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Abstract

Solving natural language inference (NLI)
with formal semantics and automated theorem
proving has the merit of high precision and
interpretability. However, they suffer from
non-logical inference such as lexical infer-
ence. To overcome this weakness, we propose
a human-in-the-loop mechanism in which the
user provides non-logical knowledge to the
theorem prover. We focus on the subgoal of a
proof. A subgoal is a proposition that remains
unproved by the theorem prover. Although the
subgoal conveys what knowledge should be
supplemented to the proof, it is a logical for-
mula inscrutable to normal users. To make the
subgoal understandable to the user, we pro-
pose a method to translate the subgoal into a
natural language text. The resulting sentence
is called a readable subgoal. The reaction to
the readable subgoal is communicated to the
theorem prover in the form of temporary ax-
iom, a logical formula that conveys the con-
tent of the reaction. We experimented with our
method by adding an interactive component
to an existing NLI system, ccg2lambda. The
annotators recruited by Amazon Mechanical
Turk used the proposed system to solve SICK,
a data set for NLI. Experiments show the inter-
action improved the recall rate of ccg2lambda
from 32.1% to 44.1%, and the accuracy from
70.4% to 75.1%.

1 Introduction

Natural Language Inference (NLI) is a task to judge
whether a text fragment entails another text frag-
ment (Levy et al., 2013). The former fragment is

Figure 1: The user enters the premise and the hypothesis,
which the semantic parser converts to semantic represen-
tations. This is passed to the automated theorem prover,
which attempts to prove the hypothesis from the premise.
If the proof does not succeed, it outputs the subgoal,
which is the input to our proposed method. Our method
converts the subgoal into readable subgoal, so the user
can understand the content of the subgoal. The reaction
of the user is fed back to the theorem prover as tempo-
rary axioms, so the proof can continue.

called the premise, and the latter fragment is called
the hypothesis. NLI has many potential applica-
tions such as question answering, summarization,
machine translation, and so on (Dagan et al., 2010;
White et al., 2017; Bora-Kathariya and Haribhakta,
2018; Demszky et al., 2018; Poliak et al., 2018;
Thorne and Vlachos, 2018). Moreover, NLI itself
has been considered as an important task to measure
progress in natural language understanding (Wang et
al., 2018; Wang et al., 2020).

We hypothesize that interaction between the ma-
chine and the human is useful for NLI.



Generally speaking, humans are better at recog-
nizing non-logical inference such as lexical infer-
ence or common sense reasoning, while machines
are better at comprehensive search and verification
over logical relationships. To evaluate this hypoth-
esis, we propose an NLI system based on formal
semantics and theorem prover, which asks the user
to supplement knowledge when necessary. Impor-
tantly, this interaction is fully done in natural lan-
guage, thus users without profession in formal se-
mantics or theorem provers can use the system.

Figure 1 describes an example of an interactive
session between the user and the system. The user
inputs the premise and the hypothesis she wants to
prove. In the example, the user asks the system
to prove A person is moving from the premise The
man is walking. The system compiles these sen-
tences into logical representations, and attempts to
prove that the hypothesis logically follows from the
premise. The theorem prover does this by decom-
posing the proof into subgoals. If all subgoals are
proved, the proof is completed. Otherwise, the sys-
tem translates the unproved subgoal into natural lan-
guage and returns it to the user. We refer to this natu-
ral language text as readable subgoal. In this case,
the system identified the subgoals person(x0) and
move(e0), and the readable subgoals are The man
is a person and The man is moving. Then the sys-
tem asks the user if the readable subgoal holds or
not under the premise. Finally, the reaction of the
user is translated into a logical axiom and is added
to the theorem prover to continue the proof. The in-
teraction in natural language enables the end-user to
understand what kind of knowledge should be sup-
plemented to the system, and dynamically respond
to it.

