifying the co-ordinate

constructions. Sarveswaran K. and Dias G. (2020)

has presented a neural-based dependency parser

for Tamil namely TamizhiUDp, developed using

UUparser engine developed using Styme S. et. al.

(2018) for training with heterogeneous treebanks.

As they had 600 Tamil Dependency relation

annotated sentences, they experimented

multilingual training. They jointly trained Tamil

data with Hindi HTTB v2.6 sentences. It has

16647 sentences. They also tried training with

other languages such as Telugu, Turkish, but they

got better result with Hindi data as the data size

was bigger. They got 62.39% as Label Attachment

Score (LAS) accuracy. Since Telugu MTG

Udv2.6 had only 1328 sentences and without

morphological information, it did not suit for

combined training in their experiment. In the

following section, we give a brief introduction on

characteristics of Tamil language.

3 General Characteristics of Tamil

Language

Tamil belongs to the South Dravidian family of

languages. It is a verb final language and allows

scrambling. It has postpositions, the genitive

precedes the head noun in the genitive phrase and

the complementizer follows the embedded clause.

Adjective, participial adjectives and free relatives

precede the head noun. It is a nominative-

accusative language like the other Dravidian

languages. The subject of a Tamil sentence is

mostly nominative, although there are

constructions with certain verbs that require

dative subjects. Tamil has Person, Number and

Gender (PNG) agreement.

Tamil is a relatively free word order language,

but when it comes to noun phrases and clausal

constructions it behaves as a fixed word order

language. As in other languages, Tamil also has

optional and obligatory parts in the noun phrase.

21

3

Head noun is obligatory and all other constituents

that precede the head noun are optional. Clausal

constructions are introduced by non-finite verbs.

Complementizer clause occurs with

complementizer markers ‘endru’ and ‘ena’.

Subject drop occurs in Tamil. The other

characteristics of Tamil are copula drop,

accusative drop, and genitive drop. Co-ordinate

constructions are also introduced with ‘um’ suffix.

In the next section, we will discuss about the

annotation of Dependency relation in Tamil

sentences.

4 Tamil Dependency Treebank

Annotation

As there is no publicly available Tamil

Dependency Treebank, we prepared it inhouse. In

the present work of annotating Tamil sentences

with dependency relations, we have followed the

annotation guidelines given in AnnaCorra (Dipti

et. al.. 2012). It is based on modifier-modified

relationship. The dependency relations are

hierarchically defined as inter-chunk and intra-

chunk relations. The grammatical relations that

are considered in the guidelines are of two types;

(1) Karaka, and (2) Relations other than karakas.

‘Karakas’ are the roles of various participants

in an action. An action in a sentence is denoted

through a verb. For a noun to hold a karaka

relation with a verb, it is important that they (noun

and verb) have a direct relation.

4.1 Relations and Tag labels

The scheme contains about 40 tags which are

arrived at considering various types of sentence

constructions. These labels represent the

following relations (a) karaka and non-karaka

dependency relations (b) some underspecified

tags of the type vmod, nmod etc and (c) some tags

which indicate relations which are not exactly

dependency relations but are required to represent

the sentence structures. The labels are presented

in fig 1.

Figure 1: Dependency Relations

Table 1: Dependency relations and their meaning

To handle the co-ordinate sentence formed by

‘um’ suffix, and sentences with copula drop, pro-

drop, we manually introduce a NULL in that

required slot in the sentence and mark the

dependency relations. Few of the example

sentences are given below.

Figure 2: Dependency Tree for example 1

S.No Relation Meaning

1 k1 Agent / Subject / Doer

2 k2 Theme / Patient / Goal

3 k3 Instrument

4 k4 Recipient / Experiencer

5 k5 Source

6 k7 Spatio-temporal

7 rt Purpose

8 rh Cause

9 ras Associative

10 k*u Comparative

11 k*s (Predicative) Noun / Adjective

Complements

12 r6 Genitives

13 relc Modification by Relative

Clause

14 rs Noun Complements

(Appositive)

15 adv Verb modifier

16 adj Noun modifier

paNam

athikariththukkoLLalaam

thiirnthaal celuththi thokaiyai

paNam miiNtum

K1 ADV
 K1

VMOD
K1

VMOD

22

4

Ex 1:

paNam thiirnthaal miiNtum

Money(N) complete(V+COND) again (Adverb)

paNam celuththi thokaiyai

money(N) pay(V+VBP) amount(N)

athikariththukkoLLalaam .

increase(V+Finite)

(If the money gets emptied, again paying the

money, we can increase the amount.)

