
Learning Sense-Specific Static Embeddings using
Contextualised Word Embeddings as a Proxy

Yi Zhou
Department of Computer Science

University of Liverpool, UK
Y.Zhou71@liverpool.ac.uk

Danushka Bollegala
Department of Computer Science

University of Liverpool, UK
danushka@liverpool.ac.uk

Abstract

Contextualised word embeddings generated
from Neural Language Models (NLMs), such
as BERT, represent a word with a vector that
considers the semantics of the target word as
well its context. On the other hand, static word
embeddings such as GloVe represent words
by relatively low-dimensional, memory- and
compute-efficient vectors but are not sensitive
to the different senses of the word. We pro-
pose Context Derived Embeddings of Senses
(CDES), a method that extracts sense related in-
formation from contextualised embeddings and
injects it into static embeddings to create sense-
specific static embeddings. Experimental re-
sults on multiple benchmarks for word sense
disambiguation and sense discrimination tasks
show that CDES can accurately learn sense-
specific static embeddings reporting compara-
ble performance to the current state-of-the-art
sense embeddings.

1 Introduction

Representing the meanings of words using low-
dimensional vector embeddings has become a
standard technique in NLP. Static word embed-
dings (Mikolov et al., 2013; Pennington et al., 2014)
represent words at the form level by assigning a single
vector for all occurrences of a word irrespective of
its senses. However, representing ambiguous words
such as bass, which could mean either a musical in-
strument or a type of fish, using a single embedding
is problematic.

To address this problem, sense-specific static word
embedding methods (Reisinger and Mooney, 2010;

Figure 1: Outline of CDES. Given a sense-tagged sen-
tence t, we compute a sense embedding for the ambigu-
ous word bank by multiplying its static word embedding,
g(bank), by a sense-specific projection matrix, Abank%00,
corresponding to the correct sense of the word. Projec-
tion matrices are learnt by minimising the squared `2 loss
between the linearly transformed (via a matrix W) con-
textualised embedding, c(t, bank), and of the (nonlinearly
transformed via function f ) sense embedding of bank.

Neelakantan et al., 2014; Huang et al., 2012) assign
multiple embeddings to a single polysemous word
corresponding to its multiple senses. However, these
embeddings are context-insensitive and we must re-
sort to different heuristics such as selecting the sense
embedding of the ambiguous word that is most sim-
ilar to the context, to determine which embedding
should be selected to represent the word.

On the other hand, contextualised word embed-
dings generated from NLMs (Peters et al., 2018a;
Devlin et al., 2019; Liu et al., 2019) represent a word
in a given context by an embedding that considers
both the meaning of the word itself as well as its



context. Different types of information such as word
sense, dependency, and numeracy have shown to be
encoded in contextualised word embeddings, provid-
ing rich, context-sensitive input representations for
numerous downstream NLP applications. More re-
cently, Loureiro and Jorge (2019a) and Scarlini et
al. (2020a) showed that contextualised embeddings
such as BERT (Devlin et al., 2019) and ELMo (Pe-
ters et al., 2018a) can be used to create sense em-
beddings by means of external semantic networks,
such as WordNet (Miller, 1998) and BabelNet (Nav-
igli and Ponzetto, 2010). Moreover, Levine et al.
(2020) showed that BERT can be fine-tuned using
WordNet’s supersenses to learn contextualised sense
embeddings.

Inspired by these prior successes, we ask and affir-
matively answer the question – can we extract sense-
related information from contextualised word embed-
dings to create sense-specific versions of (pretrained)
sense-agnostic static embeddings? To this end, we
propose, Context Derived Embeddings of Senses
(CDES) a method to extract sense-related informa-
tion encoded in contextualised word embeddings and
inject it into pretrained sense-agnostic static word em-
beddings to create sense-specific static embeddings.
Given a contextualised embedding, a static word em-
bedding and a sense-annotated corpus, CDES learns
sense-specific projection matrices that can be used
to predict the sense embeddings of words from their
word embeddings. Following the distributional hy-
pothesis (Harris, 1954), we require that the predicted
sense embedding of a word must align (possibly non-
linearly) with the meaning of the context of the word,
represented using a contextualised embedding as out-
lined in Figure 1.