Based on this mechanism, we expanded an ex-
isting NLI system ccg2lambda (Martı́nez-Gómez et
al., 2016), and added an interaction mechanism. We
evaluated the proposed system with SICK (Marelli
et al., 2014), a data set that contains NLI prob-
lems combining logical inference and lexical infer-
ence. Annotators are recruited by Amazon Me-
chanical Turk as the user of the system. Experi-
ments show the interaction improved the recall rate
of ccg2lambda from 32.1% to 44.1%, and the ac-
curacy from 70.4% to 75.1%. This suggests the ma-
chine benefits from interaction with the user. We ob-

serve that our method successfully solves NLI prob-
lems that require phrasal knowledge, which previous
methods struggle to solve.

2 Related Works

2.1 Formal Semantics and Theorem Proving

One approach to NLI is methods based on formal
semantics and automated theorem proving (Bos et
al., 2004; Mineshima et al., 2015; Martı́nez-Gómez
et al., 2016; Abzianidze, 2017). These methods
have high interpretability since the inference pro-
cess is explicitly modeled, and also is trustworthy
since they produce very few false positives. More-
over, this approach can handle complex linguistic
phenomena that deep learning based models strug-
gle to solve (Geiger et al., 2018; Yanaka et al., 2019;
Yanaka et al., 2021). Another advantage is that
these approaches do not require parameter learn-
ing,1 while achieving competitive results to deep
learning-based approaches.

However, logic-based approaches suffer from a
low recall rate, mainly caused by non-logical lin-
guistic knowledge such as lexical inference, com-
mon sense reasoning, etc. Several studies proposed
mechanisms to integrate knowledge base or knowl-
edge base completion models to overcome this is-
sue (Martı́nez-Gómez et al., 2017; Yanaka et al.,
2018; Yoshikawa et al., 2019). For example, the
proposition that Apple is a fruit is represented as
∀x.(apple(x) → fruit(x)), which is not a logically
derived theorem but an axiom, which the user has to
provide from outside of the theorem prover. How-
ever, maintaining knowledge bases is costly and it
is hard to enumerate all possible lexical relations
including phrasal knowledge and neologism. Even
a single presence of uncovered lexical relation or
paraphrase makes the proof uncompleted. Note that
lexical inference is context-sensitive (Levy and Da-
gan, 2016; Schmitt and Schütze, 2019), and a static
knowledge base cannot handle this issue.

2.2 Natural Language Interface for Theorem
Proving

In the context of automated theorem proving, sev-
eral works propose presenting the output of theorem

1Stricly speaking, CCG parser requires parameter tuning to
resolve the ambiguity of syntactic structure.



prover in natural language (Felty and Miller, 1988;
Huang and Fiedler, 1996; Ganesalingam and Gow-
ers, 2017). They hypothesize that the inscrutable
output of the theorem prover is one of the obsta-
cles for the theorem proving techniques to be widely
adopted. These works employ rule-based systems to
translate the output of the theorem prover into natu-
ral language text, so the user can better understand
and communicate with the theorem prover.

This branch of work has a similar spirit to ours
in that they aim to make the output of the theo-
rem prover more accessible to the human user by
the translation from formal language to natural lan-
guage. The difference is that these methods aim to
generate a complete human-style proof for mathe-
matical theorems, while we aim to translate a propo-
sition (i.e. subgoal) into a natural language text for
better interaction. Additionally, to the best of our
knowledge, our work is the first attempt to apply the
idea of natural language interface to NLI.

3 Formal Semantics and Automated
Theorem Proving

In this section, we briefly introduce formal se-
mantics and automated theorem proving, since our
method is based on these techniques.

Formal semantics is a theory of meaning which
models the semantics of natural language by tools
from logic. We employ Neo-Davidsonian seman-
tics (Parsons, 1990; Maienborn, 2011), a formal the-
ory for the meaning of language. The characteris-
tics of this framework are that it can model refer-
ences to events (such as adverbs referring to some
event), while staying in the first order logic scheme.
This is achieved by the two types of variables, en-
tity and event. For example, following the stan-
dard Neo-Davidsonian approach, the sentence John
quickly eats the apple is modeled as follows.