The sentence in example 1, has a conditional

clause ‘paNam thiirnthaal’ (if money gets empty)

and a non-finite clause ‘miiNtum paNam

celuththi’ (by paying money again). These two

clausal verbs are attached to the finite verb has

vmod relation. And it is shown in fig 2.

Figure 3: Dependency Tree for example 2

Ex 2:

aitharaapaaththum cekantharaapaaththum

Hyderabad(N+INC) Secunderabad(N+INC)

irattainakarangkaL aakum.

twin-cities be(copula)

(Hyderabad and Secunderabad are twin cities.)

In example 2, the sentence has co-ordination

between two nouns aitharaapaaththum

(Hyderabad) cekantharaapaaththum

(Secunderabad) introduced by ‘um’ suffix. While

annotating this sentence, a NULL is introduced

between these two nouns and the nouns are

related to the NULL with ‘ccof’ relation. The

dependency tree for this sentence is given in fig 3.

4.2 Corpus Details

We have collected sentences with different

sentence structures from various Tamil web

Newspapers. We have annotated 2500 sentences,

where 70% of the sentences are simple sentences,

20% of the sentences are two clause sentences,

5% of compound sentences and remaining 5% of

the sentences had multi clauses (more than two

clauses).

5 Our Approach

We have used Malt parser for developing Tamil

dependency parser. Malt parser is a language

independent system, which can be used to train

for any given language. Maltparser is an

implementation of inductive dependency parsing.

The syntactic analysis of a sentence amounts to

the derivation of dependency structure. It is

possible to improve the performance of the

system by optimizing the parameter of the

transition system and optimizing the features used

for the classifier system. Maltparser

implementation has nine deterministic parsing

algorithms, viz, Nivre arc-eager, Nivre arc-

standard, Convington non-projective, Convington

projective, Stack projective, Stack swap-eager,

Stack swap-lazy, planner and 2-planner. It

supports two machine learning packages,

LIBSVM and LIBLINEAR. In the present work,

we have used arc-eager transition and

morphologically rich features. Nivre. J (2009) has

presented the importance of morphological

information in developing Dependency parser for

morphologically rich language namely Telugu.

We have used LIBSVM classifier with the

following features POS, chunk information along

with the root word, case suffix, other suffixes and

TAM (tense-aspect-model) and PNG (Person,

Number and Gender) information from verbs.

This information is obtained from the

morphological analysis of the words.

Dependency relation annotated sentences were

enriched with morphological information, Part-of-

Speech, Chunk and chunk-head information using

a robust Morphological analyser build using a

paradigm approach, CRFs based part-of-speech

tagger and chunker and rule-based head chunk

identification module. The head chunk

information is required for marking the inter-

chunk relation.

As Tamil sentences have copula drop and co-

ordinate sentences with ‘um’ suffix, we need to

re-structure these sentences by adding NULL in

the required positions.

Akum

NULL

cekantharaapaaththum aitharaapaaththum

irattainakarangkaL

K1

S

K1

COFF COFF

23

5

5.1 Copula Drop Handler

We check for the finite verb in the sentence, if it

does not exist, NULL is introduced as the last

word of the sentence before the punctuation

marker. Consider the following example sentence.

Ex 3:

naan doctor.

I am a doctor .

After addition of NULL, the sentence is as

follows,

“naan doctor NULL .”

5.2 Co-ordinate Construction Handler

‘um’ suffix is also used as an emphatic marker.

Using linguistic rules, we disambiguate the

sentences with emphatic ‘um’ and co-ordinate

suffix ‘um’. Co-ordinate suffix ‘um’ suffix can

occur in the series of nouns and verbs. The

algorithm to handle this is explained below.

Step1: If sentence has multiple words with

‘um’ suffixes, then step 2

Step2: If sentence has a series of nouns or

verbs with ‘um’ suffix

 then

 introduce NULL between the last pair of

noun/verb with ‘um’ suffix.

Consider the sentence in example 4.

Ex 4:

aitharaapaaththum cekantharaapaaththum

Hyderabad(N)+INC Secendrabad(N)+INC

irattainakarangkaL aakum.

twin-cities be(copula)

(Hyderabad and Seceundrabad are twin cities.)

The sentence in example 4, has two nouns with

‘um’ suffix.

After Correction:

“aitharaapaaththum NULL cekantharaapaaththum

irattainakarangkaL aakum. “

Dependency tree for the sentence in example 4 is

shown in figure 3.

