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Abstract

This paper presents a linguistically moti-
vated novel framework that automatically
identifies sentiment constructions in a cor-
pus with only sentiment-annotated sen-
tences. Construction, a crucial concept
developed in Construction Grammar, is
a form-meaning pair that relates a pat-
tern with a specific communicative func-
tion. However, handcrafting constructions
is laborious and often leads to sparse cov-
erage in practice. We address the problem
with a construction induction framework
which includes three components: a deep-
learning-based predictive model to cap-
ture the sentiment aspects of the text,
a dynamic word parser that agglomer-
ate tokens into (multi-)words units, and
a score assignment mechanism to weigh
those units based on their contributions
to predictions. Units that score highly
in the last step are the candid senti-
ment constructions. They are automat-
ically post-processed with their linguis-
tic contexts to create the final construc-
tions. We experiment with the proposed
framework on a sentiment-annotated cor-
pus of online consumer reviews from Tai-
wan telecom. The proposed framework
correctly assigned higher importance to
handcrafted constructions. Furthermore,
new constructions identified by the frame-
work are validated by annotators’ rating
data.
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1 Introduction

The computational treatment of language and
sentiment in general has been widely and ex-
plored in affective NLP-related fields, among
them Sentiment Analysis and its extensions have
gained a lot attention and become an indispens-
able part in many social and commercial ap-
plications. The representation paradigms has
shifted from the naive bag-of-word to a more in-
tricate neural language models. Promising ad-
vancements notwithstanding, the challenges in
harnessing textual data, from social media in
particular, are overwhelming and profound. As
textual data requires substantial ‘preprocessing’
before it can be subjected to processing, and
such step often presumes some perspectives that
are not shared with non-mainstream ones on the
nature of language/text.

Unfortunately, there is a conspicuous dearth
of related studies that are explicitly aware of the
underlying assumptions are not necessarily hold
among language researchers. It has also been a
paucity of literature on how emotion interfac-
ing with grammar in general (Bednarek, 2008;
Corver, 2013; Majid, 2012), which could be
mainly due to the mainstream poorly-cognitive
approach to framing linguistic constructs since
the Saussurean structuralism, and the evidence
of emotional impact in grammar is overlooked.
For instance, Clark(2019) illustrates the con-
trast with two forms in English: ‘let’s talk about
X and ‘let’s talk X‘, where only the latter
has the means to unambiguously manifest affect



content (i.e., ‘let’s talk X* serving as an emotive
topic marker that is obligatorily emotive while
‘let’s talk about X‘ can be used emotively not
not necessarily).
In this paper, in line with the
usage-based constructionist approach to lan-
guage (Goldberg, 2006; Goldberg, 2019; Gold-
berg, 2010), where language is considered as
a form-meaning pair that relates a pattern
with a specific communicative function, and
following Clark(2019) by assuming that affec-
tive content would seep into the grammar as
marked constructions from default representa-
tions. To explore the new direction, we propose
a linguistically-motivated interpretable frame-
work to automatically detect sentiment con-
structions (SentiCon). We first describe the
components in the framework and validate the
model predictions with human rating data.

we are

2 Related Works

Construction is the central concept based on
which linguistic theories explore how form-
meaning pairs build up a complex language sys-
tem we used in everyday communication (Fill-
more, 1988; Goldberg, 2019). Instead of consid-
ering language as a clear-cut division between
lexicon and syntax, constructions allow us to
treat language as a lexicon-syntax continuum
(Hoffmann and Trousdale, 2013). Specifically,
the principle of form-meanings pairing operates
at the lexical, phrase, or syntax level. For ex-
ample, “dog” is a word and with which we de-
note a living animal. The lexical word pairs
a form (sound/orthographic form) with a ref-
erential meaning in the external world; there-
fore, it is a construct. Similarly, a comparative
sentence with open slots is also a construction,
such as “Mary is elder than you.” Idioms are
also constructions, such as “out of the blue” or
“take it for granted.” These constructions are
argued to operate through mapping directly be-
tween form and meaning, without transforma-
tion and derivation from an underlying deep lin-
guistics structure. Furthermore, the construc-
tion is more than a useful linguistic concept.
Empirical studies further show that these dif-

ferent levels of construction form a network, a
constructicon, in the mental grammar of speak-
ers (Bencini and Goldberg, 2000; Pulvermiiller
et al., 2013).