∃x1, x2, e.( John(x1) ∧ eat(e) ∧ quick(e)

∧ (Subj(e) = x1) ∧ apple(x2) ∧ (Obj(e) = x2))

(1)

Here, x1, x2 are the entity variables, and e is the
event variable. The content words appearing in the
original sentence are modeled as a predicate that
takes the relevant variables. The semantic role is
modeled by the formula Subj(e) = x, which denotes

that the subject of the event e is the entity referred
by x1, and Obj(e) = x2, which denotes that the ob-
ject of the event e is the entity referred by x2. For
more details for Neo-Davidsonian semantics, refer
to (Parsons, 1990; Maienborn, 2011).

Now consider the following NLI problem.

T : A boy is throwing a ball.

H : A tall kid is pitching a ball in a yard.

By utilizing the framework of Neo-Davidsonian se-
mantics, this NLI problem can be represented as the
following implication relation.

∃x0, x1, e0.(boy(x0) ∧ ball(x1) ∧ (Subj(e0) = x0)

∧(Obj(e0) = x1) ∧ throw(e0)

⇒ ∃x2, x3, x4, e1.(kid(x2) ∧ tall(x2) ∧ ball(x3)

∧(Subj(e1) = x2) ∧ (Obj(e1) = x3)

∧pitch(e1) ∧ in(e1, x4) ∧ yard(x4)

(2)

Since these formulas are based on the standard
first order logic, we can use an automated theorem
prover off the shelf. The theorem prover decom-
poses the proof into smaller pieces, which are called
subgoals. We employ Natural Deduction (Indrze-
jczak, 2010), a formal system for deduction. By
the elimination rules of Natural Deduction, the ini-
tial subgoals are the individual logical formula, as
shown below.

kid(x2), tall(x2), ball(x3),

Subj(e1) = x2,Obj(e1) = x3, pitch(e1),

in(e1, x4), yard(x4)

(3)

When all of these subgoals are proved, the entire
proof is constructed. The theorem prover solves the
unification problem, in that it finds a substitution
{x0 := x2, x1 := x3, e0 := e1} to prove the sub-
goals. For this example, many subgoals are proved,
such as ball(x2) or Subj(e1) = x2. However, the
subgoal kid(x2) is not proved. This is because we
did not provide the axiom for the lexical knowledge,
∀x.boy(x) → kid(x), thus the theorem prover has
no way proving the subgoal. As a result, the theo-
rem prover fails to find a proof for the NLI problem
in this case. Our method aims to solve this kind of
inflexibility of the theorem prover, by enabling in-
teraction.



4 Method

We hypothesize that the interaction with the human
user and the theorem prover is effective for solving
NLI problems. We aim to enable the communica-
tion from the theorem prover to the human in nat-
ural language, so the method can be applicable to
the wider population without profession in formal
semantics or theorem proving. Then the problem
is how to communicate from one side to the other
side. From the theorem prover, what information is
lacking from the proof should be conveyed to the hu-
man, in the form of natural language. From the user,
what is the correct decision to make for that infor-
mation should be conveyed to the theorem prover, in
the form of logical axioms.

From the theorem prover to the user, we focus
on the subgoal produced by the theorem prover and
propose to translate them into natural language text.
We call the natural language text which represents
the meaning of the subgoal as readable subgoal.
From the user to the theorem prover, the reaction
to the readable subgoal should be compiled into a
logical axiom for the theorem prover to continue the
proof. This axiom can be temporary in that it only
holds in the current context, rather than a general ax-
iom that holds across context (which would be much
more difficult to obtain.). We define temporary ax-
iom as the logical axiom which represents the se-
mantics of the user’s response to the readable sub-
goal. The temporary axiom is passed to the theorem
prover so it can continue the proof.

Consider the formula (2) as an example. We know
which subgoals are not proved from the theorem
prover, shown in formula (3). By applying the sub-
stitution {x1 := x3, x2 := x4, e1 := e2} found by
the theorem prover, we obtain the following.

tall(x0), pitch(e0), in(e1, ?x), yard(?x)

The symbol ?x indicates there was no correspond-
ing entity in the premise (i.e. the unification process
could not find a mapping of the variable x4 with a
variable in the premise.) These are the input of our
proposed system. The main problem is how to create
the readable subgoal from the subgoal. Because the
subgoal is an abstract artifact to model natural lan-
guage meaning, it itself does not correspond to any
natural language expression. Thus, we need to iden-

tify what information has to be restored for the sub-
goal to be meaningful to the human user. Below we
discuss how to generate the readable subgoal, and
also the corresponding temporary axiom.