6 Experiment and Results

The dependency relation annotated sentences

were randomly divided into 80% and 20% for

training and testing purpose. Both the training

data and the testing data are processed with

morphological analyser, POS tagger, Chunker and

chunk head identification module. Further

sentences with Copula drop and sentences with

’um’ co-ordinate suffix are corrected by

introducing a NULL. This processed data is

presented to Malt parser in CoNLL column

format for training and testing.

We have evaluated the performance of the

model with standard measures namely Label

Attachment Score (LAS), Unlabeled Attachment

Score (UAS), Labeled Accuracy (LA) metrics.

The training data had 2000 sentences and the

testing data had 500 sentences. We performed a

detailed analysis on the contribution of each of the

features in improving the accuracy. The

performance scores obtained when introducing

different features are given table 2.

S.No System Features UAS LAS LA

1 Baseline Word,

root word
61.45 57.29 54.84

2 Baseline

+POS
Word,

Root word,

POS

66.14 61.72 56.34

3 Baseline

+POS
+Case

Word, root

word, POS,

Case marker

75.46 71.84 66.23

4 Baseline

+POS
+Case

+Other

suffix

Word, root

word, POS,

Case marker,
PNG

information,

other suffix

 79.27 73.64 68.82

Table 2: Performance Scores of different systems

The performance scores in table 2, show the

contribution of different features in improving the

accuracy of the parsing. Tamil being a

morphologically rich language with highly

productive suffixation, the information from the

processing modules contribute a lot of

information. Case markers affixed to the nouns

help in determining the semantic role of that noun

phrase in that sentence. Both finite and non-finite

verbs have clear suffix markers affixed to the

verbs. These suffixes are vital features for the

classifier. This is evident from the accuracy

obtained for 3rd and 4
th
 system, where, case

markers and other suffixes are included as

features. Though ‘vmod’ relations are identified

properly, the system has poorly identified the

Karakas relations in the sub-ordinate clause.

Dropping of genitive case and accusative case

24

6

markers are common characteristics in Tamil.

This affects the proper identification of K2 and r6

relations. It also introduces wrong K1. The

sentences with embedded clause were not

correctly handled. This requires re-ordering of

sentence into linear form to correctly identify the

relations.
The Overall performance measures obtained

are presented in the following table 3.

UAS LAS LA

79.27% 73.64% 68.82%

Table 3: Overall Performance Measures

The performance measures for the frequently

occurring tags are given in table 4.

Dep-Rel Recall Precision F-measure

k1 81.64 78.23 78.84

k1s 62.49 64.45 63.45

k2 76.62 72.41 74.46

k2p 74.98 73.12 74.04

k2s 23.92 31.48 27.18

k4 71.53 64.54 67.86

k4a 19.34 56.62 28.83

k7 43.69 49.27 46.32

k7p 63.37 62.74 63.05

k7t 67.84 65.23 66.51

nmod 26.54 68.57 38.27

vmod 82.74 75.61 79.02

adv 77.83 74.81 76.29

Ccof 77.34 73.38 75.31

r6 74.85 67.45 70.96

rh 77.63 71.54 74.46

Table 4: Performance Measures of Major Tags

On analysing the output, we had the following

observations.

k2 karaka relation is marked as k1 is a

common error. It has happened in the sentences

where the accusative case marker is dropped in

the object noun phrase. There are instances where

k1 is marked as k2. r6, which marks the

possessive relation between the nouns were

poorly identified. As genitive case drop is

common in Tamil sentences, the relation between

the nouns were not captured. This led to wrong

tagging of dependency relations.

The parser has failed to handle embedded

clause sentences, where karaka relation of the

clausal verb and the main verb were wrongly

attached. In these sentences, the ‘vmod’ relation

between the clausal verb and the main verb were

marked correctly.

K4a- karaka relation which refers to the

experiencer relation, were wrongly tagged as k4

or k1. And these relations were less frequently

occurred in the corpus. The parser has not handled

the multiclause sentences correctly. Here the

‘vmod’ relations were correctly tagged but the

karaka relations with clausal verb and main verb

were not correctly tagged.

Thus, to improve the parser efficiency, we

need to increase the training data. Further the

rules should be included to handle genitive case

drop, accusative case drop and subject drop. We

need to identify the sentence structures using the

clausal verb and handle them separately, it will

reduce the errors due to wrongly attached NPs

with other verbs. We should also use the post-

processing rules to improve the parser efficiency.

