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Abstract

BERT, which has been successfully applied
to many types of natural language process-
ing (NLP) tasks, is also effective with vari-
ous information retrieval (IR) tasks. However,
it is not easy to obtain appropriate data for
fine-tuning a BERT model. This paper pro-
poses a method that can improve IR perfor-
mance without fine-tuning the model on the
target IR data. Focusing on words appearing
in both a query and a document, we intro-
duce local-similarity (LS). LS calculates the
similarity of contextualized representations of
the common words, encoded using a pre-
trained model for the semantic textual simi-
larity task. To incorporate the LS into the IR
scoring, we propose local-similarity scoring
(LSS) functions. Experimental results show
that LSS outperforms BM25 on several rep-
resentative benchmarks. We also demonstrate
that LSS reflects improving the pre-trained
model of LS to the higher IR performance.
Our code is available at https://github.
com/nlp-titech/rerank_by_sts.

1 Introduction

Semantic matching and relevance matching are
closely related tasks with different goals. Mainly
studied in natural language processing (NLP), se-
mantic matching infers the similarity/dissimilarity
of two pieces of text, which are usually of the same
length. By contrast, relevance matching aims at
ranking documents for a given query in information
retrieval (IR), where a query is mostly much shorter
than documents (Guo et al., 2016).

The recent advance of deep learning has achieved
success in semantic matching. In addition, the
advent of BERT (Devlin et al., 2019) allowed us
to solve various semantic matching tasks, for ex-
ample, paraphrasing and similarity, with the same
model. BERT has also been successfully applied
to IR tasks (Yang et al., 2019; Nogueira and Cho,
2019). However, it is not easy to obtain appropri-
ate data for fine-tuning. Nogueira and Cho (2019)
reported that BERT needs about 10,000 data to out-
perform BM25 (Robertson and Walker, 1994): a tra-
ditional scoring function based on lexical matching.

In this paper, to alleviate the difficulty, we study
a method improving the performance without fine-
tuning a model on the target IR data. The method
incorporates semantic textual similarity (STS) based
on words appearing in both a query and a document
based on Guo et al. (2016), who reported that match-
ing such words is one of the important factors for rel-
evance matching. Concretely, we propose the local-
similarity (LS) method. In essence, LS considers
contextualized representations of tokens appearing
in the query tokens rather than those of all tokens in
a retrieved document. Incorporating LS into scoring
functions, we present local-similarity scoring (LSS)
functions.

We confirm the effectiveness of the LSS func-
tions on three well-known IR benchmarks: MS
MARCO Passage, MS MARCO Document (Bajaj et
al., 2016), and Robust04 (Voorhees, 2004). A pre-
trained model for LSS is based on Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019). To ex-
amine whether LSS is effective without fine-tuning
SBERT on IR data, we use an SBERT model fine-
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tuned on natural language inference (NLI) datasets
(SBERT-N) and paraphrase datasets (SBERT-P),
which are strong baselines for the semantic textual
similarity (STS) task (Agirre et al., 2012). The
experimental results show that LSS functions with
SBERT-N or SBERT-P achieve better re-ranking
performances over BM25 (Robertson and Walker,
1994) on all benchmarks.

2 Related Work

2.1 Neural Ranker

Many neural ranking models have appeared re-
cently. Guo et al. (2016) proposed a deep relevance
matching model (DRMM), focusing on the dif-
ference between semantic matching and relevance
matching. Subsequently, models utilizing both se-
mantic matching and relevance matching have ap-
preard (Hui et al., 2018; Rao et al., 2019). However,
all of them are fine-tuned on the target IR data. We
studied a method that enhances the IR performance
without the target IR data.