4.1 From the prover to the user

The problem of the translation from the subgoal to
natural language text is that the subgoal is an ab-
stract representation of meaning, and lacks many
aspects that cannot be omitted from a valid natu-
ral language sentence. For example, the subgoal
does not contain the subject of the sentence or func-
tional words that connect the words to form a sen-
tence. The following describes how we approach
this problem and generate a readable subgoal from
the premise, hypothesis, and subgoal.

4.1.1 Identification of Necessary Variables
The first step is to identify the set of variables that

are necessary for the construction of the readable
subgoal. Consider the case of tall(x0). We cannot
just say The theorem prover cannot prove: tall. The
human user needs to know what is asserted to be tall.
In other words, we need to identify the entity which
represents the subject of the readable subgoal. In
this case, the entity asserted to be tall is x0, which
can be used as the subject of the sentence.

When the argument of the subgoal is an event
type variable, the subject is determined by the se-
mantic role. For example, for the subgoal pitch(e0)
which has a verb predicate, the entity for the subject
is tracked from the term Subj(e0) = x0.

Observe that when the subgoal takes an event
variable as the argument, it is necessary to include
variables related to the event by semantic role. Con-
sider the case of pitch(e1). We cannot just say The
theorem prover cannot prove: pitch. The human
user needs to know what is pitched, in order to in-
terpret the subgoal. We know this by Obj(e0) = x0,
and we know we should include the variable x0 as
well.

As a result, we identify {Subgoal : tall, Subj :
x0}, and {Subgoal : pitch, Subj : x0, Obj : x1}
for the above mentioned examples.

4.1.2 Translation of the Variables
Next, we need to translate each variable into nat-

ural language so the user can understand what the



content of the variables is. In this step, we identify
the dictionary which maps each variable to a word
in the premise.

For entity type variables, we select the noun
which takes the entity variable as an argument, since
the noun is typically the name of the entity. There
may be several nouns associated with one entity
variable, so we must choose one from them. We
choose the first noun appearing in the premise, since
the first noun tends to play a role to introduce the
entity to the reader, and is an appropriate way to de-
scribe what the entity is. As a result, for the sub-
goal tall(x0), we have {Subgoal : “tall”, Subj :
“boy”}.

For the same reason, we select the first verb which
takes the event type variable as an argument for the
name of the event. As a result, for the subgoal
pitch(e0), we have {Subgoal : “pitch”, Subj :
“boy”, Obj : “ball”}.

Note that this method fails when there are mul-
tiword expressions. We use this method as an ap-
proximation since multiword expressions are mostly
removed in the data set we use. In general, the addi-
tional process to chunk multiword expression should
be necessary.

4.1.3 Word Order and Functional Words
At this point, we have the words which consist

of the readable subgoal and their semantic roles.
In the current example, {Subgoal : “tall”, Subj :
“boy”}, {Subgoal : “pitch”, Subj : “boy”, Obj :
“ball”}.

The final step is to select a valid word order and
appropriate functional words. Since the readable
subgoal is a very simple declarative sentence, the
task of generating a sentence is relatively a simple
task. We employ a simple rule-based system to de-
termine the correct sentence structure. The system
selects the correct copula and determiner and de-
termines the correct word order. In the current ex-
ample, we output the readable subgoal The boy is
tall for tall(x0), and The boy is pitching a ball for
pitch(e0). Further details of the template is summa-
rized in the appendix.

4.1.4 Subgoal with Ununified Variables
Sometimes, the argument of the subgoal is not

unified to any variables in the premise. For exam-

ple, in formula 2, the prepositional phrase in the yard
introduces a new entity yard. Since there is no cor-
responding entity in the premise, this entity is not
unified to any variable in the premise (i.e. the sub-
goal is ununified).