Conclusion

It is also advised to supplement non-English

characters and terms with appropriate

transliterations and/or translations since not all

readers understand all such characters and terms.

We presented a work on developing Dependency

parser for Tamil, which is a less attempted task.

Tamil, a south Dravidian language, is a

morphologically rich and highly agglutinative

language. We used Malt parser to train the

language model with morphologically rich

features. We enrich the sentences with

morphological information, PoS tags, Chunks and

chunk head information using shallow processing

tools. The copula-drop and sentences with co-

ordinate ‘um’ suffixes are rewritten by

introducing NULL in the required position in the

sentences, before processing it with a parser.

Accusative case drop, genitive case drop and

subject drop are common in Tamil sentences and

these affect the efficiency of the parser. Embedded

clause occurs in relative participle clause and

complementizer clause sentences and these

sentence constructions are poorly handled by the

parser. We plan to build a confusion matrix for

deeper understanding of the errors.

 To improve the efficiency of the parser we plan

to train the model with more annotated data and to

25

7

add linguistic rules to handle accusative case

drop, genitive case-drop and subject drop. Further

we plan to improve the algorithm to selectively

handle the different sentence structures.

Increasing the annotated data substantially, we

also plan to train a neural-based dependency

parser, where we can use resources such as BERT

which provides a contextual vector representation,

to build a robust parser.

References

Bharati, A., Sharma, D. M., Bai, L, Sangal, R.:

AnnCorra: Annotating Corpora Guidelines for POS

and Chunk Annotation for Indian Languages.

LTRC-TR31. (2006)

Bharati, A., Husain, S, Sharma, D.M., Sangal, R.: A

Two-Stage Constraint Based Dependency Parser

for Free Word Order Languages. In: the COLIPS

IALP. (2008)

Bharati, A., Husain, S., Vijay, M., Deepak, K., Misra,

D., Sangal, R.: Constraint Based Hybrid Approach

to Parsing Indian Languages. In: The 23rd Pacific

Asia Conference on Language, Information and

Computation. Hong Kong (2009)

Dhar. A., Chatterji. S., Sarkar. S., Basu. A. 2012, In:

Proceedings of the 10th Workshop on Asian

Language Resources, COLING 2012, Mumbai,

December 2012, pages 55–64

Husain, S., 2009. Dependency Parsers for Indian

Languages. In: Proceedings of the ICON09 NLP

Tools Contest: Indian Language Dependency

Parsing. India.

Husain, S., Mannem, P., Ambati, B., Gadde, P.2010.

The ICON-2010 tools contest on Indian language

dependency parsing. In: ICON-2010 tools contest

on Indian language dependency parsing.

Kharagpur, India

Jain, N., 2016. Advancements to Hindi Dependency

Parsing: Semantic Information, Ensembling and

PAC (Doctoral dissertation, PhD thesis,

International Institute of Information Technology

Hyderabad).

Kesidi S.R., Kosaraju. P., Vijay. M. and Husain. S.

2011. A Constraint Based Hybrid Dependency

Parser for Telugu. In Proceedings of the 12th

CICLing, Tokyo, Japan.

Amba kulkarni, 2021, Sanskrit Parsing Following

Indian Theories of Verbal Cognition, ACM

Transactions on Asian and Low-Resource

Language Information Processing, Vol 20, Number

2, pp 1-38,

Kulkarni A 2019, Sanskrit Parsing based on the

theories of Shabdabodha, D. K. PrintWorld and

Indian Institute of Advanced Study, August 2019

Nallani, S., M. Shrivastava & D. Sharma. 2020.A

Fully Expanded Dependency Treebank for Telugu.

Proceedings of the WILDRE5– 5th Workshop on

Indian Language Data: Resources and Evaluation.

Marseille: Language Resources

Nivre, J., Hall, J., and Nilsson, J. 2006. Maltparser: A

data-driven parser-generator for dependency

parsing. In Proceedings of LREC, volume 6, pages

2216–2219.

Nivre, J., 2009. Parsing Indian Languages with

MaltParser. In: Proceedings of the ICON09 NLP

Tools Contest: Indian Language Dependency

Parsing.

Praveen Gatla 2019. Dependency Parsing for Telugu

Using Data-driven Parsers. Language in India. Vol.

