Readability and Linearity

Yo Ehara
Tokyo Gakugei University
Faculty of Education, 4-1-1 Nukuikita-machi, Koganei-shi, Tokyo 184-8501 Japan
ehara@u-gakugei.ac. jp

Abstract

This paper investigates automatic assessments
of text readability for second language learn-
ers. The goodness of text readability as-
sessment methods has been evaluated using
the correlation coefficients between their read-
ability scores and labels annotated to the texts
by language teachers. For measuring this cor-
relation, previous papers have used Pearson’s
correlation coefficient (p). In this paper, we
show that the use of Pearson’s p is inappro-
priate through experiments because it is eas-
ily affected by the linearity of the labels and
scores, which are often not linear. In contrast,
the linearity has no influence on rank corre-
lations, which should be used for evaluating
readability assessors. We also propose an un-
supervised readability assessor that takes word
difficulty for second language learners into ac-
count and achieves the best among all unsu-
pervised assessors in our experiments in terms
of Pearson’s p and the rank correlations.

1 Introduction

Assessing readability plays an essential role in sec-
ond language acquisition; it can be used for many
educational applications such as intelligent reading
support systems and placement tests for language
classes. Readability assessment is a costly task for
educational experts and language teachers. To per-
form it, they must read a text and assess its read-
ability by guessing how difficult the text is for tar-
get learning readers. Hence, to reduce the cost of
the labor required by educational experts, the task
of automatically identifying the readability of texts

for language learners, known as automatic readabil-
ity assessment (ARA), has been extensively studied
in the field of artificial intelligence (AI).

Unsupervised automatic readability assessment
appeared early but has recently been reexamined as a
research focus. Early studies such as the Dale-Chall
formula (1948) (Dale and Chall(1948)), the Flesch
Reading Ease formula (Flesch(1948)) (1948), and
the Flesch-Kincaid readability formula (1975) (Kin-
caid et al.(1975)Kincaid, Fishburne Jr, Rogers, and
Chissom) were unsupervised, as they did not use
costly annotated readability labels. Given a text,
these formulae calculate its readability score based
on simple superficial textual features such as the
average length of a word in the given text. How-
ever, most of these early formulae are designed
to assess readability for children who are native
speakers. Evaluation datasets with readability la-
bels annotated by language teachers targeting sec-
ond language learners appeared much later in the
2010s (Feng et al.(2010)Feng, Jansche, Huener-
fauth, and Elhadad; |Xia et al.(2016)Xia, Kochmar,
and Briscoe; [Vajjala and Luci¢(2018)). In these
works, automatic readability assessment tasks using
these evaluation datasets were formalized as a su-
pervised document classification problem, and sub-
stantial research efforts were invested into the con-
struction of classifiers by feature engineering to find
complicated textual features that correlate well with
readability labels.

Recently, Martinc et al.(2021)Martinc, Pollak,
and Robnik-Sikonja) revisited the unsupervised ap-
proach. They proposed that the perplexity scores
of neural language models can also be used to rep-
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Figure 1: Overview of the previous and our approaches.

resent the readability of text for second language
learners and proposed to use them for unsupervised
automatic readability assessment. The upper part
of Fig. [I] show their approach. Given a text, their
method uses no valuable readability label for train-
ing but uses only the language model trained on
other large corpora, and their method predicts the
text’s readability score as an output.

While this idea is sound, however, their evalu-
ation is validated using the correlation coefficient,
or Pearson’s p, as illustrated on the right-hand side
of Fig. [I] Pearson’s p measures the degree of
linear correlation between two random variables
(Mukaka(2012)). As neither the readability levels of
the evaluation corpora nor the readability scores out-
put by unsupervised readability assessors are neces-
sarily linear, the use of Pearson’s p can lead to inac-
curate evaluation.

This study investigates how the use of Pearson’s
p affects the evaluation of unsupervised readabil-
ity assessors. We analyze how unsupervised asses-
sors’ performance can be easily underestimated if
the readability scores are not linear. For this pur-
pose, we also build a lightweight unsupervised read-
ability assessor, denoted by the lower part of Fig.
We show that, alternatively, rank-correlation coeffi-
cients are more robust to the linearity and appropri-
ate for this evaluation.