Following the advent of BERT, it was shown
that BERT is also effective for both ad-hoc re-
trieval (MacAvaney et al., 2019; Li et al., 2020;
Ma et al., 2021) and question answer (QA) re-
trieval (Nogueira and Cho, 2019; Khattab and Za-
haria, 2020). It has now become clear that represen-
tations of a query and a document from fine-tuned
BERT are also effective (Karpukhin et al., 2020;
Lin et al., 2020; Xiong et al., 2021; Gao et al.,
2021; Qu et al., 2021). Furthermore, a model fine-
tuned on IR data different from the target IR data is
transferable (Yang et al., 2019; Yilmaz et al., 2019;
Nogueira et al., 2020; Thakur et al., 2021). In par-
ticular, Yang et al. (2019) assumed that BERT could
capture the relevance matching as long as we can
fine-tune BERT on the appropriate data. However,
they did not propose the methodology for detect-
ing whether the data for fine-tuning the model are
appropriate for the target IR data. Moreover, it is
not easy to obtain appropriate data for fine-tuning.
Thakur et al. (2021) showed that BM25 still outper-
forms BERT models on certain IR datasets even if
the model is fine-tuned on an IR dataset. Thus, we
propose a method that improves the IR performance
even if the data for fine-tuning BERT are weakly re-
lated to the IR task.

2.2 Semantic Textual Similarity

The semantic textual similarity (STS) task is a
representative semantic matching task that mea-
sures the semantic equivalence between two sen-
tences (Agirre et al., 2012). Recently, many un-
supervised approaches have been proposed, includ-
ing pooling approaches (Arora et al., 2017; Etha-
yarajh, 2018), word-alignment approaches (Kusner
et al., 2015; Zhelezniak et al., 2019; Wang et al.,
2020; Yokoi et al., 2020), and representation learn-
ing approaches (Kiros et al., 2015; Logeswaran and
Lee, 2018; Cer et al., 2018). SBERT (Reimers
and Gurevych, 2019), in which BERT is trained on
SNLI (Bowman et al., 2015) and MNLI (Williams et
al., 2018) data, belongs to a representation learning
approach. In addition, SBERT is one of the present
baselines. However, to the best of our knowledge,
no studies have applied the recent STS models to IR
tasks. This study appears to be the first trial to utilize
the recent STS model for IR tasks.

2.3 Query Expansion and Document
Expansion

Query expansion and document expansion are al-
ternative approaches incorporating semantic aspects
into IR based on lexical matching. These approaches
expand words from an original query and docu-
ment. Several approaches currently utilize BERT
for query or document expansion. QECE (Naseri
et al., 2021) incorporates contextualized representa-
tion in a query expansion, and UDCG (Jeong et al.,
2021) expands documents with abstractive text sum-
marization models. However, because they rank the
documents with lexical-matching scoring functions,
such as BM25, they cannot reflect the context of the
retrieved documents to the ranking scores.

3 Proposed Method

In this paper, we tackled the re-ranking task. In the
re-ranking task, the top-N retrieved documents are
sorted using a scoring function that differs from the
retriever. The goal is to assign higher scores to the
target documents with a given query.

This paper aims to improve the IR performance
with a pre-trained model of STS. However, STS in-
dicates the similarity of two texts as a whole, and
the similarity is affected by irrelevant words in the
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Figure 1: Outline of local-similarity scoring functions (LSS)

retrieved documents. Guo et al. (2016) claimed that
words appearing in both a query and a retrieved doc-
ument play a key role in relevance matching. Thus,
we hypothesize that scoring functions incorporating
STS and lexical matching can improve the IR per-
formance.

We realize this hypothesis with LSS functions. LS
calculates similarity with contextualized representa-
tions of tokens appearing in both a query and a doc-
ument. Figure 1 shows the outline of our proposed
method. We present LS in Section 3.1 and several
scoring functions in Section 3.2.

Herein, we define notations for explaining the
functions. We denote a query set as Q, a docu-
ment set as D, and a vocabulary set as V . We
represent a query Q as a sequence of m tokens,
Q = (q1, q2, . . . , qm) ∈ Vm and a document D as a
sequence of n tokens, D = (d1, d2, . . . , dn) ∈ Vn.
Each token is encoded to a l dimension vector us-
ing a BERT model1. We express an encoded query
Q as a sequence of m encoded representations of
query tokens Q = (q1, q2, . . . , qm) ∈ Rl×m and
an encoded document D as a sequence of n en-
coded representations of document tokens D =
(d1,d2, . . . ,dn) ∈ Rl×n. Let Q ∩ D denote the
set of tokens that appear both in the query Q and the

1We include CLS and SEP tokens in an input, but ignore
their representations.

document D. We express the set of pairs of posi-
tions where the word w appears in the query Q and
the document D,

PQ,D(w) = {(i, j) ∈ Nm × Nn | qi = dj = w}.
(1)

Here, Nm and Nn are the set of natural numbers
{1, 2, . . . ,m} and {1, 2, . . . , n}.