19:1

Ramaswamy L. and Zabokrtsky Z. 2012. Prague

dependency style treebank for Tamil. In

Proceedings of Eighth International Conference on

Language Resources and Evaluation (LREC 2012),

pages 1888–1894, Istanbul, Turkey

Sarveswaran K. and Dias. G. 2020. ThamizhiUDp: A

Dependency Parser for Tamil. CoRR,

abs/2012.13436. https://arxiv.org/abs/2012.13436}

26

Proceedings of the ICON 2021 Workshop on Parsing and its Applications for Indian Languages (PAIL) , pages 27–32
December 16, 2021. Silchar, India. ©2021 NLP Association of India (NLPAI)

Neural-based Tamil Grammar Error Detection

Murugesapillai Dineskumar
University of Moratuwa, Sri Lanka

170141X@uom.lk

Ravinthirarasa Anankan
University of Moratuwa, Sri Lanka

170032N@uom.lk

Kenatharaiyer Sarveswaran
University of Moratuwa, Sri Lanka

sarves@cse.mrt.ac.lk

Gihan Dias
University of Moratuwa, Sri Lanka

gihan@uom.lk

Abstract

This paper describes an ongoing development
of a grammar error detector for the Tamil lan-
guage using the state-of-the-art deep neural-
based approach. This proposed checker cap-
tures a vital grammar error called subject-
predicate agreement errors. In this case, we
specifically target the agreement error between
nominal subjects and verbal predicates. We
also created the first-ever grammar error anno-
tated corpus for Tamil. In addition, we experi-
mented with different multi-lingual pre-trained
language models to capture syntactic informa-
tion and found that IndicBERT gives better per-
formance for our tasks. We implemented this
grammar checker as amulti-class classification
on top of the IndicBERT pre-trained model,
which we fine-tuned using our grammar-error
annotated data. This baseline model gives an
F1 Score of 84.0. We are now in the process of
improving this proposed system with the use
of a dependency parser.

1 Introduction

Grammar error detection is the task of identifying
grammatical errors in the text. This feature is avail-
able as a part of stand-alone applications, such as
Microsoft Word, Libre Office, and online applica-
tions, such as Grammarly and Google Docs. How-
ever, none of these applications supports the gram-
mar error detection of Tamil and most other Indian
languages.
In recent times, neural-based approaches are

also being employed for grammar error detection
tasks. However, unlike other well-resourced lan-
guages such as English and German, applying
neural-based approaches to Tamil is difficult due
to the lack of quality annotated data.
This paper outlines how we implemented an ap-

plication to detect grammar errors related to the
subject-predicate agreement in Tamil. We have

created a grammar error annotated corpus to train
the application. We have employed a neural-based
approach and a transfer learning technique to im-
plement the proposed application.

2 Motivation

Tamil is a morphosyntactically rich and free-order
language. It is spoken bymore than 78million peo-
ple around the world,1 and is the official language
of Sri Lanka, Singapore, and Tamil Nadu, India.
Tamil is a diglossic language with a spoken and
written form. The spoken form varies from region
to region; however, the written form is almost the
same among regions. Tamil documents are being
prepared electronically nowadays, including offi-
cial documents. However, most of the time, these
documents are typed in by people who are not well
versed with Tamil grammar.
On the other hand, official government docu-

ments are not supposed to have any grammar mis-
takes. It is even more critical in a multi-lingual
country such as Sri Lanka, where sometimes even
a non-Tamil person may type in official letters.
Therefore, all documents have to be checked for
all types of errors and corrected. Further, nowa-
days, many efforts are being made to develop ma-
chine translation systems. We need to ensure that
translations are grammatically correct before using
them to train systems.

3 Literature review

Several studies have been carried out to de-
velop spell checkers for Tamil, including (Sakun-
tharaj and Mahesan, 2016, 2018, 2019; Segar and
Sarveswaran, 2015; Uthayamoorthy et al., 2019;
Rajendran, 2012). However, no grammar error
checkers are found online or integrated into other

1http://www.languagesgulper.com/eng/Tamil.
html

27

applications. On the other hand, grammar error
checkers for well-resourced languages are read-
ily available online as cloud-based tools such as
Google Docs, Grammarly, and stand-alone office
suites.
There are 28 different types of errors that have

been reported in literature (Ng et al., 2014). In
addition to the listed errors, Tamil also has a spe-
cial type of error called Sandhi error. Although
Sandhi is considered as the result of a phonologi-
cal operation between two words or two morphs,
Sandhi also shows syntactic clues as discussed
shown by Sarveswaran and Butt (2019). In this
respect, Vaani2, which is developed using a rule-
based approach, can be considered as a partial
grammar checker as it handles Sandhi errors.
Nowadays, several multi-lingual pre-trained

