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Abstract

Speaker verification is an essential task in
speech processing with great authentication
and surveillance applications. Large-scale
datasets have hugely contributed to the suc-
cess of neural networks for speaker verifica-
tion. However, in low-resource languages,
building such massive datasets is infeasible.
This paper aims at proposing a speaker verifi-
cation model for low-resource scenarios, with
the baseline from Clova’s H/ASP system in
VoxSRC 2020. The proposed method adopts
transfer learning to utilize the knowledge from
the model trained with VoxCeleb, an English
large-scale dataset. For network optimization,
Stochastic Gradient Descent is employed in-
stead of Adam because of its superior gen-
eralization. This work also proposes a novel
marginal variant of Angular Prototypical (AP)
Loss, i.e. Angular Margin Prototypical (AMP)
Loss, which encourages a more discrimina-
tive embedding space. To experiment with
the proposed model, we investigated building
a public speaker verification dataset for Viet-
namese. A processing pipeline is proposed
to enhance the quality of the dataset. After
being collected from sources, noisy speakers
and noisy utterances are removed using self-
similarity matrix analysis. Speakers with the
same identity are then unified. The experi-
mental results show that the proposed model
achieves an Equal Error Rate (EER) of 3.1%
which outperforms the baseline with 7.6%
EER on the collected dataset.

∗*Corresponding author

1 Introduction

Speaker verification is a task which takes an un-
known speech as input and determines whether the
speech matches the claimed identity. With the de-
velopments of deep neural networks, speaker verifi-
cation systems have gained huge advances and out-
perform traditional probabilistic systems.

The application of neural networks in speaker ver-
ification is to learn discriminative speaker embed-
ding space. Commonly used architectures in pio-
neering works include TDNN-based models (Snyder
et al., 2015) and networks architectures originated
from computer vision researches such as VGG (Si-
monyan & Zisserman, 2014) and ResNet (He et al.,
2016). Since speaker verification is a metric learn-
ing problem, the idea is to learn embedding features
that have small intra-class distance and large inter-
class distance. Several distinctive metric learning
loss functions for speaker verification have been pro-
posed, from the well-known Triplet Loss (Zhang et
al., 2018) to Prototypical Loss (J. Wang et al., 2019)
and Angular Prototypical Loss (Chung et al., 2020).

The success of speaker verification systems does
not come only from the advancement of neural net-
works but is also attributed to the availability of
large-scale speaker datasets. Good examples are
VoxCeleb1 (Nagrani et al., 2017) and VoxCeleb2
(Chung et al., 2018) . These datasets together con-
tribute more than a million utterances, spoken in En-
glish, from over 7,000 speakers. Furthermore, the
two datasets have a complicated and well-designed
data collection pipeline, thus can represent ’real
world’ situations. Using VoxCeleb2 as training data,



the author of (Chung et al., 2018) has achieved an
Equal Error Rate (EER) of 3.95% on the test set of
VoxCeleb1. Recently, a modified version of TDNN
with multiple enhancements has been applied in
(Desplanques et al., 2020) and obtained a new state-
of-the-art result, an EER of 0.87% on the VoxCeleb1
test set.

However, it is difficult to achieve the same per-
formance on low-resource languages. In the case
of Vietnamese, there is only one publicly available
dataset designed for experimenting with speaker
recognition, which is from the ZaloAI Challenge
2020 1. The ZaloAI dataset consists of 8.7 hours of
speech and 400 speakers. Compared to 2,000 hours
of speech and 7,000 speakers from VoxCeleb, this
dataset seems really small. Because of the scarcity
of speaker data, there is no standardized benchmark
for evaluating Vietnamese speaker verification mod-
els.

