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Abstract

This paper describes an ongoing development
of a grammar error detector for the Tamil lan-
guage using the state-of-the-art deep neural-
based approach. This proposed checker cap-
tures a vital grammar error called subject-
predicate agreement errors. In this case, we
specifically target the agreement error between
nominal subjects and verbal predicates. We
also created the first-ever grammar error anno-
tated corpus for Tamil. In addition, we experi-
mented with different multi-lingual pre-trained
language models to capture syntactic informa-
tion and found that IndicBERT gives better per-
formance for our tasks. We implemented this
grammar checker as a multi-class classification
on top of the IndicBERT pre-trained model,
which we fine-tuned using our grammar-error
annotated data. This baseline model gives an
F1 Score of 84.0. We are now in the process of
improving this proposed system with the use
of a dependency parser.

1 Introduction

Grammar error detection is the task of identifying
grammatical errors in the text. This feature is avail-
able as a part of stand-alone applications, such as
Microsoft Word, Libre Office, and online applica-
tions, such as Grammarly and Google Docs. How-
ever, none of these applications supports the gram-
mar error detection of Tamil and most other Indian
languages.

In recent times, neural-based approaches are
also being employed for grammar error detection
tasks. However, unlike other well-resourced lan-
guages such as English and German, applying
neural-based approaches to Tamil is difficult due
to the lack of quality annotated data.

This paper outlines how we implemented an ap-
plication to detect grammar errors related to the
subject-predicate agreement in Tamil. We have
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created a grammar error annotated corpus to train
the application. We have employed a neural-based
approach and a transfer learning technique to im-
plement the proposed application.

2 Motivation

Tamil is a morphosyntactically rich and free-order
language. It is spoken by more than 78 million peo-
ple around the world,' and is the official language
of Sri Lanka, Singapore, and Tamil Nadu, India.
Tamil is a diglossic language with a spoken and
written form. The spoken form varies from region
to region; however, the written form is almost the
same among regions. Tamil documents are being
prepared electronically nowadays, including offi-
cial documents. However, most of the time, these
documents are typed in by people who are not well
versed with Tamil grammar.

On the other hand, official government docu-
ments are not supposed to have any grammar mis-
takes. It is even more critical in a multi-lingual
country such as Sri Lanka, where sometimes even
a non-Tamil person may type in official letters.
Therefore, all documents have to be checked for
all types of errors and corrected. Further, nowa-
days, many efforts are being made to develop ma-
chine translation systems. We need to ensure that
translations are grammatically correct before using
them to train systems.

3 Literature review

Several studies have been carried out to de-
velop spell checkers for Tamil, including (Sakun-
tharaj and Mahesan, 2016, 2018, 2019; Segar and
Sarveswaran, 2015; Uthayamoorthy et al., 2019;
Rajendran, 2012). However, no grammar error
checkers are found online or integrated into other

"http://www.languagesgulper.com/eng/Tamil.
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applications. On the other hand, grammar error
checkers for well-resourced languages are read-
ily available online as cloud-based tools such as
Google Docs, Grammarly, and stand-alone office
suites.

There are 28 different types of errors that have
been reported in literature (Ng et al., 2014). In
addition to the listed errors, Tamil also has a spe-
cial type of error called Sandhi error. Although
Sandhi is considered as the result of a phonologi-
cal operation between two words or two morphs,
Sandhi also shows syntactic clues as discussed
shown by Sarveswaran and Butt (2019). In this
respect, Vaani®, which is developed using a rule-
based approach, can be considered as a partial
grammar checker as it handles Sandhi errors.

Nowadays, several multi-lingual pre-trained
models(Conneau and Lample, 2019; Conneau
etal., 2019; Xue et al., 2021; Kakwani et al., 2020;
Devlin et al., 2019) are available online. These
models are trained with millions of sentences and
tokens. The pre-trained models capture various
linguistic information, including morphological,
syntactical and semantic information of sentences.
However, these details are not in a specific for-
mat; therefore, not very easy to retrieve. XLM-
R (Conneau et al., 2019), IndicBERT (Kakwani
et al., 2020), and BERT (Devlin et al., 2019) are
also trained with Tamil data. Therefore, these mod-
els also capture linguistic features of Tamil.

We require a large set of annotated corpus to
train a machine learner to carry out the task of our
interests. However, the Tamil language does not
have an error annotated corpus. This kind of er-
ror annotated corpora can be created not only by
hand but also with the assistance of tools like Part
of Speech taggers, morphological analysers, and
syntactic parsers.