models(Conneau and Lample, 2019; Conneau
et al., 2019; Xue et al., 2021; Kakwani et al., 2020;
Devlin et al., 2019) are available online. These
models are trained with millions of sentences and
tokens. The pre-trained models capture various
linguistic information, including morphological,
syntactical and semantic information of sentences.
However, these details are not in a specific for-
mat; therefore, not very easy to retrieve. XLM-
R (Conneau et al., 2019), IndicBERT (Kakwani
et al., 2020), and BERT (Devlin et al., 2019) are
also trained with Tamil data. Therefore, these mod-
els also capture linguistic features of Tamil.
We require a large set of annotated corpus to

train a machine learner to carry out the task of our
interests. However, the Tamil language does not
have an error annotated corpus. This kind of er-
ror annotated corpora can be created not only by
hand but also with the assistance of tools like Part
of Speech taggers, morphological analysers, and
syntactic parsers.

4 The proposed grammar error detector

This section outlines the process that has been fol-
lowed to develop the proposed grammar error de-
tector using a neural-based approach and transfer-
learning technique.

4.1 Scope
We handle only the modern written Tamil text. Be-
cause Tamil is a diglossia language that evolved
over several millennia, even the spoken forms vary
significantly among different regions. Therefore,

2http://vaani.neechalkaran.com/

it is complicated to draw grammar rules for them.
Further, over time Tamil also underwent several
grammatical changes. Therefore, we decided to fo-
cus only on the modern text that was written after
2000. We collected text from this period for train-
ing, evaluation, and testing of the proposed gram-
mar checker.
Further, instead of considering all the grammar

errors, we handle only the type of error called
subject-predicate agreement. In Tamil, the subject-
predicate agreement is an important condition that
needs to be met for any sentence to be grammati-
cal. Tamil can have nominated subjects and non-
nominative subjects. However, in our case, we
focus only on nominative subjects as there is no
agreement between non-nominative subjects and
the verbal predicates. Similarly, we do not handle
a nominal predicate as there are no agreements be-
tween a subject and the nominal predicates. There-
fore, our focus is only on the nominative subject-
verbal predicate agreement where both of them
need to agree on gender, number and person. Even
if one of these does not match, it is considered a
grammar error. Although this agreement needs to
be held on rationality, we do not handle it sepa-
rately as rationality errors can be tracked using per-
son, number, and gender errors.

4.2 Data
Except for a spelling error annotated word list,3
which is tiny in size, there was no other error an-
notated list found online. Therefore, we created
a grammar annotated dataset that marks subject-
predicate agreement errors, specifically person,
number, and gender errors. Table 1 shows details
of our corpus. The dataset has 5546 sentences
taken from news sources. We decided to use this to
develop a baseline system and then get the baseline
system to generate more error annotated datasets
incrementally.
The task of grammatical error detection is for-

malized as such, given Tamil sentence X as input,
the error detector outputs its prediction Y where,

Y =





0, if X is correct.
1, if X has gender error.
2, if X has person error.
3 if X has number error.

The dataset we collected has been divided
into training, validation, and testing sets, contain-
ing 4645, 460, and 481 sentences. It is non-

3https://www.kaggle.com/neechalkaran/
error-annotated-tamil-corpus

28

Table 1: Size of each class in the dataset

Class Number of sentences TotalTrain Validation Test
grammatical 2455 120 121 2696

person 913 120 120 1153
number 772 120 120 1012
gender 505 100 120 725
Total 4645 460 481 5546

Table 2: Example data entries from our error annotated corpus

Erroneous sentence Errorless sentence Error type
கவிதா வந்தான் . கவிதா வந்தாள் . Gender
kavitā vantān kavitā vantāl ̣
Kavitha.NOM-3SgF come.3SgM . Kavitha.NOM-3SgF come.3SgF.
நான் நாைள வந்தாள் . நான் நாைள வருேவன் . Person
nān nālại vantāl ̣ nān nālại varuvēn
I.NOM-1Sg come.3Sg . I.NOM-1Sg come.1SgF.

overlapping and balanced in terms of the type of
errors. Table 2 shows two example entries of er-
ror annotated corpus, a number error and a gender
error.

Figure 1: Overview of methodology

5 Approach

As illustrated in Figure 1, we used a supervised ap-
proach to develop the proposed grammar error de-
tector. However, instead of training a model from
scratch, which requires a significant amount of
data and processing power, we used a pre-trained
language model to capture the morphosyntax and
then modelled the grammar error detection as a
multi-class classification problem on top of it. In
order to do that, we have created a grammar er-
ror annotated corpus to fine-tune the pre-trained
model and implement our classification model.
We used our training set and validation set for this
purpose, and then we evaluated the system using

the test set.