In this research, we propose a speaker verification
model for low-resource languages. For the proposed
model, we propose to use a modified version of An-
gular Prototypical Loss - Angular Margin Prototyp-
ical Loss - which further discriminates speakers in
the embedding space. Additionally, transfer learning
is applied to utilize the English pre-trained ResNet
model from (Heo et al., 2020). To help improv-
ing speaker verification systems for Vietnamese, we
build and publish VietSV, a new Vietnamese speaker
verification dataset. The dataset is a combination of
the ZaloAI dataset and other ASR datasets through
a careful preprocessing and sampling pipeline.

The remaining of this paper is organized as fol-
lows. Our proposed model for low-resource lan-
guages is described in Section 2, with the related
works given in Section 3. In Section 4, we dis-
cuss the process and result of building the new Viet-
namese speaker verification dataset. Our experimen-
tal results are provided in Section 5. Finally, we
draw conclusions in Section 6.

2 Proposed method

2.1 Baseline model

The architecture of the chosen baseline model is il-
lustrated in Figure 1. This model is given as an

1https://challenge.zalo.ai

unofficial baseline model for the VoxCeleb Speaker
Recognition Challenge 2020 (Heo et al., 2020).

Figure 1: Baseline model architecture.

The model takes log Mel-filterbanks as input.
The input then goes through a modified version of
ResNet-34 to extract frame-level features. As input
utterances have variable lengths, Attentive Statistics
Pooling (ASP) (Okabe et al., 2018) is applied to
aggregate frame-level features to obtain utterance-
level features while keeping important information
through an attention mechanism. Utterance-level
features are then handled by fully connected layers
(FC). Finally, the loss is computed using Angular
Prototypical (AP) Loss with Adam optimization.

2.2 Proposed model

Figure 2 shows the overview of our proposed
method. We utilize the pre-trained model of (Heo
et al., 2020) with the architecture described in Sec-
tion 2.1. Generally, using transfer learning can ac-
celerate the training process and help the model
achieves better outcomes when trained with low-
resource data. Furthermore, as the experiment-
ing speaker verification model is text-independent,
choosing a model trained with a large dataset such
as the English pre-trained model for fine-tuning will
be a good option. To help the model further discrim-
inate speakers in the embedding space, we use our
proposed loss function - Angular Margin Prototyp-
ical Loss, which is discussed below. Additionally,



the backpropagation process is optimized with SGD
for better generalization.

2.3 Angular Margin Prototypical Loss
2.3.1 Angular Prototypical Loss

As discussed in (Chung et al., 2020), AP Loss is a
variant of Prototypical Loss (J. Wang et al., 2019)
which optimize the embedding space by comput-
ing distances to the prototypes or centroids of every
speaker.

Consider a mini-batch of N speakers, with each
having M utterances, let xi,j be the embedding vec-
tor extracted from utterance j of speaker i, where
1 ≤ i ≤ N, 1 ≤ j ≤M . Suppose that we have xi,M
as the query, the centroid of speaker i is calculated
as:

ci =
1

M − 1

M−1∑
m=1

xi,m (1)

The similarity score between the query and the
centroid ck of speaker k (1 ≤ k ≤ N) is given in
(2). Learnable scale w and bias b help to stabilize
the convergence.

Si,k = w · cos(xi,M , ck) + b (2)

Finally, the loss computed for a mini-batch is as
follows:

LAP = − 1

N

N∑
i=1

log
eSi,i∑N
k=1 e

Si,k
(3)

The softmax function is used here to push the
embeddings of a speaker closer to his centroid and
prevent the situation that those utterances have high
similarity scores with other centroids. However, it
has a problem that the distances between utterances
of a speaker are still large and the distances to the
decision boundaries created by the softmax function
are small, as shown in Figure 3.

To deal with this problem, we introduce a new
loss function, called Angular Margin Prototypical
Loss (AMP), with two variants are AMP-cos and
AMP-arc.

2.3.2 AMP-cos
In AMP-cos, a margin is added directly to the co-

sine similarity of 2 utterances. The similarity score
in (2) is now replaced with:

Si,k =

{
w · (cos

(
θxi,M ,ck

)
−m) + b, if i = k

w · cos
(
θxi,M ,ck

)
+ b, otherwise

(4)
In (4), θxi,M ,ck is the angle between the query

xi,M of speaker i and the centroid ck of speaker k,
w and b are learnable parameters and m is the addi-
tional margin. The objective function is the same as
(3) but with the new similarity score.