At a more conceptual level, CDES can be seen
as using contextualised language models as a proxy
for extracting information relevant to a particular
task, without learning it directly from text corpora.
In particular, prior work probing language models
has shown that rich information about languages is
compactly and accurately encoded within contextu-
alised representations produced by NLMs (Klafka
and Ettinger, 2020). Moreover, CDES can also be
seen as an instance of model distillation (Furlanello
et al., 2018), where a complex teacher model (i.e. a
contextualsied word embedding) is used to train a
simpler student model (i.e. a sense-sensitive static

embedding).
There are several advantages in CDES for learning

sense-specific static embeddings. CDES is compu-
tationally relatively lightweight because it uses pre-
trained static embeddings as well as contextualised
embeddings from a pretrained NLM and does not
require training these resources from scratch. CDES
static sense embeddings can be precomputed because
of their independence on the context. Therefore,
CDES embeddings are attractive to NLP applications
that must run on limited hardware resources. Because
subtokenisation methods, such as Byte Pair Encod-
ing (BPE), must be used to limit the vocabulary sizes,
one must post-process subtoken embeddings (e.g. by
mean pooling) to create word embeddings with con-
textualised embeddings, whereas static embeddings
can directly learn word embeddings. To increase
the coverage of sense embeddings, in addition to the
sense related information extracted from contextu-
alised embeddings, CDES incorporates contextual
information from external corpora and knowledge
bases.

We evaluate CDES on Word Sense Disambigua-
tion (Navigli, 2009, WSD) (Section 3.2) and Words
in Context (Pilehvar and Camacho-Collados, 2019,
WiC) (Section 3.3) tasks. In both tasks, CDES learns
accurate sense embeddings and outperforms many
existing static sense embeddings. In particular, on
the WSD framework (Raganato et al., 2017), CDES
reports the best performance in 4 out of 6 bench-
marks, and on WiC reports competitive results to the
current state-of-the-art without any fine-tuning of on
task data.

2 Context-Derived Embedding of Senses

Given (a) pretrained static word embeddings, (b) con-
textualised word embeddings from a pretrained NLM,
and (c) a sense-annotated corpus, CDES learns a
sense-specific version of (a), representing each sense
of a word by a different vector. To describe CDES
in detail, let us denote the sense-agnostic static em-
bedding of a word u ∈ V in a vocabulary V , by
g(u) ∈ Rp. Moreover, let us denote the contextu-
alised embedding model c, from which we can obtain
a context-sensitive representation c(u, t) ∈ Rq cor-
responding to u in some context t ∈ C(u). Here,
C(u) is the set of contexts in which u occurs. An



ambiguous word u is likely to take different senses in
different contexts t, and our goal is to learn a sense-
specific embedding of u that captures the different
senses of u.

Let us denote by S the set of word senses taken by
all words in V . An ambiguous word u will belong
to a subset S(u) of senses in S. Let us denote the
sense-specific embedding of u corresponding to the
i-th sense si ∈ S(u) by si(u) ∈ Rp. We model
the process of creating sense-specific embeddings
from static embeddings as a projection learning task,
where we multiply the static embedding, g(u), by a
sense-specific projection matrix, Ai, to produce si(u)
as in (1).

si(u) = Aig(u) (1)

Here, (1) decouples a sense embedding into a sense-
agnostic static lexical semantic component given by
g(u) and a word-independent sense-specific compo-
nent Ai, enabling efficient sense-specific embedding
learning using pretrained embeddings. The projec-
tion matrices can be seen as linear operators that pro-
duce different sense-specific embeddings from the
same static word (lemma) embedding, corresponding
to the different senses of the lemma.

On the other hand c(u, t) encodes both sense re-
lated information for u as well as information not
related to u such as the grammatical gender or num-
ber in the context t. Therefore, we apply a linear
filter parameterised by a matrix W ∈ Rq×p, to ex-
tract sense related information from c(u, t).