3.1 Local-Similarity
LS computes the cosine similarity of contextualized
representations of a query token qi and a document
token dj ,

si,j = cos(qi,dj). (2)

We label Equation (2) as token-based LS.
We also explore a variant of LS because average

pooling is widely used in the STS task. Equation (3)
presents pooling-based LS,

si,j = cos(hqi ,hdj ), (3)

hqi =
1

B

i+o∑
k=i−o

qk, (4)

hdj =
1

B

j+o∑
k=j−o

dk. (5)

Here, we denote the window size as o and B =
2 × o + 1. We set a window size of o = 5 for all
experiments.



3.2 Scoring Function
Scoring functions for LSS integrate LS values of to-
kens appearing in both the query and document to
compute the relevance of a document for a given
query. We consider three scoring functions inspired
by the previous studies. Here, we denote a scoring
function that scores a pair (Q,D) as f(Q,D).

MAXSIM MAXSIM directly incorporates the LS
values to compute a score of between Q and D,

fMaxSim(Q,D) =
∑

w∈Q∩D
max

i,j∈PQ,D(w)
si,j . (6)

In other words, this scoring function computes the
sum of the maximum LS values for the tokens w
appearing in both Q and D. Gao et al. (2021) intro-
duced this function to improve the IR performance
with a fine-tuned BERT model.

MAXSIMIDF Because MAXSIM cannot consider
the importance of tokens in a query, we propose a
variant of MAXSIM that integrates inverse document
frequency (IDF),

fMaxSimIDF(Q,D) =
∑

w∈Q∩D
idf(w) max

i,j∈PQ,D(w)
si,j

(7)
Here, idf(w) = log |D|

df(w) , and df(w) is the docu-
ment frequency ofw. We name this scoring function
MAXSIMIDF.

BM25-MAXSIM Chifu et al. (2015) presented a
scoring function that weights a BM25 score with a
coefficient α2. Inspired by this idea, we propose a
scoring function, called BM25-MAXSIM,

fBM25−MaxSim(Q,D) = {1 + α(Q,D)}R(Q,D),
(8)

R(Q,D) =
∑

w∈Q∩D

idf(w)tfD(w)(1 + k1)

tfD(w) + k1{1 + b( n
DA − 1)}

.

(9)

Herein, R(Q,D) presents a BM25 score for the
query Q and the document D, and tfD(w) is the

2Chifu et al. (2015) firstly conducted word sense discrimi-
nation for words in a query by clustering the query and the re-
trieved documents with the query. Then, they multiplied 1 + α
to R(Q,D) if the query and documents are in the same cluster.
They determined α by grid search on test data. We consider that
α can be replaced to LS.

term frequency of w in D. DA indicates the mean
of the lengths of all documents, and k1 and b are
hyper-parameters of BM25.

In this study, we incorporate LS to the weighting
coefficient α. We use a variant of MAXSIM to com-
pute α(Q,D),

α(Q,D) =
1

|Q ∩D|
fMaxSim(Q,D). (10)

Herein, we divide fMaxSim(Q,D) with |Q ∩D| be-
cause the effect of the number of common tokens w
has already been incorporated in Equation (9).

4 Experimental Setup

We conducted experiments on the re-ranking task
in three IR benchmarks. To confirm the effec-
tiveness of the LSS functions, we compared them
with several baseline approaches. We employ
SBERT (Reimers and Gurevych, 2019) models as
an encoder for obtaining contextualized representa-
tions of the queries and documents. We use two fine-
tuned SBERT models, i.e., the SBERT model fine-
tuned on natural language inference (NLI) datasets
(SBERT-N) and the SBERT model fine-tuned on
various paraphrase datasets (SBERT-P). According
to the web site3, SBERT-P performs better than
SBERT-N in terms of the average score on five
downstream tasks. Therefore, a comparison of
SBERT-N and SBERT-P as an underlying encoder
exhibits the impact of contextualized representations
in solving the IR re-ranking task.