2.3.3 AMP-arc
In the case of AMP-arc, an angular margin is

added with the angle between 2 utterances:

Si,k =

{
w · cos

(
θxi,M ,ck +m

)
+ b, if i = k

w · cos
(
θxi,M ,ck

)
+ b, otherwise

(5)
AMP-arc is more effective than AMP-cos because

the angular margin exactly corresponds to geodesic
distance, as discussed in (Deng et al., 2019). Adding
angular margin improves intra-class compactness
significantly as compared to AP loss. Figure 4 illus-
trates the decision boundaries created by AMP-arc.

3 Related works

Previous works have shown the efficiency of speaker
verification models when using transfer learning and
applying metric learning loss functions originated
from the face recognition task. Sections below de-
scribe how these works have inspired us to come up
with our proposed method.

3.1 Transfer learning
Transfer learning is widely applied in speaker verifi-
cation and speaker recognition, usually when the tar-
get domain’s data is scarce. Nidadavolu et al. (Nida-
davolu et al., 2019) propose an adaptation tech-
nique by learning feature mapping function from
low-resource target domain to source domain using
CycleGAN in an unsupervised manner. Using Ad-
versarial Discriminative Domain Adaptation and un-
labeled target domain data, the work in (Xia et al.,
2019) alleviates the domain mismatch problem in
an English-Chinese cross-lingual speaker verifica-
tion task. In the top-scoring submission for the text-
independent task for SdSV challenge 2020, Thien-
pondt et al. propose Hard Prototype Mining loss to



Figure 2: Proposed speaker verification model for low-resource languages with transfer learning from En-
glish pre-train model, SGD optimizer and Angular Margin Prototypical Loss.

Figure 3: Embedding space learned with AP loss.

finetune a speaker verification model from English
to Farsi language achieved 1.83% EER in the target
language. Overall, transfer learning enables speaker
verification in low-resource scenarios by leverag-
ing knowledge learned from English or other rich-
resource languages.

Figure 4: Embedding space learned with AMP-arc
loss.

3.2 AMP Loss

Incorporating margin penalty in loss functions to
enhances the inter-class separability and the intra-
class compactness of embedding spaces is standard
in face recognition. Margin is added in different
ways to softmax function in A-softmax, CosFace
and ArcFace (Liu et al., 2017; F. Wang et al., 2018;



Figure 5: Overall processes of building VietSV and preparing Vietnamese Common Voice test set.

Deng et al., 2019). With its ease of implementa-
tion and good performance, ArcFace became popu-
lar and remains the state-of-the-art loss function for
face recognition despite being published three years
ago in 2018. Pair-based metric loss functions like
contrastive loss (Hadsell et al., 2006), triplet loss
(Hoffer & Ailon, 2015), lifted structure loss (Oh
Song et al., 2016), histogram loss (Ustinova & Lem-
pitsky, 2016), ... are usually designed with a mar-
gin penalty. Speaker verification with deep learning
has successfully adopted these losses and surpassed
the traditional i-vector in performance. Recently, in-
spired by ArcFace, Wei et al. (Wei et al., 2020)
incorporate margin penalty in the batch-based loss
GE2E which achieves clear performance improve-
ment.

In this work, we incorporate margin into AP loss
in both CosFace and ArcFace resembling manners.
Although AP loss uses the same scoring function as
GE2E loss, the centroid in AP loss is made from
the same number of utterances. This stabilizes train-
ing and makes it possible to exactly mimic the test
scenario during training, which has advantages over
GE2E formation (Chung et al., 2020).