Construction occurs in different levels of anal-
ysis (e.g., word, phrase, sentence), and gra-
dience and variation are also presented at a
given level. Consider the example given by By-
bee(2000), “I don’t know”. Although the sen-
tence can be analyzed as a construction com-
posed of pronoun, a negated form of auxiliary,
and the main verb, the sentence expresses a dis-
tinct discourse-pragmatic meaning. This unique
usage is further marked by its likely phonetic
reduction involving replace the vowel of “don’t”
into schwa. If we replace the main verb with an-
other low-frequency verb, such as “commute”,
these changes may not occur. The example
showed that even within the same structural
pattern, there are still possibilities of different
form-meaning pairing, especially when complex
communicative goals are in need.

Evaluative language is one of these complex
communication scenarios. To convey judgment
of evaluation, speakers not only use emotional
words (e.g., happy, good, bad) but implicit eval-
uations, figurative speeches, or even sarcasm.
Some of these expressions might be frequently
used that they already consolidate into morpho-
syntactic patterns stable enough to be consid-
ered as constructions. These constructions, if
identified, serve as cornerstones to understand
the evaluative messages in the text. However,
finding these evaluative constructions are chal-
lenging. Manual labeling constructions from
raw text always provide high-quality results, but
it is time-consuming and challenging to cover a
large corpus. Studies have proposed automatic
construction extraction tools based on linguistic
features, and associative measures (Dunn, 2017;
Lee, 2018). Nevertheless, these implementations
are more focused on identifying constructions in
general rather than evaluative constructions.

In this paper, we aim to identify evalu-
ative constructions (semi-)automatically with
the help of deep learning models. Recently,
pre-trained language models with transformers
(Vaswani et al., 2017; Devlin et al., 2018) have



achieved great successes in numerous NLP tasks,
including sentiment analysis, which is closely re-
lated to evaluative language. While the exact
mechanism on how these models achieve senti-
ment analysis is not clear, studies are starting to
show that model may capture some of the lin-
guistic regularities, such as words’ POSes, syn-
tactic relations, or even constructions (Manning
et al., 2020; Rogers et al., 2020; Tayyar Mad-
abushi et al., 2020). We explore the possibilities
that the deep learning model, when performing
sentiment analysis, also learns the form-meaning
pairing between the textual patterns and their
sentiments. These textual patterns, or potential
sentiment constructions, are then be extracted
with Shapley scores. In the following sections,
we first introduce the overall framework (Sec. 3)
in which potential sentiment constructions are
identified. Secondly, we compare the model re-
sults with human rating data and show model
predictions are consistent with human evalua-
tions (Sec. 4).

3 Construction Exploration
Framework

The SentiCon framework consists of four com-
ponents: (1) a classification model, (2) an ex-
planation mechanism, i.e. Shapley value (Lund-
berg and Lee, 2017), (3) a soft word segmenta-
tion, and (4) linguistic pattern detector. Firstly,
a classification model is trained to capture the
relations between the textual form and its com-
municative meaning (e.g., the sentiment polar-
ity of the text, etc.). Such a model involves the
current transformer-based model, in which mil-
lions of trainable parameters are tuned to find
the optimal set to predict the text label. How-
ever, the parameters are often difficult to inter-
pret. Therefore, the explanation mechanism is
employed to identify which part of the sentence
is significant for the model. In addition, word
segmentation is also involved in ensuring the ex-
planation mechanism is correctly informed with
the text’s word boundaries. The framework ex-
plores the potential textual patterns that sig-
nificantly contribute to the model predictions
when working as a whole. Lastly, the frame-

work is equipped with predefined linguistic pat-
terns, with which the model weighs the poten-
tial textual patterns. The weighted scores are
the model’s predicted scores for each extracted
potential construction.

3.1 Sentiment classification model

The first component of SentiCon is a prediction
model for sentiment classification. The role of
the classification model not only is to capture
the relations between the textual input and the
communicative meaning, but it also serves as the
explanandum of the following explanation mech-
anism. The downstream explanation mechanism
is model agnostic; different kinds of classifiers
are all applicable. The only requirement is that
the model must at least be capable of performing
the sentiment classification. Transformer-based
model is a proper choice because of its wide
adoptions, performs well on SST-2 dataset, and
it achieves the state-of-the-art in one of its vari-
ant (Kant et al., 2018; Jiang et al., 2020). There-
fore, we choose to fine-tune the off-the-shelf pre-
trained BERT model for sentiment classification
in the following experiment. The model train-
ing requires a dataset containing texts and their
corresponding sentiment labels. It is notewor-
thy that model predictions are not directly used
in the framework; instead, we are interested in
the model (contribution) scores derived from the
explanation mechanism.