The contributions of this paper are summarized as
follows.

* We indicate that the previous evaluation of un-
supervised readability assessors by using Pear-
son’s p is problematic.

* We demonstrate the relationship between the
degree of removing linearity from assessors’
scores and the degree to which Pearson’s p un-

derestimates the readability score without lin-
earity on a publicly available reliable evalua-
tion dataset.

* We show that, instead of Pearson’s p, the use of
rank-correlation coefficients is appropriate.

* We propose a novel lightweight unsupervised
readability assessor that achieves the best per-
formance in terms of both Pearson’s p and rank
correlation coefficients.

2 Automatic Readability Assessment

This section formalizes the problem of automatic
readability assessment. Let us suppose that we have
N texts to assess: we write the set of texts as {7;|i €
{1,...,N}}. Let Y be the set of readability labels.
Labels are typically ordered in the order of difficulty.
For example, in the OneStopEnglish dataset (Vajjala
and Luci¢(2018)), we can set Y = {0, 1,2}, where
0 is elementary, 1 is intermediate, and 2 is advanced.
The number of levels depends on the evaluation cor-
pus. Using ), we write the label for 7; as y; € ).

2.1 Goal in Unsupervised Setting

Given each text 7;, an assessor outputs its readabil-
ity score s;. In a supervised setting, the assessor
knows the number of levels in the evaluation corpus
from training examples. Hence, s; ranges within ):
s; € Y. However, in an unsupervised setting, it is
noteworthy that the assessor does not know )/, or
how many levels the evaluation corpus has, because
no label is given. Hence, even if only integers are
allowed for y;, s; can be a real value.

Throughout this paper, we write arrays using [ and
|. Given N texts [T;]i € {1,..., N}], our goal is to
make an assessor output arrays of readability scores
[sili € {1,...,N}] that correlate well with the ar-
ray of labels [y;|i € {1,...,N}]. Here, there are
multiple types of correlation coefficients between
the array of scores and the array of labels, which we
explain in the later sections. Typically, we should
use rank coefficients when s; is real-valued.

2.2 Evaluation and Correlation coefficients

In most evaluation datasets, educational experts are
asked to assess text readability by choosing a label
from the set of predefined readability labels, ). In



contrast, automatic readability assessors output real-
valued scores in an unsupervised setting. How do
we compare readability level labels and real-valued
scores?

A simple but naive way to make this compari-
son is to use the Pearson correlation coefficient py s,
which is defined as follows:

pya = 2205) (1)
OyOs
In Eq. |1} cov(y, s) denotes the covariance between
y and s, o, denotes the standard deviation of y, and
o, denotes the standard deviation of s. Eq.[I|ranges
[—1, 1], where 1 is the perfect correlation.

However, the Pearson correlation coefficient mea-
sures the degree of linear correlation between two
random variables (Mukaka(2012)). The readability
levels of evaluation corpora are not necessarily lin-
early distributed. Readability scores that the asses-
sors output are also not necessarily linear. In these
cases, it is usually more appropriate to focus on the
correlation between the rankings of the readability
label y;s and scores s;s. Rank correlation coeffi-
cients measure the correlation between two rankings
with the range of [—1,1]. Two types of them are
notable: Spearman’s p and Kendall’s 7 (Alvo and
Philip(2014)).

Spearman’s p is defined as the Pearson’s p be-
tween two rankings. We first convert labels into
rankings: rg,, and convert scores into rankings:
rg,. Then, using Eq.[I} Spearman’s p is defined as
Pre,re, - When converting labels into rankings, texts
that have the same level are regarded as ties in a
ranking. While there are many ways to handle ties,
the mid-rank method is usually used in calculating
Spearman’s p (Amerise and Tarsitano(2015))). This
method simply uses the average of ranks for the rank
of a tie. For example, let us consider an array of
labels [2,1,1,0]. The two 1s in this array are ties
taking the 2nd and 3rd ranks. As the average of 2
and 3 is 2.5, the mid-rank ranking of this array is
[4,2.5,2.5,1].