3.3 Network Optimization with SGD
Many literatures have shown that Adam tends to per-
form worse than SGD despite having faster training
speed. (Zhou et al., 2020) has analyzed theoretically
how SGD generalizes better than Adam in various
tasks. Commonly, SGD is often used to get state
of the art results for networks like ResNet (He et

al., 2016), DenseNet (Huang et al., 2017), ResNeXt
(Xie et al., 2017), SENet (Hu et al., 2018), ... While
Adam is often used for large networks or complex
systems such as BERT (Devlin et al., 2019), GPT-
3 (Brown et al., 2020), GANs (Goodfellow et al.,
2014) due to its fast convergence and stability.

4 Vietnamese Dataset Building

To have a dataset for experimenting with the pro-
posed model as well as publishing a good dataset
for the research community, we have investigated
building a dataset for Vietnamese, a low-resource
language in this field of study.

4.1 Overall Process

We propose a procedure to build a speaker verifi-
cation dataset for Vietnamese in particular, and for
low-resource languages in general. The overall pro-
cess is illustrated in Figure 5. The first step is
the data collection phase, which combines speech
datasets with speaker identities to obtain raw data.
Then, clean data is acquired by pushing the raw
data through several preprocessing substeps, includ-
ing invalid speaker removal, noisy utterance removal
and speaker unification. Lastly, the data is split into
a training set and a test set, with the test set be-
ing gender-balanced sampled. Apart from the col-
lected datasets, we also obtain Vietnamese speech
from Common Voice 2. As there are only 23 speak-
ers and 253 utterances in the data, we will use it as an

2https://commonvoice.mozilla.org/en



out-domain test set. The same procedure excluding
dataset splitting is applied to Common Voice data to
obtain the Common Voice test set.

4.2 Dataset Collection
ZaloAI dataset consists of 400 speakers with 26.4 ut-
terances per speaker on average. To extend the data
used for the task, we select two more ASR datasets,
which are VLSP 2020 3 and VIVOS 4. These two
datasets are the only Vietnamese ASR datasets con-
taining speaker information. There are 40 speak-
ers who contributed to the VIVOS training set with
each having 253.5 utterances on average. The val-
idation set of VIVOS includes 19 speakers and 40
utterances per speaker on average. In the case of
the VLSP 2020 dataset, the numbers of speakers and
average utterances per speaker are 567 and 22.3, re-
spectively.

Although the datasets are diverse in terms of gen-
der, accent and age, there are flaws in the data such
as mislabeled utterances and noisy audio. Further-
more, there are duplicate speakers in each dataset
and in the combination of the datasets as well.
These problems are handled using preprocessing
techniques in the sections below.

4.3 Data Preprocessing
In the preprocessing techniques below, we ana-
lyze cosine similarity matrix on utterances to mea-
sure data consistency hence removing unwanted
data. Given a set of n utterance embeddings V =
{v0, v1, ..., vn−1}, the cosine similarity matrix can
be calculated in (6). Figure 6 shows the similarity
matrix between utterances of a speaker.

Si,j = cos(vi, vj) =
vi · vj
‖vi‖‖vj‖

, 0 ≤ i, j ≤ n (6)

4.3.1 Invalid Speaker Removal
Some speakers have a large amount of noisy data,

removing utterances manually can take a lot of time.
Hence we use similarity matrix to assess whether
to remove those speakers from the data. Figure 6
and Figure 7 show the cosine similarity matrices of
a valid and invalid speaker, respectively.

3https://vlsp.org.vn/vlsp2020/eval/asr
4https://ailab.hcmus.edu.vn/vivos

Figure 6: Cosine similarity matrix of a valid speaker
with 10 utterances.

Figure 7: Cosine similarity matrix of an invalid
speaker.