4.1 Benchmark Datasets

We used three IR benchmarks for the experiment:
MS MARCO Passage, MS MARCO Document (Ba-
jaj et al., 2016), and Robust04 (Voorhees, 2004).
We chose these datasets to observe the performance
when the proposed method and baseline methods
handle different task types and different lengths of
retrieved documents. Table 1 shows the task types
and the average lengths of the three datasets. The
top-1000 passages and top-100 documents were the
re-ranking candidates of MS MARCO Passage and

3https://github.com/UKPLab/
sentence-transformers/blob/v2.0.0/
docs/_static/html/models_en_sentence_
embeddings.html
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Table 1: Statistics of IR benchmarks
Dataset Type |Q| Average

length of D

MSMARCO Passsage dev QA 6980 77
MSMARCO Passsage test QA 200 77

MSMARCO Document test QA 200 1659
Robust04 ad-hoc 250 647

Document respectively, following TREC 2019 Deep
Learning Track. For Robust04, the top-1000 doc-
uments were the target, following Yilmaz et al.
(2019). All candidates were retrieved using BM25
with the Anserini toolkit (Yang et al., 2017).

MS MARCO Passage This dataset is widely used
as a QA retrieval benchmark, adopted as the TREC
Deep Learning track. The queries and retrieved doc-
uments were obtained using Bing4. As the evalua-
tion data, we used the dev-small dataset from MS
MARCO-official5 and the test dataset from TREC
2019 Deep Learning track 6. The document length
is the shortest among the three benchmarks because
the unit to be retrieved is the passage rather than the
document.

MS MARCO Document Although this dataset is
highly similar to MS MARCO Passage, the dataset
consists of documents instead of the passages. The
document length of this dataset is the longest among
the three benchmarks. We evaluated the perfor-
mance on the test set of TREC 2019 Deep Learning
track.

Robust047 This is a well-known ad-hoc retrieval
dataset. TREC-Disk4 and 5 are the targets of the
retrieval in this task. They mainly include news ar-
ticles and government documents. This dataset has
250 test topics, and the titles of the topics were used
as the queries. Although Robust04 can be consid-
ered as a document-level task, the lengths of the doc-
uments are shorter than those of the MS MARCO
Document.

4https://www.bing.com/
5https://microsoft.github.io/msmarco/
6https://microsoft.github.io/msmarco/

TREC-Deep-Learning-2019.html
7https://trec.nist.gov/data/robust/04.

guidelines.html

4.2 Evaluation Metrics

We used MRR@10 as an evaluation metric for the
MS MARCO Passage dev dataset, following the of-
ficial MS MARCO leader-board. In addition, we
used nDCG@10 for the test sets of MS MARCO
Passage and MS MARCO Document, following
TREC 2019 Deep Learning track. For Robust04,
we adopted nDCG@20 to compare the proposed
method with previous studies. The MRR evaluation
was executed using MS MARCO-evaluation scripts
in the Anserini toolkit, and the evaluations of nDCG
were executed using trec_eval8. Tests of statis-
tical significance were conducted using the paired-
sample t-test.

4.3 Baseline Methods

We adopted the following methods as the baseline.

BM25 This is the most famous scoring function
based on lexical matching, and is still a strong base-
line (Thakur et al., 2021). We used the implementa-
tion of the Anserini toolkit. The BM25 parameters
are taken from the Anserini toolkit9.

Cos-sim This method represents a query and a
document as a vector, respectively. These vectors
are calculated through average pooling10. The co-
sine similarity of the vectors is used as a score,

f(Q,D) = cos(q,d) (11)

q =
1

m

m∑
i=1

qi, d =
1

n

n∑
j=1

dj . (12)

Note that Equation (11) is a part of the loss func-
tion when SBERT models were trained. Cos-sim is
a popular function in the STS task because the simi-
larity of this function considers two texts as a whole.