Actually, these ununified subgoals can be ig-
nored. These ununified variables appear because
some event variable introduces a new entity, but in
the procedure explained in section 4.1.1, we collect
these arguments in the set of variables. Thus, the
information of the ununified subgoal is already con-
tained in the readable subgoal for the event variable
which introduced the ununified variable. In the cur-
rent example, observe that the readable subgoal for
in(e1, ?x) is The boy is in a yard, which asks about
the subgoal yard(?x) at the same time.

4.1.5 Hypothesis with Negation
When the hypothesis is negated, the subgoals are

more complicated. In theorem proving, negation can
be modeled as follows.

¬A(x)⇔ (∀x.A(x)⇒ ⊥)

Consider the negation of H in the current example;
The tall kid is not pitching a ball in a yard. Then
only one subgoal is produced, which is

(∀x5, x6, x7, e2.(kid(x5) ∧ tall(x5) ∧ ball(x6)

∧ (Subj(e1) = x6) ∧ (Obj(e1) = x6) ∧ pitch(e2)

∧ in(e2, x7) ∧ yard(x7))⇒ ⊥
(4)

This subgoal is clearly more complicated than those
in formulae (4). The subgoal becomes monolithic
and is more difficult to translate in natural language
expression.

To alleviate this problem, we use the following
procedure. First, we remove every negation from
the hypothesis, by recursively checking each term.
Then, because the hypothesis is not negated, we
can reuse the above-mentioned process to generate
the readable subgoal. In this case, subgoals are
decomposed enough and contain only one predi-
cate, and still useful for the original problem where
the hypothesis is negated. For example, the read-
able subgoal The boy is pitching a ball results in
∀e.throw(e) ⇒ pitch(e), which is a useful axiom
when proving the subgoal (4).



4.2 From the User to the Prover
After the readable subgoals are generated, they are
shown to the human user. The human reacts to the
subgoal, and that reaction should be represented as a
temporary axiom so the theorem prover can retry the
proof with the new information. Below we describe
what reaction user can choose, and how the decision
is converted into a temporary axiom.

4.2.1 Choice of the User
In principle, the user can react to the readable sub-

goal in free text, such as Yes, that’s true or I don’t
know, it depends, and so on. However, as a simplifi-
cation, we limit the choice the user can make to the
following four choices; {Yes, No, Unknown, Non-
sense}. Based on which is chosen, our system takes
a different action, as described in the next section.

4.2.2 Creation of the Temporary Axiom
After the user responds to the readable subgoal,

the result is fed back to the theorem prover. When
the user responded by Yes, the readable subgoal is
compiled into a logical axiom. For example, when
the user responded to the readable subgoal The boy
is pitching a ball by true, the following axiom is cre-
ated.

∀e.throw(e)→ pitch(e)

If the user chooses No instead, then the postcedent
is negated;

∀e.throw(e)→ ¬pitch(e)

Else if the user chooses Unknown or Nonsense,
no action is taken since there is no new infor-
mation available for the proof to proceed. Note
that the above logical axioms are only valid un-
der the current proof and not a global axiom (such
as ∀x, apple(x) → food(x)), which is desirable in
terms of flexibility since the user can inject context-
dependent axioms when they want.

5 Experiment

5.1 Data
We use SICK (Marelli et al., 2014) as the data set
to evaluate our system. SICK mostly restricts the
inference type to simple logical inference and lexi-
cal inference, and also removes complicated seman-
tic phenomena such as a multiword expression or

Label N Ratio Perfect Agreement rate
Yes 5489 43.6% 23.1%

No 3053 24.2% 7.8%

Unknown 2051 16.3% 4.5%

Nonsense 2008 15.9% 4.5%

Total 12600 1 40%

Table 1: The distribution of the labels provided by the an-
notators. N shows the number of labels annotated by the
crowd workers. There was 4200 readable subgoals gen-
erated, and each was annotated by three workers, which
results in total 4200× 3 = 12600 labels. Agreement rate
is the number of pairs where perfect agreement occurs
among the three annotators, divided by the total number
of readable subgoal generated, 3342.

named entity recognition, so as to enable evaluation
of NLI system based on compositional semantics.
In addition, this data set is used in previous studies
that attempt to combine logical inference and lexi-
cal inference (Martı́nez-Gómez et al., 2017; Yanaka
et al., 2018), and it is desirable to compare the per-
formance of our methods to them. SICK consists of
train spilt and test split, both containing 5000 pairs
of premise and hypothesis. There are three labels
entailment, contradiction, neutral for each premise-
hypothesis pair, and the task is to predict these three
classes given the sentence pair.