4.3.2 Noisy Utterance Removal

Noisy utterances can be spotted by using outlier
detection (Yang et al., 2019). Let Q1 and Q3 be the
first quartile and third quartile of the set of average

similarity score ai =
1

n

∑n−1
j=0,j 6=i Si,j . By using in-

terquartile range (IQR), the utterance valid range
[amin, amax] of set a can be determined in (7) and
(8). Utterances having similarity scores ai outside
of the valid range [amin, amax] will be marked and
considered for removal.

amin = Q1− 1.5 ∗ IQR; amax = Q3+ 1.5 ∗ IQR
(7)

IQR = Q3−Q1 (8)



4.3.3 Speaker Unification
As the four collected datasets are built indepen-

dently, a pair of speakers from different datasets with
the same identity can exist. We use similarity matrix
to find these pairs. It is clear that in Figure 8a, 52-
M-31 and 64-M-30 are different people as the sim-
ilarity score between them is low. In contrast, there
is a high probability that 64-M-30 and 636-M-30 in
Figure 8b are the same speaker. Similarity matrices
of pairs having average scores higher than 0.7 will
be marked and considered for unification.

(a) Similarity matrix be-
tween 52-M-31 and 64-M-
30.

(b) Similarity matrix be-
tween 64-M-30 and 636-
M-30.

Figure 8: Similarity matrices of pairs of speakers.

Dataset Speakers Pairs of utterances
VietSV training set 1031 -

VietSV test set 59 48,148
Common Voice test set 23 12,192

Table 1: VietSV Datasets overview

Layer Kernel size Stride Output shape
Conv1 3× 3× 32 1 × 1 L× 64× 32

ResBlock1 3× 3× 32 1 × 1 L× 64× 32

ResBlock2 3× 3× 64 2 × 2 L/2× 32× 64

ResBlock3 3× 3× 128 2 × 2 L/4× 16× 128

ResBlock4 3× 3× 256 2 × 2 L/8× 8× 256

Flatten - - L/8× 2048

ASP - - 4096
Linear 512 - 512

Table 2: Architecture of the performance-optimized
ResNet-34

4.4 Dataset Construction
After removing 65 invalid speakers, 1,617 noisy
utterances and unifying 84 duplicate speakers, we
have a total of 1,113 speakers, of which 1090 speak-
ers are from the collected dataset, the rest belongs to
Common Voice data.

To construct the VietSV dataset, we perform
dataset splitting step to sample speakers for the train-
ing set and the test set. As shown in Table 1, VietSV
training set has 1,031 speakers. VietSV test set in-
cludes 59 speakers with 48,148 pairs of utterances
generated from 1,626 utterances. In the set, we take
40 speakers randomly from ZaloAI with gender bal-
ance, the other 19 speakers are from the validation
set of VIVOS. Common Voice test set is also gender-
balanced sampled. VietSV will be publicly available
to download at VLSP (http://vlsp.org.vn5).

5 Experiments

(a) Model trained with AP

(b) Model trained with AMP-arc (m=0.2)

Figure 9: Similarity score distribution of positive
pairs and negative pairs. Dotted vertical line de-
scribes average similarity score.

5.1 Experimental setup

5.1.1 Speech feature extraction
We extract 64-dimensional log Mel-filterbank en-

ergies for each frame of width 25 ms and step 10 ms.
The training segments are roughly 2s long speech

5Currently, VietSV can be downloaded at the link https://
github.com/datvithanh/vietnamese-sv-dataset



Architecture FT Loss m Optimizer VietSV EER Common Voice EER
ECAPA (Thienpondt et al., 2020) Y HMP - Adam 4.017 -
ECAPA (Thienpondt et al., 2020) Y HMP - SGD 4.299 -
ResNet-34 pretrained - - - - 14.954 11.468
ResNet-34 N AP - Adam 7.602 10.934
ResNet-34 Y AP - Adam 5.446 8.002
ResNet-34 Y AP - SGD 3.539 5.542
ResNet-34 Y AMP-cos 0.1 SGD 3.319 5.100
ResNet-34 Y AMP-cos 0.2 SGD 3.269 5.702
ResNet-34 Y AMP-cos 0.3 SGD 3.232 6.687
ResNet-34 Y AMP-cos 0.4 SGD 3.211 6.436
ResNet-34 Y AMP-cos 0.5 SGD 3.331 8.102
ResNet-34 Y AMP-arc 0.1 SGD 3.240 4.789
ResNet-34 Y AMP-arc 0.2 SGD 3.115 5.391
ResNet-34 Y AMP-arc 0.3 SGD 3.194 5.914
ResNet-34 Y AMP-arc 0.4 SGD 3.298 6.757
ResNet-34 Y AMP-arc 0.5 SGD 3.352 7.755