4 The proposed grammar error detector

This section outlines the process that has been fol-
lowed to develop the proposed grammar error de-
tector using a neural-based approach and transfer-
learning technique.

4.1 Scope

We handle only the modern written Tamil text. Be-
cause Tamil is a diglossia language that evolved
over several millennia, even the spoken forms vary
significantly among different regions. Therefore,

"http://vaani.neechalkaran.com/
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it is complicated to draw grammar rules for them.
Further, over time Tamil also underwent several
grammatical changes. Therefore, we decided to fo-
cus only on the modern text that was written after
2000. We collected text from this period for train-
ing, evaluation, and testing of the proposed gram-
mar checker.

Further, instead of considering all the grammar
errors, we handle only the type of error called
subject-predicate agreement. In Tamil, the subject-
predicate agreement is an important condition that
needs to be met for any sentence to be grammati-
cal. Tamil can have nominated subjects and non-
nominative subjects. However, in our case, we
focus only on nominative subjects as there is no
agreement between non-nominative subjects and
the verbal predicates. Similarly, we do not handle
a nominal predicate as there are no agreements be-
tween a subject and the nominal predicates. There-
fore, our focus is only on the nominative subject-
verbal predicate agreement where both of them
need to agree on gender, number and person. Even
if one of these does not match, it is considered a
grammar error. Although this agreement needs to
be held on rationality, we do not handle it sepa-
rately as rationality errors can be tracked using per-
son, number, and gender errors.

4.2 Data

Except for a spelling error annotated word list,’
which is tiny in size, there was no other error an-
notated list found online. Therefore, we created
a grammar annotated dataset that marks subject-
predicate agreement errors, specifically person,
number, and gender errors. Table 1 shows details
of our corpus. The dataset has 5546 sentences
taken from news sources. We decided to use this to
develop a baseline system and then get the baseline
system to generate more error annotated datasets
incrementally.

The task of grammatical error detection is for-
malized as such, given Tamil sentence X as input,
the error detector outputs its prediction Y where,

0, if X is correct.

v — 1, if X has gender error.
2, if X has person error.
3 if X has number error.

The dataset we collected has been divided
into training, validation, and testing sets, contain-
ing 4645, 460, and 481 sentences. It is non-

*https://www.kaggle.com/neechalkaran/
error-annotated-tamil-corpus
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Table 1:

Size of each class in the dataset

Number of sentences
Class Train | Validation | Test Total
grammatical | 2455 120 121 | 2696
person 913 120 120 | 1153
number 772 120 120 | 1012
gender 505 100 120 | 725
Total 4645 460 481 | 5546

Table 2: Example data entries from our error annotated corpus

Erroneous sentence Errorless sentence Error type
ST UBSTET . ST UBSTET . Gender
kavita vantan kavita vantal

Kavitha. NOM-3SgF come.3SgM . Kavitha.NOM-3SgF come.3SgF.

BTG BTEHGT GUBSTET BTG BTENGT 6 (THCEUeT Person

nan nalai vantal
L.NOM-1Sg come.3Sg .

nan nalai varuvén
[LNOM-1Sg come.1SgF.

overlapping and balanced in terms of the type of
errors. Table 2 shows two example entries of er-
ror annotated corpus, a number error and a gender
error.

Pre-trained model

J

Multi-class
classification model

|

Training Data

TestData —— ——> Prediction

Figure 1: Overview of methodology

S Approach

As illustrated in Figure 1, we used a supervised ap-
proach to develop the proposed grammar error de-
tector. However, instead of training a model from
scratch, which requires a significant amount of
data and processing power, we used a pre-trained
language model to capture the morphosyntax and
then modelled the grammar error detection as a
multi-class classification problem on top of it. In
order to do that, we have created a grammar er-
ror annotated corpus to fine-tune the pre-trained
model and implement our classification model.
We used our training set and validation set for this
purpose, and then we evaluated the system using
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the test set.

5.1 Identifying a pre-trained model

As a first step, we have identified a pre-trained
model which works better for our problem.
We experimented with XLM-R (Conneau et al.,
2019), IndicBERT (Kakwani et al., 2020), and
mBERT (Devlin et al., 2019). Table 3 shows the
comparison of these models in respective to their
token size, parameters, and test results as reported
by Kakwani et al.,(2020). We made use of a frame-
work called Simple Transformers* to carry out our
experiments.

The Simple Transformer framework provides
supports for various pre-trained models and tasks
such as text classification, token classification,
question answering, and language modelling. We
can easily set up a classification layer on top of the
pre-trained model using this framework. Further,
this framework also supports changing various pa-
rameters, including learning rate, batch size, and
epochs.