5.2 Experimental setup

We use an A* CCG parsing model proposed
by Yoshikawa et al. (2017) for assigning CCG
tags, available at https://github.com/masashi-
y/depccg. For the semantic parser, we use
ccg2lambda (Martı́nez-Gómez et al., 2016), avail-
able at https://github.com/mynlp/ccg2lambda.
For the theorem prover we use Coq (Bertot and
Castéran, 2013). We used Amazon Mechanical Turk
to recruit users to annotate the readable subgoals.
Each readable subgoal was annotated by three
workers. When the annotators all agree on the label
we use the decision.2 Otherwise, no further action
is taken and the prediction is neutral.

5.3 Results

Table 1 shows the distribution of the labels anno-
tators provided. We observe that, although we use

2We also experimented using majority vote resulted in noisy
result, however, led to much lower precision and accuracy.



Methods Prec. Rec. Acc.
KB readable subgoal

Baseline 56.6
ccg2lambda 99.9 32.1 70.4

ccg2lambda & abduction 3 99.7 43.0 75.1
Ours 3 98.9 44.1 75.1

Ours & abduction 3 3 98.9 45.0 75.5

Table 2: Results for SICK test split. Checkmarks indicate whether the system uses Knowledge Base for axiom injection
(Martı́nez-Gómez et al., 2017) and/or readable subgoal (our method). Prec. show the precision, Rec. shows the recall
rate, Acc. shows the accuracy.

Figure 2: The character length of the original hypothe-
sis (x-axis) vs readable subgoal (y-axis). The readable
subgoals are mostly shorter than the original hypothe-
sis, which indicates the readable subgoal decomposes the
original problem and makes the problem easier to pro-
cess.

perfect agreement as to the aggregation criteria, the
inter-annotator agreement rate is rather low. In total,
40% of the readable subgoals were used as a valid
response. Note that the agreement rate for Yes is
much higher than other labels. The reason for this
may be that there is some ambiguity in deciding be-
tween No, Unknown, Nonsense.

Figure 2 shows the character lengths of the read-
able subgoal and the original hypothesis. We see that
most of the hypothesis is distributed in the range 30-
60, while most readable subgoals are shorter than 30
characters. This shows that in most cases the read-
able subgoal decomposes the original problem into

smaller pieces, and makes the problem easier to pro-
cess.

The evaluation metrics of the prediction quality
are summarized in Table 2. The baseline is the
majority class. In SICK, neutral is the majority
class, which consists of 56.6% of this subset of
the data. The second row is the result obtained
from ccg2lambda (Martı́nez-Gómez et al., 2016),
where no axiom injection mechanism was used. It
achieves near-perfect precision for this subset of the
data, and it has better accuracy than the majority
class baseline. However, the recall rate is 32.1%
which is relatively low, leading to degraded accu-
racy. The third row is the result when ccg2lambda
is enhanced with the word level abduction mecha-
nism (Martı́nez-Gómez et al., 2017), which leads to
a better recall rate of 43.0%. The fourth row shows
the result of our proposed method. Our method
achieves the best recall rate of 44.1%, with slightly
low precision, leading to comparable accuracy with
the word abduction mechanism. The fifth row shows
the result when the word level abduction mechanism
and the proposed method were combined, by us-
ing the readable subgoal only when the abduction
mechanism could not prove entailment. The recall
rate and the accuracy is the best among the com-
pared methods, which indicates the interaction pro-
cess can solve problems that existing methods strug-
gle to solve.

In the next section, we see instances where our
method predicts the correct label but the existing ab-
duction mechanism fails, and see if they have differ-
ent tendencies.



Sentence Pair Gold. Pred. Readable subgoal
T: A man with a helmet painted red is riding
a blue motorcycle down the road. Ent. Ent. The helmet is red.