Given a sense tagged corpus, we jointly learn W
and Ais by minimising the objective given by (2).

L(W, {Ai}|S|
i=1) =

∑
u∈V

t∈C(u)
si∈S(u)

||Wc(u, t)− f(Aig(u))||22

(2)

Here, f is an elementwise nonlinear function that
enables us to consider nonlinear associations between
contextualised and static word embeddings. In our
experiments, we consider linear, ReLU and GELU
activations as f . After training, we can compute the
sense embeddings si(u) using (1) with the pretrained
static word embeddings g(u).

Eq. (2) can be seen as aligning the contextualised
and static word embeddings under a nonlinear trans-
formation. The only learnable parameters in our

proposed method are W and sense-specific projec-
tions A1, . . . ,A|S|. In particular, we do not require
re-training or fine-tuning static or contextualised
embeddings and can be seen as a post-processing
method applied to pretrained embeddings, similar
to retrofitting (Shi et al., 2019). We limit the sense-
specific projection matrices to diagonal matrices in
our experiments because in our preliminary inves-
tigations we did not find any significant advantage
in using full matrices compared to the extra storage.
Moreover, a diagonal matrix can be compactly rep-
resented by storing only its diagonal elements as a
vector, which reduces the number of parameters to
learn (thus less likely to overfit) and speeds up matrix-
vector multiplications.

2.1 Context Aggregation

An important limitation of the above-mentioned set-
ting is that it requires sense-annotated corpora. Man-
ually annotating word senses in large text corpora
is expensive and time consuming. Moreover, such
resources might not be available for low resource
languages. Even if such sense-annotated corpora are
available for a particular language, they might not
cover all different senses of all of the words in that
language, resulting in an inadequate sense coverage.
For example, SemCor (Miller et al., 1993), one of the
largest manually-annotated corpora for English word
senses including more than 220K words tagged with
25K distinct WordNet meanings, covers only 15%
of all synsets in the WordNet. To address this sense-
coverage problem, we follow prior proposals (Scar-
lini et al., 2020b) to extract additional contexts for a
word from (a) the dictionary definitions of synsets,
and (b) an external corpus.

Gloss-based Sense Embeddings: To create sense
embeddings from dictionary definitions, we use the
glosses of synsets in the WordNet. Given a word u,
we create a gloss-based sense embedding, ψ(u)i ∈
Rq, represented by the sentence embedding, c(ti),
computed from the gloss ti corresponding to the
synset si of u. Here, c(ti) is computed by averaging
the contextualised embeddings for the tokens in the
gloss ti as given in (3).

c(ti) = avg
w∈ti

c(w, ti) (3)



Here, avg denotes mean pooling over the tokens w in
ti. Following Loureiro and Jorge (2019a) and Scar-
lini et al. (2020b), in our experiments, we use BERT
as the contextualised embedding model and use the
sum of the final four layers as token embeddings.

Corpus-based Sense Embeddings: To extract
contexts from an external corpus for given a word
u, we retrieve all sentences as contexts t ∈ C(u)
from the corpus where u occurs. We then cluster
the extracted sentences (represented by the sentence
embeddings computed using (3)) using the k-means
algorithm. We assume each cluster to contain similar
sentences and that u will be used in the same sense
in all sentences in a cluster. We use UKB1 (Agirre et
al., 2014), a knowledge-based approach to WSD that
uses the Personalised PageRank algorithm (Haveli-
wala et al., 2002), to disambiguate the clusters.

To increase the coverage of senses represented by
the clusters, we consider collocations of u available
in SyntagNet (Maru et al., 2019)2 following Scar-
lini et al. (2020b). Specifically, for each word u, we
find words v that forms a collocation with u in Syn-
tagNet, and extract sentences t that contain both u
and v within a co-occurrence window. The synset
id si assigned to the (u, v) pair in SyntagNet is used
as the sense id for all extracted sentences for u. Fi-
nally, we compute a corpus-based sense embedding
φi(u) ∈ Rq as the cluster centroid, where sentence
embeddings are computed using (3).