We first introduce the definition of Kendall’s 7
when there are no ties as follows.

Ne — Ng

2

T Num. of all pairs

Kendall’s 7 focuses on the pairs of the given arrays:
in our setting, (y;, ;) and (y;, s;) where i < i'. n,

denotes the number of concordant pairs, ng denotes
the number of discordant pairs. The pair is said to be
concordant if either both y; < y; and s; < s; hold
ory; >y and s; > s;; otherwise, the pair is said to
be discordant. If y; = y;/, we call y; and y; ties. The
same holds for s. Num. of all pairs = $N(N — 1)
when there are no ties.

In reality, y has many ties, so Eq.[2]cannot be used
for the evaluation.. There are multiple correction
methods to account for ties in Kendall’s 7; they are
named 7-a, 7-b, and 7-c. In our setting, namely un-
supervised readability assessment, tau-c should be
used because y and s may have different scales.

7-b can be described as follows|[T]

Ne — Ng
v/ (no — n1)(no — na)

n. denotes the number of concordant pairs, ng de-
notes the number of discordant pairs. ng = N(N —
1)/2, ny is the sum of all possible pairs within each
tied group for the first quantity, no is the sum of all
possible pairs within each tied group for the second
quantity.

7-c can be written as follows] To obtain
m, we first construct the contingency table made
from the first and second quantity. Using the
rows and columns of the table, m is defined as
min(num. of rows, num. of columns).

3
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Z(nc - nd)
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3 Proposed Method: Vocabulary Testing

This section describes our unsupervised readability
assessor that employs a novel approach: instead of
using valuable readability labels as the source of text
difficulty for typical second language learners, our
proposed method uses vocabulary tests as the source
of word difficulty for typical second language learn-
ers and obtains readability scores based on accu-
rately estimated word difficulty. To this end, this
section explains how to analyze vocabulary test re-
sult data to obtain word difficulty.

'"https://en.wikipedia.org/wiki/Kendall
rank_correlation_coefficient#Tau-b

“https://en.wikipedia.org/wiki/Kendall_
rank_correlation_coefficient#Tau-c
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15. deficit:
The company <had a large deficit>.

a: spent a lot more money than it earned

b: went down a lot in wvalue
c: had a plan for its spending

In Eq. 5] a; is the ability parameter of learner [,
d, is the difficulty of word w, and sigmoid denotes
the logistic sigmoid function, i.e., sigmoid(z) =

m. The logistic sigmoid function is the

that used a lot of money binary version of the softmax function, which

d: had a lot of money stored in the bankis frequently used in neural classifiers.

26. malign:
His <malign> influence is still felt.

a: good

b: evil

c: very important
d: secret

Figure 2: Examples of the Vocabulary Size Test. Test-
takers are asked to choose the option that paraphrases the
part between “<”” and “>” from a, b, ¢, and d.

Fig. [2| shows example questions from the vocab-
ulary size test, a widely used vocabulary test in ap-
plied linguistics (Beglar and Nation(2007)). Each
question asks about a word in a multiple-choice
question format. The test consists of 100 questions
like those shown in Fig. 2| |[Ehara(2018)) used this
test to have 100 second-language learners take the
test and to collect their responses. Their data were
published and made publicly available. We used
their dataset to train our classifiers.

3.1 Obtaining difficulty from vocabulary test
results: Item Response Theory

We want to analyze vocabulary test results to ob-
tain word difficulty values encoding learners’ lan-
guage knowledge. To this end, we employed the
idea of item response theory (Baker(2004)), a sta-
tistical model that can estimate learners’ abilities
and test questions’ difficulties from the learners’ re-
sponses to the questions.

Let V be the set of vocabulary, and let £ be the
set of learners. Let z,; € {0,1} be the result of
whether learner | € £ correctly answered the ques-
tion for word v € V: 2, = 1if [ answered correctly
for word v; otherwise, 2, = 0. Correct answers
usually imply that [ knows word v.