ColBERT This scoring function was adopted
by Khattab and Zaharia (2020). We can consider
it as a type of word-alignment approach in the STS
task. The scoring of this function also indicates the

8https://github.com/usnistgov/trec_eval
9We used (k1, b) = (0.82, 0.68) for MS MARCO Pas-

sage, (k1, b) = (4.46, 0.82) for MS MARCO Document, and
(k1, b) = (0.9, 0.4) for Robust04.

10We experimented with CLS-pooling, max-pooling, and
average-pooling. The result of average-pooling showed the best
performance.
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similarity of two texts as a whole, such as Cos-sim.
Formally, the scoring function is described as,

f(Q,D) =
m∑
i=1

max
j

(cos(qi,dj)). (13)

Transferred BERT (TBERT) As the baseline
performance of the BERT model fine-tuned on
IR data, we quoted the results of Yilmaz et al.
(2019). We named their approach Transferred BERT
(TBERT) because they transferred a BERT model
fine-tuned on IR data to the target IR data, which is
different from the IR data for fine-tuning. Depend-
ing on fine-tuning data, the authors experimented
with two types of TBERT: the model fine-tuned on
MS MARCO Passage (TBERT-M) and the model
fine-tuned on MB dataset (Lin et al., 2014) and MS
MARCO Passage (TBERT-B). The authors evalu-
ated TBERT on Robust04, and TBERT-B achieved
the best performance. The scoring function of
TBERT is the weighted sum of the score from the
retriever and fine-tuned BERT model. The weight is
tuned through cross-validation on the target IR data.

CEQE CEQE (Naseri et al., 2021) is one of the
best performing unsupervised IR methods. It uti-
lizes contextualized word embedding from BERT
for query expansion. We referred to the results from
their paper.

4.4 Embeddings and Tokenizer

We tested LSS using two SBERT models: SBERT-N
and SBERT-P. We used MPNet (Song et al., 2020)
tokenizer implemented in huggingface transform-
ers11 (Wolf et al., 2020). On document-level tasks,
the lengths of the documents are usually longer than
512. Thus, we encoded every segment of 512 tokens
and ignored those after the 16,384th token because
99% of the length of documents is under 16,384.

SBERT-N SBERT-N is a SBERT model trained
on NLI data, i.e. SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018). Concretely, we
adopted the nli-mpnet-base-v2 model, which is the
best model in terms of average on five benchmark

11https://github.com/huggingface/
transformers

tasks for SBERT12 within the models whose train-
ing data does not include IR datasets. This model
allows us to confirm whether LSS can improve IR
performance with a pre-trained model for the STS
task.

SBERT-P SBERT-P is an SBERT model trained
on various paraphrase tasks. Concretely, the model
is paraphrase-mpnet-base-v2, which is the best
model among all SBERT models in terms of the
average score of the benchmarks for SBERT. The
training datasets of SBERT-P include not only NLI
datasets but also MS MARCO Passage and ya-
hoo answers title question13 among others14. Note
that SBERT-P outperforms SBERT-N on the SBERT
benchmarks. For this reason, we can claim that im-
proving SBERT leads to the higher IR performance
on LSS if LSS with SBERT-P performs better than
LSS with SBERT-N on all IR benchmarks.

5 Result

This section first confirms whether the LSS func-
tion can outperform BM25 on all three benchmarks.
Next, we investigate whether improving the pre-
trained model can contribute to the IR performance
on LSS. Finally, we analyze some cases qualita-
tively.

5.1 Effectiveness of LSS
Table 2 shows the results of LSS with SBERT-N and
baseline methods. First, LSS outperforms Cos-sim
and ColBERT. Thus, LSS appears effective for IR.
LSS with pooling-based LS also outperforms BM25
on MS MARCO Passage and Document. In addi-
tion, BM25-MAXSIM improves the performance of
Robust04 over that of BM25. In particular, BM25-
MAXSIM with pooling-based LS performs the best
within LSS on MS MARCO Document and Ro-
bust04, and the second-best on MS MARCO Pas-
sage. Therefore, BM25-MAXSIM with pooling-
based LS can improve the IR performance most sta-

12https://github.com/UKPLab/
sentence-transformers/blob/v2.0.0/
docs/_static/html/models_en_sentence_
embeddings.html

13https://www.kaggle.com/soumikrakshit/
yahoo-answers-dataset

14All datasets are listed on https://www.sbert.net/
examples/training/paraphrases/README.html
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Table 2: The results of the baseline methods and LSS functions with SBERT-N on IR benchmarks. The best results
are labeled in bold and the best result of LSS is expressed in italics. * denotes the statistical significance over BM25
(p-value ≤ 0.05).