3.2 Shapley value

The classification model which is performant in
sentiment classification usually involves highly
complicated non-linear mappings. It is difficult,
if not impossible, to directly readout which fea-
tures or parts of the text are responsible for the
model prediction. Therefore, we often need an-
other explanation model to help us credit the
text chunks that contribute to the model predic-
tions. Many explanation mechanisms are avail-
able, for example, LIME (Ribeiro et al., 2016),
concept activation vectors (Kim et al., 2018),
etc., but the Shapley (Lundberg and Lee, 2017)
value provides a unique insight in the text-based
model input.

We use Shapley value to serve as an explana-



tion mechanism in SentiCon. The role of the
Shapeley value is to identify the contributing
text chunks to the classification model’s pre-
dictions, and from which we derived the con-
tribution scores of text chunks. Shapley values
compute the feature attributions given a model.
The attribution is formalized as the difference
between the feature coalitions with or without
the target feature. However, the exact value
requires a complete enumeration of all possi-
ble coalitions, which is prohibitively expensive
in the text data, the approximated value, qAS, is
computed with sampling.

. 1 X
o = i 21 (f(th) - f(th)) (1)

The structure embedded in the language pro-
vided further constraints on computing Shapley
values. We followed the partition approach im-
plemented in SHAP (Lundberg, 2021). Taking
advantage of the linguistic properties of Chinese,
each character is agglomerated into larger units
(i.e., words, chunks, prefabs). The tendency
on which characters can be grouped is model
with their respective word boundary probabili-
ties, determined with a soft parser (see Sec 3.3
for details). These probabilities provide a dis-
tance metric on which we cluster these tokens
into a hierarchical binary tree structure. The
partition approach of computing Shapley values
then proceeds in a divide-and-conquer fashion,
in which it only needs to compute the left, q@le&
or right branch, éright, at a time. The values of
each node in the tree, QBnode, is the interaction
between the branches:

Pnode = f(z11) — f(z10) — f(wo1) + f(w00) (2)

where f(z11) denotes the model predictions
when both branches are presented, f(x10) and
f(z 4 01) denotes either left or right branch is
presented, and f(zgp) denotes all of which are
absent.

The contribution scores of the character group
under a specific node, dAJgroup, are computed from
their antecedents and descendants:

Clustering with boundary probability

Distance

EOR OB — F & fh

Figure 1: Hierarchical clustering, using single link-
age, with soft word boundary probabilities. The first
and the last token are the special CLS and SEP tokens.

¢gr0up = ¢upper + ¢lower
¢lower = ¢left + ¢right + anode

n _ Tparent
Qbupper =0.5- Qﬂpper

The difference between the scores of the
parent and its children signifies the non-
compositionality of the corresponding character
groups. If the parent node has significant inter-
actions (with respect to its children), the charac-
ter groups are considered a potential construc-
tion pattern. The corresponding score, qAﬁgroup,
is its contribution to the model prediction.

3.3 Word segmentation & POS tagging

The partition approach in SHAP implementa-
tion facilitates the efficiency of computation, but
how the text is partitioned into a binary tree
is highly pertinent to a good explanation, es-
pecially in the context of SentiCon. Ideally, if
researchers know a priori the constructions, pre-
fabs, or multi-word expressions used in the text,
the framework can partition the text following
the linguistic knowledge and assign contribut-
ing scores to each of them. However, the ex-
isting constructions (especially in Chinese) are
usually sparse and have low coverage on the ac-
tual corpus. It is also the reason why we want
to develop the SentiCon in the first place, i.e.,
to (semi-)automatically explore sentiment-laden
Therefore, we attempt another
approach to construct the partition with word
boundary possibilities provided by a soft word
parser.

constructions.
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Figure 2: Soft-tagging results of the example sen-
tence, it is awfully overpriced”. The first column
indicates the probabilities of being word boundaries.
Following are the top 3 POS classes. The tag set fol-
lows CKIP POS tagset from Academia Sinica, Tai-
wan.