Then, by using {z,;} as the training data, we train
the following model:

p(z = 1|v, 1) = sigmoid(a; — dy) 5)

It is a
monotonously increasing function ranging within
(0,1). As sigmoid(0) = ﬁ = 1, when a learner’s

ability a; is larger than the word difficulty d,, the
probability that learner / knows word v can be writ-
ten as follows: p(z = 1|v,1) > L in Eq. Likewise,
by using Eq. [5] we can compare a learner’s ability
and word difficulty in the same dimension.

To estimate learner ability and word difficulty, z,;
is given as z in Eq. [j in the training phase. In
this way, in item response theory, learner ability and
word difficulty are comparable, and these parame-
ters are to be estimated from the test result data.

3.2 Obtaining difficulty of words not in the
vocabulary test

In Eq. [5| d, denotes the word difficulty estimated
from the vocabulary tests. Here, in addition to the
word difficulty for the words within the vocabulary
test, we also want to obtain word difficulty values for
all words that may appear in the target language. To
this end, we calculate d,, from the word frequency in
large balanced corpora as follows:

K

dy = — Z wy, log(freqy,(v) + 1) (6)
k=1

In Eq.[6] K is the number of corpora to use, freq;, (v)
denotes the frequency of word v in the k-th corpus,
and wy, is the weight parameter of the k-th corpus.
In summary, given the vocabulary test results
{2y} and corpus frequency features freq,(v), we
can estimate the parameters: namely, the weight of
the k-th corpus wy and learner [I’s ability a;. By
putting Eq. [5] and Eq. [6] together, we can see that
the inside formula of the sigmoid function is linear
with respect to the parameters to be estimated be-
cause all terms consist of a product of a parameter
and a constant calculated from features, and no term
has a product of two or more parameters. As the
sigmoid function of a linear combination of parame-
ters can be reformulated as a logistic regression, we



can implement Eq. [5| and Eq. [6] by using typical lo-
gistic regression classifiers such as scikit-learn [’|and
LIBLINEAR Fﬂ We will release our code upon the
acceptance of the paper.

Note that we do not use the valuable readability
label {y;} in the training phase; hence, our method
is categorized as an unsupervised method.

3.3 Proposed Automatic Readability Assessor

After estimating the parameters using the above-
mentioned procedure, we use the following formula
to obtain the readability of given 7;. Here, [y, de-
notes the test-taker whose estimated ability parame-
ter is closest to the average of the estimated ability
parameter values {a;}s. Intuitively, the following
equation calculates the probability that the average
learner knows all the words that appear in 7; and
uses it as the readability score:

1

1 = 1|v, lay
‘7;| og Hp(Z |U, ag)

veT;
(7

si = score(T;) =

4 Experimental Settings

4.1 Choice of Dataset

We used the OneStopEnglish dataset (Vajjala and
Luci¢(2018)) for our evaluation because of the fol-
lowing reasons. First, it is one of the newest
datasets. Second, it is publicly available and down-
loadable. Third, it is a reliable dataset in the sense
that it has no known pitfalls when used as a corpus
for evaluation.

While Martinc et al.(2021)Martinc, Pollak,
and Robnik-Sikonja) uses other corpora such
as the WeeBit corpus (Xia et al.(2016)Xia,
Kochmar, and Briscoe) and the Newsela corpus (Xu
et al.(2015)Xu, Callison-Burch, and Napoles), both
have known pitfalls when used for the evaluation of
automatic readability assessment. The WeeBit cor-
pus is not a parallel corpus, which is explained in
the next subsection. This means that means each
level consists of totally different articles covering
different topics. As some topics such as politics tend
to use more difficult phrases than other topics, it is

*https://scikit-learn.org/stable/
‘https://www.csie.ntu.edu.tw/~cjlin/
liblinear/

difficult to see how the topic of content influences
the resulting performance values. The Newsela cor-
pus is a parallel corpus, which removes the influence
caused by topics. However, according to [Martinc
et al.(2021)Martinc, Pollak, and Robnik—éikonja),
its readability labels can be easily identified from the
average sentence length in a text: the average sen-
tence length achieved 0.906 in the Pearson’s p cor-
relation. Hence, even if a method works well on the
Newsela corpus, it could be possible that the method
merely inherently calculates and uses average sen-
tence length.