MS MARCO
Passage

MS MARCO
Document Robust04

Dev Test Test
MRR@10 NDCG@10 NDCG@10 NDCG@20

BM25 0.1874 0.4973 0.5234 0.4240
Cos-sim 0.1453 0.4461 0.4865 0.3576
ColBERT 0.1149 0.3705 0.4007 0.2924
CEQE − − 0.5614 0.4587
TBERT-M − − − 0.4512
TBERT-B − − − 0.5325
Local-similarity scoring function
Scoring funciton Local-similarity
MAXSIM token-based LS 0.1914 0.4896 0.5002 0.4087
MAXSIM pooling-based LS 0.2045∗ 0.5193 0.5269 0.4246
MAXSIMIDF token-based LS 0.2145∗ 0.5254 0.5278 0.4150
MAXSIMIDF pooling-based LS 0.2318∗ 0.5617 0.5702 0.4334
BM25-MAXSIM token-based LS 0.2055∗ 0.5256∗ 0.5664∗ 0.4567∗

BM25-MAXSIM pooling-based LS 0.2150∗ 0.5541∗ 0.5792∗ 0.4649∗

Table 3: Comparison with SBERT-P and SBERT-N on LSS functions and Cos-sim. The best results are labeled in
bold. * denotes statistical significance over BM25 (p-value ≤ 0.05).

MS MARCO
Passage

MS MARCO
document Robust04

Dev Test Test
MRR@10 NDCG@10 NDCG@10 NDCG@20

SBERT-P
Cos-sim 0.2819∗ 0.6772∗ 0.6331∗ 0.4236
BM25-MAXSIM with pooling-based LS 0.2503∗ 0.6053∗ 0.6231∗ 0.4691∗
MAXSIMIDF with pooling-based LS 0.2865∗ 0.6491∗ 0.6383∗ 0.4588∗

SBERT-N
Cos-sim 0.1453 0.4461 0.4865 0.3576
BM25-MAXSIM with pooling-based LS 0.2150∗ 0.5541∗ 0.5792∗ 0.4649∗

MAXSIMIDF with pooling-based 0.2318∗ 0.5617 0.5702 0.4334

bly. By contrast, the performance of MAXSIMIDF
is the best on MS MARCO Passage. A differ-
ence between MAXSIMIDF and BM25-MAXSIM

is whether the Term Frequency (TF) is considered.
The TF may be important for a document-level IR.

MAXSIMIDF performs better than MAXSIM on
all the benchmarks. To this point, the importance of
each query term seems a main factor to improve the
IR performance as claimed by Guo et al. (2016).

Comparing TBERT, the performance of BM25-
MAXSIM is higher than TBERT-M on Robust04
despite TBERT-M being trained on MS MARCO
Passage, which is an IR dataset, and tuned hyper-
parameter on Robust04. By contrast, TBERT-B out-
performs LSS. Thus, in spite of using a pre-trained
model for the STS task, LSS can achieve the per-
formance of TBERT when TBERT is fine-tuned
on less appropriate IR data. Focusing on CEQE,

BM25-MAXSIM with pooling-based LS outper-
forms CEQE on MS MARCO Document and Ro-
bust04.

Finally, the pooling-based LS is better than token-
based LS as the contextualized representation of
words on all datasets; however, this may be because
SBERT was trained through average pooling.

5.2 Effect of Model Improvement for
Local-Similarity

Table 3 shows the results of Cos-sim and LSS with
SBERT-P and SBERT-N. We used MAXSIMIDF
and BM25-MAXSIM with pooling-based LS be-
cause they achieved the best result in LSS in the pre-
vious section.