Table 3: Results on VietSV test set and VietSV Common Voice test set. The figures in bold represent the
best results for each set. FT: fine-tuning.

signals, each segment generates a spectrogram of
size 200 × 64. Similar to (Heo et al., 2020), mean
and variance normalization is performed by apply-
ing instance normalization (Ulyanov et al., 2016) to
the network input.

5.1.2 Neural network architecture

The architecture of the speaker discriminative
DNN used in this work is illustrated in Table 2,
which is similar to the architecture of the ResNet-34
used in (Heo et al., 2020). This variant of ResNet-34
has half of the channels and has the stride at Conv1
removed compared to the original ResNet-34 (He
et al., 2016). After training, the 512-dimensional
speaker embeddings are extracted from the Linear
layer given the input features.

5.1.3 Implementation details

Experiments codes are implemented with Pytorch
framework (Paszke et al., 2019). The models are
trained using an NVIDIA V100 GPU with 16GB
memory from Google’s Colab Pro. One epoch is
defined as a full pass through the speakers, each rep-
resented with a random 2s segment. We use an ini-
tial learning rate of 0.005, reduced by 25% every
50 epochs. The models are trained for 2000 epochs
each. We use a mini-batch size of 200. Each model
takes one day to train.

5.2 Evaluation protocol

The evaluation follows the standard protocol: ex-
tracting speaker embeddings and calculating their
cosine similarity to determine speaker identities. We
report the equal error rate (EER) for each speaker
verification model.

5.3 Experimental results

Table 3 reports the experimental results.
We compare our models to our self-implemented

version of the fine-tuning ECAPA models in (Thien-
pondt et al., 2020). The pre-trained ECAPA weights
are available on Hugging Face (Wolf et al., 2019).
The fine-tuned models are reported on VietSV with
the author’s Hard Prototype Mining Loss and the
two optimizers Adam and SGD.

The results demonstrate that our AMP loss per-
forms better than AP loss in in-domain scenarios.
However, in the out-domain test - Test 2, AMP with
higher values of m causes overfitting which signifi-
cantly impairs the results on Test 2.

Figure 9 gives the score distributions of positive
pairs and negative pairs for both AP loss and AMP
loss. The verification performance is determined by
the size of the overlap area between the negative
pairs distribution and the positive pairs distribution.
The angular margin effectively pushes the average
scores away from each other.

The fine-tuned model trained with AMP-arc



(m = 1) and optimized with SGD produces an EER
of 3.115% relatively improved 11.98% and 59.02%
upon the one trained with AP loss and baseline
model for Vietnamese speaker verification.

6 Conclusions

In this paper, we have built the VietSV dataset for
Vietnamese speaker verification. VietSV is collected
from different sources and removed noises. The two
test sets: the in-domain VietSV test set and the out-
domain Common Voice test set are sampled from
people with the same gender and accent to increase
difficulty. We release the dataset to facilitate further
research in Vietnamese speaker verification.

We have proposed a training system based on
transfer learning to leverage learned knowledge
from the large-scale English dataset - VoxCeleb.
In our experiments, we found that switching from
Adam optimizer to SGD optimizer substantially im-
proves verification performance. We also propose
a margin variant of the Angular Prototypical Loss -
Angular Margin Prototypical Loss that outperforms
the original training function by 11.98%. The over-
all system achieves 3.12% EER which outperforms
the baseline H/ASP model with 7.60% EER.
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