2.2 Sense Embedding and Disambiguation
The final CDES static sense embedding, cdesi(u) ∈
Rp+2q of the i-th sense of u is computed as the con-
catenation of si(u) (given by (1)), gloss-based sense
embedding ψi(u) and corpus-based sense embed-
ding φi(u) as given by (4), where ⊕ denotes vector
concatenation.

cdesi(u) = si(u)⊕ψi(u)⊕ φi(u) (4)

In order to disambiguate a word u in a given con-
text t′, we first compute a contextualised embedding
ζ(u, t′) ∈ Rp+2q by concatenating three vectors as
give by (5)

ζ(u, t′) = g(u)⊕ c(u, t′)⊕ c(u, t′) (5)

1http://ixa2.si.ehu.eus/ukb/
2http://syntagnet.org/

We then compute the cosine similarity between
ζ(u, t′) and cdesi(u) for each sense si of u. We
limit the candidate senses based on the lemma and
part-of-speech of u in t′, and select the most simi-
lar (1-NN) sense of u as its disambiguated sense in
context t′.

3 Experiments

3.1 Experimental Setup

In our experiments, we use the pretained GloVe3 em-
beddings (Common Crawl with 840B tokens and
2.2M vocabulary) as the static word embeddings
g(u) with p = 300. We use pretrained BERT
(large-bert-cased4) as the contextualised em-
bedding model, c(u, t) with q = 1024. Following
prior work (Luo et al., 2018a; Luo et al., 2018b;
Loureiro and Jorge, 2019a; Scarlini et al., 2020b), we
use sense annotations from SemCor 3.0 (Miller et al.,
1993) as the sense-tagged corpus, which is the largest
corpus annotated with WordNet sense ids. As the
external corpus for extracting contexts as described
in Section 2.1, we use the English Wikpedia. The
number of clusters in k-means is set to the number
of distinct senses for the lexeme according to the
WordNet. The number of words given to UKB is
set to 5 and the number of sentences extracted from
Wikipedia per lemma is set to 150 following Scarlini
et al. (2020b). The co-occurrence window size for
considering collocations extracted from SyntagNet
is set to 3 according to Maru et al. (2019). We evalu-
ate the learnt sense embeddings in two downstream
tasks: WSD (Section 3.2) and WiC (Section 3.3).
The statistics of SemCor, all-words English WSD
and WiC datasets are showed in Table 1.

To project contextualised and static word embed-
dings to a common space, we set W ∈ R300×1024.
To reduce the memory footprint, number of train-
able parameters and thereby overfitting, we constrain
the sense-specific matrices Ai ∈ R300×300 to be di-
agonal. We initialise all elements of W and Ais
uniformly at random in [0, 1]. We use Adam as
the SGD optimiser and set the minibatch size to
64 with an initial learning rate of 1E-4. All hy-
perparameter values were tuned using a randomly
selected subset of training data set aside as a valida-

3nlp.stanford.edu/projects/glove/
4https://bit.ly/33Nsmou



Dataset Total Nouns Vebs Adj Adv

SemCor 226,036 87,002 88,334 31,753 18,947

WSD
SE2 2,282 1,066 517 445 254
SE3 1,850 900 588 350 12
SE07 455 159 296 - -
SE13 1,644 1,644 - - -
SE15 1,022 531 251 160 80
ALL 7,253 4,300 1,652 955 346

WiC Instances Nouns Vebs Unique Words

Training 5,428 2,660 2,768 1,256
Dev 638 396 242 599
Test 1,400 826 574 1,184

Table 1: The statistics of the training and evaluation
datasets. SemCor is used for training. SemEval (SE07,
SE13, SE15) and Senseval (SE2, SE3) datasets are used
for the WSD task, whereas the WiC dataset is used for
sense discrimination task.

tion dataset. The t-SNE visualisations in the paper
are produced with sklearn.manifold.TSNE
using n components=2, init=pca, perplexity=3,
n iter=1500 and metric=cosine.