4.2 OneStopEnglish dataset

Regarding the source of the dataset, |Vajjala and
Lucic(2018)) says that “onestopenglish.com is an
English language learning resources website run
by MacMillan Education, with over 700,000 users
across 100 countries.”

The dataset has three levels: elementary, in-
termediate, and advanced. According to |Vajjala
and Lucic(2018)), the original articles were taken
from the Guardian newspaper. The OneStopEnglish
dataset is a parallel corpus, i.e, language teachers
manually rewrote the original articles into the three
aforementioned readability levels. Hence, one no-
table characteristic of this dataset is that all three
levels have the same content with different read-
ability levels. Hence, by using this dataset, we can
avoid having classifiers learn differences in content
or topic rather than readability levels.

All three levels have 189 texts each, 567 texts in
total. We split these texts into a training set con-
sisting of 339 texts, a validation set consisting of
114 texts, and a test set consisting of 114 texts. The
training set and validation sets were used to train
solely supervised methods for comparison. Unsu-
pervised methods did not use the training and vali-
dation sets; they used only the test set.

4.3 Baseline Methods
4.3.1 Supervised methods

First, we introduce the supervised methods that
we used for comparison because it involves the train-
ing data mentioned right above. As the BERT-
based sequence classification has been reported to
achieve excellent results (Devlin et al.(2019)Devlin,
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Chang, Lee, and Toutanova), we applied the stan-
dard BERT-based sequence classification approach
involving pretraining and fine-tuning. For the pre-
trained model, we used bert-large-cased-whole-
word-masking in the Huggingface models ﬂ

Then, we fine-tuned the model using the afore-
mentioned 339 training texts. For this fine-tuning,
we used a GeForce RTX 3090 board that has 24
GiB of Graphical Processing Unit (GPU) memory.
The fine-tuning and resulting model took up 16 GiB
of GPU memory. This means that it is difficult
to achieve similar performance without GPUs with
large memory. We named this fine-tuned model
spvBERT, in which “spv” denotes being super-
vised. In order to see how the size of training data
has an influence on the performance, we also con-
ducted experiments with 168 training texts, which
amounted to almost half of the total 339 training
texts. We named this model spvBERT _half.

All the fine-tuning procedures were conducted us-
ing the Adam optimizer (Kingma and Ba(2015))
with a setting of 10 epochs and a 0.00001 training
rate.

4.3.2 Unsupervised methods

For the implementation of conventional readabil-
ity formulae, we used the readability PyPI package
ﬂ We used almost all readability formulae imple-
mented in this package for our experiments: namely,
Flesch-Kincaid (Flesch-Kincaid Grade Level,
FKGL) (Kincaid et al.(1975)Kincaid, Fishburne Jr,
Rogers, and Chissom), ARI (Automated Readabil-
ity Index) (Senter and Smith(1967))), the Coleman-
Liau Index (Coleman and Liau(1975)), Flesch
Reading Ease (Flesch(1948)), the Gunning Fog
Index (Gunning(1952)), LIX (Bjornsson(1968)),
the SMOG Index (Mc Laughlin(1969)), the RIX
index (Anderson(1983)), and the Dale-Chall Index
(Dale and Chall(1948)). Among these methods,
Notably, some formulae such as the Dale-Chall
Index depend on their own list of easy/difficult
words. Others, such as the Flesch-Kincaid grade
level (FKGL), do not require such a list of difficult
words but use superficial features such as the total
number of syllables in a text. For space limitation,
we do not cite all equations, however, we only

Shttps://huggingface.co/models
®https://pypi.org/project/readability/

cite FKGL as being famous and cite Dale-Chall as
showing good performance in our evaluation.

total d
FKGL = 0_39% (8)
total sentences

total syllables

+ 15.59

“total sentences

Dale-Chall =

difficult d
15.70 ( ifficult wor s) ©)

words

+0.0496 <W°rds>
sentences
More details of these formulae and their implemen-
tation are described on the project page. All of these
readability formulae are unsupervised in the sense
that they do not require any training data.