5.1 Identifying a pre-trained model

As a first step, we have identified a pre-trained
model which works better for our problem.
We experimented with XLM-R (Conneau et al.,
2019), IndicBERT (Kakwani et al., 2020), and
mBERT (Devlin et al., 2019). Table 3 shows the
comparison of these models in respective to their
token size, parameters, and test results as reported
by Kakwani et al.,(2020). We made use of a frame-
work called Simple Transformers4 to carry out our
experiments.
The Simple Transformer framework provides

supports for various pre-trained models and tasks
such as text classification, token classification,
question answering, and language modelling. We
can easily set up a classification layer on top of the
pre-trained model using this framework. Further,
this framework also supports changing various pa-
rameters, including learning rate, batch size, and
epochs.
We fine-tuned the given three models using our

error annotated corpus and by varying different pa-
rameters as shown in Table 5. Finally, we also eval-
uated the model using the test set.
Table 4 shows the results we obtained for all

three models, and from which it is clear that the
IndicBERT pre-trained model outperforms other
models with the F1 score of 73.4%. Therefore, we

4https://simpletransformers.ai/

29

Figure 2: confusion matrix

Table 3: Pre-trained models, token size, number of parameters, and the test results for different tasks in indicGLUE
- Source: (Kakwani et al., 2020)

Language model token size parameters test accuracy
XLM-R-base 595 Million 125M 61.09
IndicBERT 549 Million 12M 66.66
bert-base-multilingual-cased 110M 64.62

Table 4: F1 score of different pre-trained models

Pretrained model MCC F1 Score
XLM-R-base 0.58048 0.73052
IndicBERT 0.59426 0.73684
bert-base-multiling-cased 0.58933 0.73474

Table 5: Different hyperparameter used for evaluation

Hyper parameter values
Learning Rate 1E-5,2E-5,3E-5,4E-5,5E-5
Batch Size 16, 32
Epochs 2, 3, 4

decided to use this model to improve grammar er-
ror detection for future experiments.

5.2 Evaluation

We used two standard metrics, namely MCC
(Matthew Correlation Coefficient)(Matthews,
1975) and F1 score, to evaluate the model that
we trained. Table 4 shows the initial performance
of different fine-tuned classification models for
the test set. It is evident from the results that
the IndicBERT outperforms other pre-trained
models. Moreover, since hyper-parameters also
affect the results, we experiment with different
hyper-parameter combinations to fine-tune the
classification model. Table 5 shows fine-tuned
values for the set of hyper-parameters. We change
the hyper-parameters to get a better F1 score.
Initially, the F1 score was 73%. Also, we found
significant confusion among number errors and

gender errors. The dataset has number error,
gender error, person error and error-less sentences.
We also found that some sentences have two kinds
of errors when we look deeper. Therefore, we
defined error precedence to the prioritise error
labels as number > gender > person. For instance,
Table 6 shows how number error is prioritised
over the gender error in the dataset. After this
precedence setting, the grammar error detection
showed the F1 score of 84%. Figure 2 shows
the current confusion matrix among different
type of errors. Eventually, we obtained the best
results for the combination of learning rate =
3E-05, batch size = 16, and epochs = 4 along with
IndicBERT. Equations 1, 2, and 3 show that how
we calculated the F1 score from True Positive
(TP), False Positive (FP), and False Negative (FN)
values.

Precision =
TP

TP+ FP

=
374

374+ (19+9+27+12)
= 0.84

(1)

Recall =
TP

TP+ FN

=
374

374+ (3+25+10+29)
= 0.84

(2)

F1 =
Precision× Recall
Precison+ Recall

=
2× 0.84× 0.84
0.84+ 0.84

= 0.84

(3)

30

Table 6: Precedence of errors

Erroneous sentence number error gender error error type
கவிதா வந்தான் . false true gender error
kavitā vantān
Kavitha.NOM-3SgF come.3SgM .
தமிழ் ெமாழி பழைமயானைவ true true number error
Tamil moli palamaiyānavai
Tamil language.NOM-3Sg old.3Pl .