All experiments were conducted on a machine with
a single Titan V GPU (12 GB RAM), Intel Xeon 2.60
GHz CPU (16 cores) and 64 GB of RAM. Overall,
training time is less than 3 days on this machine,

3.2 Word Sense Disambiguation (WSD)

WSD is a fundamental task in NLP, which aims to
identify the exact sense of an ambiguous word in a
given context (Navigli, 2009). To evaluate the pro-
posed sense embeddings, we conduct a WSD task us-
ing the evaluation framework proposed by Raganato
et al. (2017), which includes all-words English WSD
datasets: Senseval-2 (SE2), Senseval-3 task 1 (SE3),
SemEval-07 task 17 (SE07), SemEval-13 task 12
(SE13) and SemEval-15 task 13 (SE15). We used the
framework’s official scoring scripts to avoid any dis-
crepancies in the scoring methodology. As described
in Section 2.2, the sense of a word in a context is
predicted by the 1-NN method.

Table 2 shows the WSD results. Most Frequent
Sense (MFS) baseline selects the most frequent sense
of a word in the training corpus and has proven to
be a strong baseline (McCarthy et al., 2007). Scar-
lini et al. (2020b) use Peters et al. (2018a)’s method
with BERT on SemCor+OMSTI (Taghipour and Ng,
2015) to propose SemCor+OMSTIBERT baseline.

ELMo k-NN uses ELMo embeddings to predict the
sense of a word following the nearest neighbour strat-
egy. Specifically, they first obtain ELMo embeddings
for all words in SemCor sentences, and average the
embeddings for each sense. At test time, they run
ELMo on the given test sentence containing the am-
biguous word and select the sense with the highest
cosine similarity. Loureiro and Jorge (2019a) re-
peated this method using BERT (Devlin et al., 2019)
embeddings to propose the BERT k-NN baseline.
EWISEConvE (Kumar et al., 2019) learns a sentence
encoder for sense definition by using WordNet rela-
tions as well as ConvE (Dettmers et al., 2018). Scar-
lini et al. (2020b) report the performance of using
BERT base-multilingual-cased (mBERT) instead of
BERT large with MFS fallback. Hadiwinoto et al.
(2019) integrating pretrained BERT model with gated
linear unit (GLU) and layer weighted (LW).

GlossBERT (Huang et al., 2019) fine tunes the pre-
trained BERT model by jointly encoding contexts and
glosses. LMMS (Loureiro and Jorge, 2019a) learns
sense embeddings using BERT to generate contextu-
alised embeddings from semantic networks and sense
definitions. To perform WSD, they use the 1-NN
method and compare sense embeddings against con-
textualised embeddings generated by BERT. Scarlini
et al. (2020b) augment UKB with SyntagNet’s rela-
tions (Scozzafava et al., 2020) and obtain UKB+Syn.
SensEmBERT is a knowledge-based approach, which
produces sense embeddings by means of BabelNet
and Wikipedia. Although SensEmBERT is effec-
tive in modelling nominal meanings, it only consists
of nouns due to the limitation of its underlying re-
sources. SensEmBERTsup is the supervised version
of SensEmBERT. ARES (Scarlini et al., 2020b) is
a semi-supervised approach for learning sense em-
beddings by incorporating sense annotated datasets,
unlabelled corpora and knowledge bases.

To study the effect of using a nonlinear map-
ping f between static and contextualised embedding
spaces in (2), we train CDES with linear, ReLU and
GELU activations to create respectively CDESlinear,
CDESReLU and CDESGELU versions. From Table 2
we see that among these versions, CDESGELU out-
performs the linear and ReLU versions in all datasets,
except on SE2 where CDESlinear performs best.
This result shows that nonlinear mapping (GELU)
to be more appropriate for extracting sense-related