Now, we investigate whether improving the un-
derlying encoder leads to a higher IR performance
on LSS. Tabel 3 shows that LSS with SBERT-P out-



Table 4: Examples of pairs of a query and a correct document from MS MARCO Passage. The ranking rows show
the ranking of the correct document using BM25, Cos-sim, MAXSIMIDF and BM25-MAXSIM. The top example
is what LSS ranked the correct document most highly. The middle example is where Cos-sim outperforms the other
functions. On the bottom example, BM25 achieved the best result. The best function on each example is expressed in
italics. Words appearing in the query and the document are labeled in bold.

Query umeclidinium cost

Correct
Documnt

The average price of umeclidinium is $315 per month. It is less expensive than other long-acting anticholinergic inhalers
(e.g., tiotro-pium, $360) and long-acting beta agonists (e.g., salmeterol [Serevent Diskus], $340). However,
umeclidinium may be a higher-tier medication on certain health plans (typically tier 3 or 4), resulting in a higher co-pay,
and it is not covered by all insurance plans. SIMPLICITY The recommended dosage of umeclidinium is one 62.5-mcg
inhalation daily. The admin-istration device is preloaded with blisters

Ranking BM25: 21 Cos-sim: 24 MaxSimIDF: 6 BM25-MAXSIM: 9
Query airplane definition of drag

Correct
Documnt

Drag is the aerodynamic force that opposes an aircraft’s motion through the air. Drag is generated by every part of
the airplane (even the engines! How is drag generated?

Ranking BM25: 11 Cos-sim: 5 MAXSIMIDF: 18 BM25-MAXSIM: 12
Query united home life insurance phone number

Correct
Documnt

United Home Life Insurance Company(UHL) 225 S. East St Indianapolis, IN 46202 : Phone: 1-800-428-3001 : Website:
www.unitedhomelife.com * A.M. Best: A- (Excellent) BBB: A-About: United Home Life Insurance Company was formed
in 1948. They specialize in life insurance policies with simplified underwriting. This means there are no medical exam and
no bodily fluids required for underwriting your policy.

Ranking BM25: 4 Cos-sim: 326 MAXSIMIDF: 28 BM25-MAXSIM: 14

performs LSS with SBERT-N. Recall that SBERT-P
outperforms SBERT-N on average with the bench-
marks for SBERT. Therefore, the enhancement of
the performance on the IR benchmarks suggests that
LSS can reflect improving the model to IR tasks.

The improvement is more significant on MS
MARCO Passage and Document than Robust04
because the data for training SBERT-P include
MS MARCO Passage. Even though SBERT-P is
trained using the loss function utilizing Cos-sim,
MAXSIMIDF with pooling-based LS on SBERT-P
can outperform Cos-sim on MS MARCO Passage
dev and MSMARCO Document. Thus, LSS is ef-
fective if training data for SBERT include the target
IR task.

5.3 Case Study

We then conducted a case study on MS MARCO
Passage for a qualitative analysis. Table 4 shows ex-
amples.

The top example shows the reason why LSS can
be successful. In the top example, cost appearing in
the query did not appear in the correct document, but
the context of the document was related to cost. LSS
ranked the document higher, catching the context of
the document. However, top-ranked documents us-
ing Cos-sim did not tend to include umeclidinium.
This example illustrates the advantage of LSS, in-
corporating STS and lexical matching.

The middle example is a case in which the de-
vice of LSS was ineffective. Top-ranked documents
by LSS of this example tended to include definition
despite their definition not being about the drag of
an airplane. However, the correct document does
not include definition. Thus, this is the case lexical
matching has a negative effect.

For the bottom example, both Cos-sim and LSS
cannot outperform BM25. They scored high for a
passage about the phone number of other insurance
companies. This example suggests the importance
of lexical matching on the relevance matching prob-
lems, as Guo et al. (2016) pointed out.

6 Conclusion and Future work

This paper proposed LSS, which can improve the
IR performance without fine-tuning and even though
the pre-training tasks for the LS model are semantic
matching tasks. We showed that LSS can also reflect
the improvement of the LS model to IR tasks.

Integrating other zero-shot approaches such as a
query-generation and query expansion was out of
the scope of this research. Future work will include
the effect of the integration.
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