6 Conclusion

We have implemented a baseline application for
Tamil grammatical error detection using the state-
of-the-art approach. The application outlined here
detects grammatical errors related to the person-
number-gender agreement between the nominative
subject and the verbal predicate in a sentence. We
used a multi-lingual pre-trained model to capture
the Tamil structures and then fine-tuned it using
the grammar error annotated data we created. We
found that the IndicBERT model gives better accu-
racy than other pre-trained models. Our baseline
model shows an F1 Score of 84.0% for unseen a
test set.
As the next step, we are planning to use

ThamizhiMorph (Sarveswaran et al., 2021) — A
Morphological analyser to create more annotated
data to train the grammar checker. The current
model relies on the pre-trained model to capture
the syntactic information such as subject and pred-
icate. However, this can be obtained using a
syntactic parser, and the syntactically parsed data
may increase the score. Therefore, as the next
step, we will also experiment with a Tamil depen-
dency parser called ThamizhiUDp (Sarveswaran
and Dias, 2020) to incorporate syntactic informa-
tion such as subject and predicate information into
our datasets to see whether the proposed system
can be improved further.

References
Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Advances in
Neural Information Processing Systems, 32:7059–
7069.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 4171–4186, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, NC Gokul, Avik Bhattacharyya, Mitesh M
Khapra, and Pratyush Kumar. 2020. inlpsuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for indian
languages. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 4948–4961.

Brian W Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning: Shared Task, pages 1–14.

S Rajendran. 2012. Preliminaries to the preparation of
a spell and grammar checker for Tamil. Language in
India, 2.

Ratnasingam Sakuntharaj and Sinnathamby Mahesan.
2016. A novel hybrid approach to detect and correct
spelling in Tamil text. In 2016 IEEE International
Conference on Information and Automation for Sus-
tainability (ICIAfS), pages 1–6. IEEE.

Ratnasingam Sakuntharaj and Sinnathamby Mahesan.
2018. Detecting and correcting real-word errors in
Tamil sentences. Ruhuna Journal of Science, 9(2).

Ratnasingam Sakuntharaj and Sinnathamby Mahesan.
2019. Detecting and Correcting Grammatical Mis-
takes due to Subject-Verb Inconformity and Con-
flicts in Tense Aspects in Tamil Sentences. In 6th
Ruhuna International Science and Technology Con-
ference (RISTCON).

31

Kengatharaiyer Sarveswaran and Miriam Butt. 2019.
Computational challenges with Tamil complex predi-
cates. In Proceedings of the LFG19 conference, Aus-
tralian National University. CSLI, Stanford, pages
272–292.

Kengatharaiyer Sarveswaran and Gihan Dias. 2020.
ThamizhiUDp: A dependency parser for Tamil. In
Proceedings of the 17th International Conference on
Natural Language Processing (ICON), pages 200–
207, Indian Institute of Technology Patna, Patna, In-
dia. NLP Association of India (NLPAI).

Kengatharaiyer Sarveswaran, Gihan Dias, and Miriam
Butt. 2021. ThamizhiMorph: A morphological
parser for the Tamil language. Machine Translation,
35(1):37–70.

J Segar and K Sarveswaran. 2015. Contextual spell
checking for Tamil language. In 14th Tamil Internet
conference, pages 1–5.

Keerthana Uthayamoorthy, Kirshika Kanthasamy,
Thavarasa Senthaalan, Kengatharaiyer Sarveswaran,
and Gihan Dias. 2019. DDSpell-A Data Driven
Spell Checker and Suggestion Generator for the
Tamil Language. In 2019 19th international con-
ference on advances in ICT for emerging regions
(ICTer), volume 250, pages 1–6. IEEE.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua,
and Colin Raffel. 2021. mT5: A Massively Mul-
tilingual Pre-trained Text-to-Text Transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498. Association for Computational Lin-
guistics.

32

Author Index

Alok, Deepak, 1

Dias, Gihan, 27

Krishnamurthy, Parameswari, 12
Kulkarni, Amba, 12
Kumar, Ritesh, 1

Lalitha Devi, Sobha, 20

Murugesapillai, Dineskumar, 27

Ojha, Atul Kr., 1

Raj, Mohit, 1
Ratan, Shyam, 1
Ravinthirarasa, Anankan, 27

Sangeetha, P, 12
Sarveswaran, Kengatharaiyer, 27
Sundar Ram, Vijay, 20

33

	Program
	Developing Universal Dependencies Treebanks for Magahi and Braj
	Parsing Subordinate Clauses in Telugu using Rule-based Dependency Parser
	Dependency Parsing in a Morphological rich language, Tamil
	Neural-based Tamil Grammar Error Detection