Models SE2 SE3 SE07 SE13 SE15 ALL

MFS 65.6 66.0 54.5 63.8 67.1 65.6
SemCor+OMSTIBERT 74.0 70.6 63.1 72.4 75.0 72.2
ELMo k-NN 71.5 67.5 57.1 65.3 69.9 67.9
BERT k-NN 76.3 73.2 66.2 71.7 74.1 73.5
EWISEConvE 73.8 71.1 67.3 69.4 74.5 71.8
mBERT k-NN + MFS 72.7 70.1 62.4 69.0 72.0 70.5
BERTGLU+LW 75.5 73.4 68.5 71.0 76.2 74.0
GlossBERT 77.7 75.2 76.176.176.1 72.5 80.4 77.0
LMMS 76.3 75.6 68.1 75.1 77.0 75.4
UKB+Syn 71.2 71.6 59.6 72.4 75.6 71.5
SensEmBERT 70.8 65.4 58.0 74.8 75.0 70.1
SenseEmBERTsup 72.2 69.9 60.2 78.778.778.7 75.0 72.8
ARES 78.0 77.1 71.0 77.3 83.283.283.2 77.9

Proposed Method
CDESlinear 78.478.478.4 76.9 71.0 77.6 83.1 78.0
CDESReLU 78.1 77.1 71.0 77.5 83.1 78.0
CDESGELU 78.1 77.377.377.3 71.4 77.7 83.283.283.2 78.178.178.1

Table 2: F1 scores (%) for English all-words WSD on the
test sets of Raganato et al. (2017). Bold and underline
indicate the best and the second best results, respectively.

information from contextualised embeddings. More-
over, we see that CDES versions consistently out-
perform all previously proposed sense embeddings,
except on SE07 and SE13 where GlossBERT and
SenseBERTsup performs best respectively. On SE15,
the performance of CDESGELU is equal to that of
ARES.

Overall, CDESlinear obtains the best performance
on SE2, while CDESGELU performs best on SE3,
SE15 and ALL. This result provides empirical sup-
port to our working hypothesis that contextualised
embeddings produced by NLMs encode much more
information beyond sense related information, which
must be filtered out using W. CDES is able to ac-
curately extract the sense-specific information from
contextualised embeddings generated by a pretrained
NLM to create sense-specific versions of pretrained
sense-agnostic static embeddings.

3.3 Words in Context (WiC)

Pilehvar and Camacho-Collados (2019) introduced
the WiC dataset for evaluating sense embedding
methods. For a particular word u, WiC contains
pairs of sentences, (t1, t2) where the same (positive)
or different (negative) senses of u can occur. An
accurate sense embedding method must be able to
discriminate the different senses of an ambiguous
word. The problem is formalised as a binary classi-
fication task and classification accuracy is reported

Models Accuracy %

Static Embeddings
GloVe (Pennington et al., 2014) 50.9

Contextualised Embeddings
ElMo (Peters et al., 2018b) 57.7
ELMo-weighted (Ansell et al., 2019) 61.2
BERT-large (Devlin et al., 2019) 65.5
RoBERTa (Liu et al., 2019) 69.9
KnowBERT-W+W (Peters et al., 2019) 70.9
SenseBERT-large (Levine et al., 2020) 72.1
BERTARES (Scarlini et al., 2020b) 72.272.272.2

Static Sense Embeddings
MUSE (Lee and Chen, 2017) 48.4
LMMS (Loureiro and Jorge, 2019b) 67.7
LessLex (Colla et al., 2020) 59.2
CDESlinear 69.0
CDESReLu 68.6
CDESGELU 68.8

Table 3: Performance on WiC. Bold and underline respec-
tively indicate the best and the second best results.

as the evaluation metric. A method that assigns the
same vector to all of the senses of a word would
report a chance-level (i.e. 50%) accuracy on WiC.

Similar to Section 3.2, we first determine the sense-
specific embeddings of u, si(u) and sj(u) for the
senses of u used in respectively t1 and t2. We then
train a binary logistic regression classifier using the
train split of WiC, where we use the cosine simi-
larities between the two vectors in the following
six pairs as features, comparing sense and contex-
tualised embeddings in the two sentences.: (si(u),
sj(u)), (ζ(u, t1), ζ(u, t2)), (si(u), ζ(u, t1)), (sj(u),
ζ(u, t2)), (si(u), ζ(u, t2)) and (sj(u), ζ(u, t1)). We
train this classifier using the official train split in WiC.
In particular, we do not fine-tune the static or con-
textualised embeddings that are used as inputs by
CDES on WiC because our goal is to extract sense-
related information already present in the pretrained
embeddings.