H: A motorcyclist with a red helmet is riding
a blue motorcycle down the road. The man is a motorcyclist.

T: A surfer is riding the wave. Ent. Ent. The surfer is surfing the wave.
H: A rider is surfing the wave The surfer is a rider.
T: A man is speaking on a stage Unk. Ent. The stage is a podiumH: A man is speaking on a podium

Table 3: Sentence Pair shows the premise-hypothesis pair from SICK. Gold. shows the correct label of the NLI
problem. Pred. shows the predicted label of our system. The readable subgoal shows the readable subgoal generated
by our system.

5.4 Positive and Negative Examples
We conducted an additional experiment by repeating
the same experiment on the randomly sampled 1000
pairs from the train split of SICK. We focus on pairs
where our method correctly predicts entailment, but
the existing method could not (positive examples).
These examples are the cause of the increase in the
recall rate. We also provide some examples where
the system outputs false positive predictions (nega-
tive examples). These examples are the cause of a
decrease in precision. Examples are shown in Table
3.

The pair in the first row shows a positive exam-
ple. The required knowledge here is phrasal, and
thus the word abduction system cannot predict Yes.
More formally, the knowledge used in the readable
subgoal The helmet is red is:

∀x, y, e.(paint(e) ∧ red(x)

∧ (Obj(e) = x) ∧ (Dat(e) = y)→ red(y))

The other readable subgoal, The man is a motorcy-
clist, requires the following knowledge.

∀e, x.(ride(e) ∧man(x) ∧motorcycle(y)

→ motorcyclist(x))

The pair in the second row is also an example where
a phrasal knowledge ride a wave implies surf. We
observe similar pairs of a premise and a readable
subgoal, shown below.

• A man is having lunch→ A man is eating.

• The man is aiming a gun. → The man is han-
dling a gun.

• A person is cutting an onion into pieces. → A
person is dicing an onion.

The pair in the third row shows a frequent pat-
tern, where the readable subgoal is labeled as Yes
but the correct label should be Unknown. This
is because, strictly speaking, not all stages where
someone makes a speech are podiums. However,
it is questionable that this judgment is completely
wrong; it may be reasonable enough to infer that a
stage where someone is speaking is a podium. The
definition of entailment in NLI is different from en-
tailment in logic,3 and this inference may be accept-
able depending on the context. The flexibility of our
method is that the human user can change the judg-
ment according to the context. Similar examples are
shown below.

• A man is dropping a tree→ A man is carrying
a tree

• A man is thinking. → A man is not dancing.

• A kid is waiting wearing swim gear→ A kid is
sitting wearing swim gear

From these analyses, we hypothesize that in
case there is more phrasal knowledge required, our
method gains more recall rate and accuracy com-
pared to existing methods. SICK is a data set that
is designed to reduce this kind of phrasal knowledge
and is a good choice for the initial evaluation of NLI
systems based on compositional semantics. Future

3The most well-accepted definition of entailment in NLI is
that A human reading the premise would infer that hypothesis is
most probably true. (Dagan et al., 2005; Dagan et al., 2010);



work should experiment on more realistic data sets
with more complex inference phenomena such as
common sense reasoning to verify if this conjecture
is true or not.

6 Conclusion

We proposed a human-in-the-loop mechanism in
which the user provides non-logical knowledge to
the theorem prover. The interaction is done in natu-
ral language, making the method applicable to gen-
eral users. We proposed to generate readable sub-
goals, which is a translation from the subgoal to
a natural language text. The reaction to the read-
able subgoal is converted to a logical axiom, namely
the temporary axiom. We experimented with our
method by adding an interactive component to an
existing NLI system, ccg2lambda. Experiments
show the interaction improved the recall rate of
ccg2lambda from 32.1% to 44.1%, and the accuracy
from 70.4% to 75.1%.

Future works should consider whether the pro-
posed approach is feasible in more complex set-
tings. For example, inference which requires com-
mon sense or complex domain knowledge (e.g. law,
medicine) are not covered in this study. We expect
that since it is difficult to develop a complete and up
to date knowledge base for these cases, human inter-
action may be more suitable than knowledge bases
in these cases.
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