For the unsupervised neural language model,
we also used the bert-large-cased-whole-word-
masking pretraining model and used the Bert-
ForMaskedLLM function to obtain the perplex-
ity of each sentence of the text of interest.
We chose this pretraining model because Martinc
et al.(2021)Martinc, Pollak, and Robnik-gikonja) re-
ported that they used bert-base-uncased and re-
ported not so good performance, so we chose a
BERT-based model larger than the one that they
used. Note that, unlike neural sequence classifica-
tion, language models are designed to be unsuper-
vised and thus do not require any training data to
fine-tune. All we need to do for the neural language
model is to input each sentence in the text of inter-
est and calculate the perplexity score of the inputted
sentence.

For splitting a text into sentences, we used the
sent_tokenize function in the nltk Python package
ﬂ After the split, we simply used the average of the
perplexity scores of each sentence in a text as the
readability score. As the perplexity score of a sen-
tence encodes the fluency of the inputted sentence,
this roughly measures the overall fluency of the in-
putted sentence. We call this method BERTLMavg,
where LM denotes a language model.

As BERTLMavg does not use fine-tuning, it uses
less GPU memory compared to spvBERT. How-
ever, BERTLMavg uses 1,793 MiB of GPU mem-
ory to output perplexity scores, which is still imprac-
tical in a low-computational-resource environment.

7nltk.org
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According to [Martinc et al.(2021)Martinc, Pol-
lak, and Robnik-Sikonja), BERT language models
do not perform good results. Hence, while not di-
rectly comparable because we could not obtain their
test set, for a rough comparison, we cited their best
model on the OneStopEnglish dataset, TCN RSRS-
simple. The model is temporal convolutional net-
work (TCN) trained on the Simplified Wikipedia
corpus. For space limitations, refer to |[Martinc
et al.(2021)Martinc, Pollak, and Robnik—gikonja)
for the details of this method.

Proposed model was trained on a previously
published and publicly available vocabulary dataset
(Ehara(2018)). For the corpus word frequency, we
used the frequencies taken from the British National
Corpus (BNC Consortium(2007)) and the Cor-
pus of Contemporary American English (COCA)
(Davies(2008)). Both corpora are balanced gen-
eral corpora used extensively in English educa-
tion (Nation(2006)). Especially, the word fre-
quencies of these corpora are important resources
for determining word difficulty in English edu-
cation. For counting text frequencies, we used
nltk.stem.WordNetLemmatizer in the nltk pack-
age to lemmatize words appearing in running texts.

Our Proposed model uses the average of the neg-
ative log likelihood that an average learner knows
each word in the text as presented in Eq. [/l As our
Proposed model uses the BNC and COCA word fre-
quencies, it could be possible that these word fre-
quencies have an essential influence on the perfor-
mance of the Proposed model. To check this, we
also measured the correlation between the gold la-
bels and the average negative log of the unigram
probability values of the given text in each corpus.
We name these feature-based methods as BNC and
COCA.

4.4 Experimental Results: Pearson’s p and
performance

This subsection describes the experimental results
showing the problem of using Pearson’s p in eval-
uation.

Tab. [I] shows the experimental results. The
columns of Tab. [1| show the rank correlation coeffi-
cients introduced in the previous sections. Namely,
they are Spearman’s p, Kendall’s 7 with tie cor-
rection type b (7-b), and Kendall’s 7 with tie cor-

rection type ¢ (7-c). Pearson’s p is shown in the
rightmost column. As we explained in previous
sections, Pearson’s p is affected by the linearity of
scores. To see how Pearson’s p is affected by the
linearity of scores, below each unsupervised method
M, we show exp(M) to indicate the resulting per-
formance values when we replaced the scores of
M with the exponentilized the scores of M, i.e,
exp(the scores of M) to remove linearity. We also
show exp(cM) to denote the values of exp(c X
the scores of M), where ¢ is a constant. The distinc-
tion of “unsupervised” and “supervised” is clearly
marked in the leftmost column.