In Table 3, we report the classification accura-
cies on WiC for different types of embeddings such
as static word embeddings (GloVe), contextualised
embeddings generated by NLMs (ELMo, ElMo-
weighted, BERT-large, RoBERTa and KnowBERT),
and sense-specific embeddings (MUSE, LMMS,
LessLex, SenseBERT-large and BERTARES). Due



Figure 2: t-SNE visualisations of the nearest neighbours of bank corresponding to the two senses financial institution
(in red) and sloping land (in blue) are shown for GloVe, ARES and CDES embeddings. Sense labels of synonyms are
omitted to avoid cluttering.

to space limitations we omit the details of these em-
beddings.

From Table 3 we see that SenseBERT-large and
BERTARES obtain better performance than other em-
beddings. All the CDES variants outperform previ-
ous static sense embeddings learning methods. How-
ever, MUSE5 do not assign sense labels to sense
embeddings as done by LMMS, LessLex and CDES.
Among CDES variants, CDESlinear performs best
and is closely followed by GELU and ReLU vari-
ants. Although, CDES variants do not surpass the
current SoTA methods such as SenseBERT-large and
BERTARES on WiC, unlike CDES these methods
fine-tune on WiC train data and/or use more complex
classifiers with multiple projection layers compared
to the single logistic regression over six features used
by CDES.6 More importantly, results from both WSD
and WiC experiments support our claim that contex-
tualised embeddings encode word sense related infor-
mation that can be extracted and injected into sense-
insensitive static word embeddings via (non)linear
projections to create sense-sensitive versions of the
sense-insensitive static embeddings.

3.4 Visualisation of Sense Embeddings

To visualise the embeddings corresponding to the
different senses of an ambiguous word, we consider
bank, which has the two distinct senses: financial
institution and sloping land. We randomly select 5

5https://github.com/MiuLab/MUSE
6BERTARES and SenseBERT use respectively 2048 and

1024 features for sense prediction in WiC.

synonyms for each sense of bank from the Word-
Net and project their sense/word embeddings using
t-SNE in Figure 2. Compared to GloVe, we see that
words with related meanings are projected onto co-
herent clusters by ARES and CDES. This indicates
that sense embeddings are able to distinguish poly-
semy correctly compared to static word embeddings.
Overall, we see that CDES produces better separated
clusters than both GloVe and ARES.

3.5 Nearest Neighbours of Sense Embeddings

An accurate sense embedding method must be able
to represent an ambiguous word with different em-
beddings considering the senses expressed by that
word in different contexts. To understand how sense
embedding of a word vary in different contexts, we
compute the nearest neighbours of an ambiguous
word using its sense embedding. Table 4 shows two
sentences from SemCor containing bank, where in
Sentence 1, bank takes the financial institution sense,
and in Sentence 2 the sloping land (especially the
slope beside a body of water) sense. We compute
the sense embedding of bank, given each sentence as
the context, using different methods and compute the
top 5 nearest neighbours, shown in the descending
order of their cosine similarity scores with the sense
embedding of bank in each sentence.

GloVe, which is sense and context insensitive uses
the same vector to represent bank in both sentences,
resulting in the same set of nearest neighbours, which
is a mixture of finance and riverbank related words.
On the other hand, BERT, which is context-sensitive



Sentence 1: The banks which held the mortgage on the old church declared that the interest was considerably in
arrears, and the real estate people said flatly that the land across the river was being held for an eventual development
for white working people who were coming in, and that none would be sold to colored folk.

GloVe BERT LMMS SenseBERT CDES

mortgage mortgage mortgage mortgage mortgage
interest interest church real real estate
estate held sell old sell
river church interest land interest
real river real estate interest church

Sentence 2: Through the splash of the rising waters, they could hear the roar of the river as it raged through its
canyon, gnashing big chunks out of the banks .