We fine-tuned the given three models using our
error annotated corpus and by varying different pa-
rameters as shown in Table 5. Finally, we also eval-
uated the model using the test set.

Table 4 shows the results we obtained for all
three models, and from which it is clear that the
IndicBERT pre-trained model outperforms other
models with the F1 score of 73.4%. Therefore, we

*https://simpletransformers.ai/
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Table 3: Pre-trained models, token size, number of parameters, and the test results for different tasks in indicGLUE

- Source: (Kakwani et al., 2020)

Language model token size parameters test accuracy
XLM-R-base 595 Million 125M 61.09
IndicBERT 549 Million 12M 66.66
bert-base-multilingual-cased 110M 64.62

Table 4: F1 score of different pre-trained models

Pretrained model MCC F1 Score
XLM-R-base 0.58048 0.73052
IndicBERT 0.59426 0.73684

bert-base-multiling-cased 0.58933  0.73474

Table 5: Different hyperparameter used for evaluation

Hyper parameter values
Learning Rate 1E-5,2E-5,3E-5,4E-5,5E-5
Batch Size 16, 32
Epochs 2,3,4

decided to use this model to improve grammar er-
ror detection for future experiments.

5.2 [Evaluation

We used two standard metrics, namely MCC
(Matthew Correlation Coefficient)(Matthews,
1975) and F1 score, to evaluate the model that
we trained. Table 4 shows the initial performance
of different fine-tuned classification models for
the test set. It is evident from the results that
the IndicBERT outperforms other pre-trained
models. Moreover, since hyper-parameters also
affect the results, we experiment with different
hyper-parameter combinations to fine-tune the
classification model. Table 5 shows fine-tuned
values for the set of hyper-parameters. We change
the hyper-parameters to get a better F1 score.
Initially, the F1 score was 73%. Also, we found
significant confusion among number errors and

gender errors. The dataset has number error,

gender error, person error and error-less sentences.

We also found that some sentences have two kinds
of errors when we look deeper. Therefore, we
defined error precedence to the prioritise error
labels as number > gender > person. For instance,
Table 6 shows how number error is prioritised
over the gender error in the dataset. After this
precedence setting, the grammar error detection
showed the F1 score of 84%. Figure 2 shows
the current confusion matrix among different
type of errors. Eventually, we obtained the best
results for the combination of learning rate =
3E-05, batch size = 16, and epochs = 4 along with
IndicBERT. Equations 1, 2, and 3 show that how
we calculated the F1 score from True Positive
(TP), False Positive (FP), and False Negative (FN)
values.

TP

TP + FP
374

T 374+ (19+9+27+12)

Precision =

(1)
= 0.84

TP

TP + FN
374

T 374 1 (3+25+10+29)

Recall =
(2)

=0.84

Precision x Recall

1= Precison 4 Recall
2 x0.84 x 0.84
_ 2 X0eR XU .4

0.84 + 0.84

)

Count

100



Table 6: Precedence of errors

Erroneous sentence

number error

gender error error type

SIS GUBSTE . false true gender error
kavita vantan

Kavitha.NOM-3SgF come.3SgM .

SO Clomdl LpepbwTamenel  true true number error

Tamil moli palamaiyanavai
Tamil language. NOM-3Sg old.3P1 .

6 Conclusion

We have implemented a baseline application for
Tamil grammatical error detection using the state-
of-the-art approach. The application outlined here
detects grammatical errors related to the person-
number-gender agreement between the nominative
subject and the verbal predicate in a sentence. We
used a multi-lingual pre-trained model to capture
the Tamil structures and then fine-tuned it using
the grammar error annotated data we created. We
found that the IndicBERT model gives better accu-
racy than other pre-trained models. Our baseline
model shows an F1 Score of 84.0% for unseen a
test set.

As the next step, we are planning to use
ThamizhiMorph (Sarveswaran et al., 2021) — A
Morphological analyser to create more annotated
data to train the grammar checker. The current
model relies on the pre-trained model to capture
the syntactic information such as subject and pred-
icate. However, this can be obtained using a
syntactic parser, and the syntactically parsed data
may increase the score. Therefore, as the next
step, we will also experiment with a Tamil depen-
dency parser called ThamizhiUDp (Sarveswaran
and Dias, 2020) to incorporate syntactic informa-
tion such as subject and predicate information into
our datasets to see whether the proposed system
can be improved further.
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