In Tab. we can easily see that, for all un-
supervised methods except for BNC and COCA,
the correlations of the exponentialized scores mea-
sured by Pearson’s p are closer to 0 than their orig-
inal scores.In contrast, the rank correlation coeffi-
cient values are kept unchanged because exp is a
monotonous function and hence the ranking is not
altered by the use of exp. By choosing a small
positive constant 0 < ¢ < 1 in Pearson’s p of
exp(cM), we can weaken the effect of the drop of
Pearson’s p: for example, in Tab. [T} the Pearson’s p
of exp(0.5Flesch-Kincaid) was 0.179, which is be-
tween 0.149 and 0.359. We can easily see this by
considering the Taylor expansion of the exp func-
tion: exp(cz) = Y00 <% Hence, by choos-
ing a small c, the effect of c¢"z™ approaches zero
where n > 2 and only 1 4 cx remains, so the ef-
fect caused by exp(cz) is close to that of a linear
function. The reason why the performance values of
BNC and COCA seem slightly increased by exp is
presumably because of noise: they did not correlate
with the readability labels statistically significantly.
Neither did exp(BNC) and exp(COCA).

The drop in performance scores is enormous for
some methods such as Proposed: its performance
was originally 0.715 but plunges to 0.260 by using
exp. This result indicates the vulnerability of using
Pearson’s p in the evaluation: the evaluation by Pear-
son’s p is strongly affected by how linear the scores
are, suggesting the use of rank correlation for better
evaluation.

TCN RSRS-simple is the best model using the
same dataset in [Martinc et al.(2021)Martinc, Pol-
lak, and Robnik—éikonja). As they show only the
performance measured by the Pearson correlation,




Table 1: Experimental Results on the OneStopEnglish Dataset. For a method M, exp(M) denotes the correlations
between the array of exp(M’s score) and the gold labels. (*) denotes that the value is cited from other papers.

Supervision \ Method \ Spearman’s p \ Kendall’s 7-b \ Kendall’s 7-c \ Pearson’s p ‘

Flesch-Kincaid 0.324 0.253 0.308 0.359
exp(0.5Flesch-Kincaid) 0.324 0.253 0.308 0.179
exp(Flesch-Kincaid) 0.324 0.253 0.308 0.149
ARI 0.317 0.248 0.302 0.351
exp(ARI) 0.317 0.248 0.302 0.136
Coleman-Liau 0.373 0.295 0.359 0.372
Unsupervised exp(Coleman-Liau) 0.373 0.295 0.359 0.185
FleschReadingEase -0.387 -0.301 -0.366 -0.426
exp(FleschReadingEase) -0.387 -0.301 -0.366 -0.169
GunningFogIndex 0.331 0.257 0.313 0.362
exp(GunningFoglIndex) 0.331 0.257 0.313 0.151
LIX 0.348 0.273 0.332 0.383
exp(LIX) 0.348 0.273 0.332 0.129
SMOGIndex 0.456 0.360 0.438 0.479
exp(SMOGIndex) 0.456 0.360 0.438 0.306
RIX 0.437 0.340 0.414 0.462
exp(RIX) 0.437 0.340 0.414 0.181
DaleChallIndex 0.495 0.387 0.472 0.506
exp(DaleChalllndex) 0.495 0.387 0.472 0.431

TCN RSRS-simple - - - 0.615(*)
BERTLMavg -0.220 -0.173 -0.210 -0.040
exp(BERTLMavg) -0.220 -0.173 -0.210 -0.005
BNC -0.012 -0.009 -0.010 -0.006
exp(BNC) -0.012 -0.009 -0.010 -0.123
CoCA -0.018 -0.016 -0.020 -0.039
exp(COCA) -0.018 -0.016 -0.020 -0.121
Proposed 0.730 0.592 0.709 0.715
exp(Proposed) 0.730 0.592 0.709 0.260
Supervised spvBERT _half 0.751 0.729 0.725 0.747
spvBERT 0.866 0.856 0.854 0.864

we wrote — for other rank correlation coefficients.
Additionally note that we cannot make a direct
comparison as we could not obtain their test set
used for their experiments. This is marked by the
(*) after the value. While we can see that Pro-
posed achieved better correlation than TCN RSRS-
simple, we are not sure if this result indicates the lin-
earity of the methods or the superiority of Proposed
against TCN RSRS-simple. Likewise, the use of
Pearson’s p only makes follow-up papers’ efforts to
compare their results difficult.