GloVe BERT LMMS SenseBERT CDES

mortgage river river splash river
interest waters canyon land water
estate chunks land out rise
river splash folk through canyon
real canyon church chunks folk

Table 4: Nearest neighbours computed using the word/sense embeddings of bank in two sentences.

but not sense-specific, returns different sets of near-
est neighbours in the two cases. In particular, we
see that finance-related nearest neighbours such as
mortgage and interest are selected for the first sen-
tence, whereas riverbank-related nearest neighbours
such as water and canyon for the second. However,
BERT does not provide sense embeddings and some
neighbours such as river appear in both sets, because
it appears in the first sentence, although not related
to bank there.

SenseBERT (Levine et al., 2020) disambiguates
word senses at a coarse-grained WordNet’s super-
sense level. We see that SenseBERT correctly detects
words such as mortgage and interest as neighbours of
bank in the first sentence, and splash and land in the
second. We see that land appears as a nearest neigh-
bour in both sentences, although it is more related to
the sloping land sense than the financial institution
sense of bank.

LMMS selects church as a nearest neighbour for
both sentences, despite being irrelevant to the second.
On the other hand, CDES correctly detects church
for the first sentence and not for the second. Over-
all, CDES correctly lists financial institution sense
related words such as mortgage, real estate and in-
terest for the first sentence, and sloping land sense
related words such as river, water and canyon in the

second sentence.

4 Related Work

Reisinger and Mooney (2010) proposed multi-
prototype embeddings to represent word senses,
which was extended by Huang et al. (2012) com-
bining both local and global contexts. Both methods
use clustering to group contexts of a word related
to the same sense. Although the number of senses
depends on the word, these methods assign a fixed
number of senses to all words. To overcome this
limitation, Neelakantan et al. (2014) proposed a non-
parametric model, which estimates the number of
senses dynamically per word.

Even though clustering-based methods are able
to assign multi-prototype embeddings for a word,
they still suffer from the fact that the trained em-
beddings are not associated with any sense inven-
tories (Camacho-Collados and Pilehvar, 2018). In
contrast, knowledge-based approaches learn sense
embeddings by extracting sense-specific informa-
tion from external sense inventories, such as Word-
Net and BabelNet. Chen et al. (2014) extended
word2vec (Mikolov et al., 2013) to learn sense-
specific embeddings associated with the Word-
Net (Miller, 1998) synsets. Rothe and Schütze (2015)
used the semantic relations in WordNet to embed



words and their senses into a common vector space.
Iacobacci et al. (2015) use the sense definitions from
BabelNet and perform word sense disambiguation
(WSD) to obtain sense-specific contexts.

Recently, contextualised embeddings generated by
NLMs have been used to create sense embeddings.
Loureiro and Jorge (2019a) construct sense embed-
dings by taking the average over the contextualised
embeddings of the sense annotated tokens from Sem-
Cor. Scarlini et al. (2020a) propose a knowledge-
based approach for constructing BERT-based embed-
dings of senses by means of the lexical-semantic
information in BabelNet and Wikipedia. CDES pro-
posed in this paper extends this line of work, where
we extract sense-related information from an NLM
and inject into a static word embedding to create a
sense-specific version of the latter. Moreover, we fol-
low prior work (Scarlini et al., 2020b; Loureiro and
Jorge, 2019a) and incorporate contexts from external
resources such as Wikipedia, WordNet and Syntag-
Net representing different senses of a word to en-
hance sense embeddings learnt using sense-labelled
corpora.

5 Conclusion

We proposed CDES, a method which is able to gener-
ate sense embeddings by extracting the sense-related
information from contextualised embeddings. CDES
integrates the gloss information from a semantic net-
work as well as the information from an external
corpus to tackle the sense-coverage problem. Eval-
uations on multiple benchmark datasets related to
WSD and WiC tasks show that CDES learns accurate
sense emebddings, and report comparable results to
the current SoTA. All experiments reported in the
paper are limited to English language and we plan
to extend the proposed method to learn multilingual
sense embeddings in our future work.
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