4.5 Performance Comparison

In all unsupervised methods, our Proposed method
achieved the best results in all rank correlation co-
efficients and Pearson’s p, although we need to be
careful with the interpretation of Pearson’s rho as
we pointed out in the previous section. These re-
sults were statistically significant (p < 0.01): all
correlation coefficients can also be used for statisti-
cal testing. In each of the statistical tests, the null
hypothesis is that no association exists between the




scores and the gold labels. When measured using
Spearman’s p, Proposed achieved a value of 0.730,
which is close to 0.751, the performance achieved
by supervised BERT using half of the training data.

BERTLMavg did not achieve good results in
predicting readability labels. This result suggests
that perplexity and readability are different measures
and that, to measure readability, we should obtain
and use information about what a typical language
learner knows about the target second language.

Interestingly, BNC and COCA did not achieve
good results in predicting readability labels. This
result shows that the reason that Proposed method
outperformed the others is not merely because the
features that Proposed used are excellent. A good
combination of the two balanced corpora results
in significant results. The use of only one of the
two does not achieve good results. Hence, we can
see that Proposed works excellently for making the
combination of the two corpus-based features.

For a comparison with supervised models, Tab. ]|
shows the performance by the supervised models,
namely spvBERT and spvBERT _half. Supervised
models output labels rather than scores in their pre-
diction phase: we directly used these labels to cal-
culate rank correlation coefficients for a fair com-
parison with unsupervised models. Leveraging the
supervision, they outperformed most of the unsu-
pervised methods in all rank correlation coefficients.
This means that using valuable supervision yields
great improvement in the predictive performance of
readability.

The performance differences among spvBERT,
BERTLMavg, and Proposed can be interpreted
as follows. BERT is a large model trying to use
as much information as possible from a sentence,
such as syntactic structure. Hence, it is difficult for
the model to find useful information contributing to
readability without supervision. Proposed is a bag-
of-words model that is designed to be lightweight by
sacrificing such complicated factors. Hence, the per-
formance difference between spvBERT and Pro-
posed can be regarded as the degree that informa-
tion beyond word difficulty — such as syntactic in-
formation or sentence context — accounts for read-
ability. While this is beyond the focus of this pa-
per, a detailed error analysis between spyBERT and
Proposed may lead to understanding what kind of

syntactic information or contexts in a sentence con-
tribute to readability.

4.6 Memory and Speed

We used a Core i7-10700K (3.80GHz) machine with
a GeForce RTX 3090 board for all experiments. The
BERTLMavg, which is an unsupervised BERT lan-
guage model, uses 1,793 MiB GPU memory. In
contrast, Proposed is merely a logistic regression,
it does not need any GPU for practical use. The
features of Proposed are also small compared to
those of the BERT models. Proposed uses the BNC
and COCA frequencies, which amount to 10 MiB of
CPU memory, which is roughly 1—(1)0 of that used by
the unsupervised BERT models. In terms of speed,
to classify all texts in the test set, while BERTL-
Mavg took 368 seconds, Proposed took only 5.37
seconds. This means that, compared to BERTL-
Mavg, the Proposed is 68.5 times faster.

5 Conclusions

We investigated the correlation coefficients to eval-
uate unsupervised automatic readability assessors’
performance. In the experiments, we show that the
readability performances measured by Pearson’s p
are strongly affected by the linearity of the outputted
scores by taking their exp(cz), whereas those mea-
sured by rank correlations are not affected. This
indicates the appropriateness of using rank correla-
tion coefficients to evaluate unsupervised automatic
readability assessors. We also proposed an unsuper-
vised assessor based on word difficulty for typical
second language learners calculated from a vocabu-
lary test result dataset. This achieved the best in the
unsupervised assessors compared.

Future work includes a more detailed analysis to
investigate which rank correlations, including those
not introduced in this paper, should be more appro-
priate for the evaluation.
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