A Chinese word segementer and a POS tag-
ger are used to ensure the partition approach of
Shapley value is properly informed with linguis-
tic structure. The pipeline (Hsieh and Tseng,
2020) includes two modules: word segmenta-
tion and part-of-speech tagging. This pipeline
is unique in that it highlights the profound is-
sues of wordhood in Chinese (Huang et al., 2017).
Instead of assigning hard word boundaries and
POS for each word, the pipeline operates on
character levels. It assigns a word boundary
probability on each character and the probabili-
ties of which it functions as a given POS (Figure
2). The word probabilities are used by the par-
tition mechanism (Sec 3.2) as a metric to con-
struct token clusterings (Figure 1). Figure 1 also
illustrate the strength of soft segmentation: it
captures the potential structure between words
otherwise defined. Specifically, & E|—1@E, gui
dao y1 ge, “overpriced to an (extent)”, would
be traditionally segmented as four independent
words but are shown to be grouped together un-
der soft segmentation. Such cluster information
is essential in discovering potential patterns.

3.4 Pattern weighting

After the Shapley values identified the potential
construction patterns in the sequence, a post-
processing step used the POS information to
weight these patterns. This step provides fur-
ther constraints on the potential patterns. For
example, a pattern containing an adverb-verb
structure is more likely to be a potential con-

struction; therefore, it should be assigned more
positive weights.

To detect the underlying structure in the se-
quence, we cross-product the POS matrix, Py,
with a structure kernel, (), for each structure,
s, in a predefined set, §. The POS matrix is
provided by the soft tagger (see Figure 2 for an
example). Each m token in a sequence has a
POS probability distribution over £ POS tags,
resulting in a m x k matrix. The kernel is itself
a p X k binary matrix, where each element in
the matrix denotes the corresponding POS tag
in that position. The weight of each sequence is
computed as

Wseq = MaxPoolses maX(Pseq *Qs) (3)

where * denotes the cross-product operator.
The scores are max-pooling across different ker-
nels and result in the final pattern weight.

4 Experiment

We experiment with the proposed framework on
discovering potential construction on a dataset
of evaluative text about telecom service in Tai-
wan. The dataset contains 2,622 text sequences,
each of which is under length of 100 characters.
Each sequence is manually labeled with a senti-
ment polarity, positive or negative. This experi-
ment aims to test if the proposed framework can
find potential constructions in the dataset with
only sequence-level annotation.

The experiment proceeds as two analyses.
First, a confirmatory analysis test the model’s
ability to identify construction is sentiment-
laden. Specifically, the model computes the con-
struction score for each manually written con-
struction, and we test the relations between the
model scores and constructions polarities. Sec-
ondly, the exploratory analysis is set to discover
the potential patterns from raw sequences.

Both of the analyses used the same classifi-
cation model trained from the evaluative text
dataset. The dataset is split into the training
and testing set by a ratio of 9:1. The classifi-
cation accuracy on the testing set is 77%. To
further compare the constructions identified by



the model, we manually compiled another list
of sentiment constructions. This list consists of
39 sentiment constructions, written in the form
of regular expression patterns. These construc-
tions are handcrafted by a native speaker who
is a graduate student in the Graduate Institute
of Linguistics, National Taiwan University, and
each of the constructions is annotated with its
sentiment polarity (positive or negative). The
manual compiled list is used in the following
confirmatory analysis.

4.1 Confirmatory analysis

The purpose of the confirmatory analysis is to
test whether the model’s prediction scores in-
deed identify sentiment-laden textual patterns.
Specifically, we use the manually compiled list of
sentiment constructions as a reference and com-
pare their model’s prediction scores to see if the
prediction scores agree with the sentiment po-
larities with the constructions.

Confirmatory analyses show that construction
score reflects the sentiment polarities in the data
(Figure 3). The predicted score of each con-
struction instance is extracted from the closest
partition in the text. The score significantly
correlates with the sequence sentiment in which
the construction resides, r = .74, ¢(83) = 10.01,
p < .0001. Furthermore, a logistic regression
model is used to model the relation between the
construction scores and construction polarities.
The estimated coeflicient of construction scores
in the model is statistically significant, b = 0.30,
z = 290, p < 0.005. The results indicate the
construction score computed by the model are
consistent with human rating. Specifically, the
higher the construction score, the more likely
the construction being rated as positive.

It is worth noting that the framework itself
has no clue of what construction is, yet it can
significantly predict the sentiment of them by
model scores. The model itself is trained on
sequence-level annotation. It has no supervised
signals, at least explicitly, to the inner senten-
tial structure of the text. However, when guided
with the information of word boundaries and
the help of Shapley values, the model can gen-
erate consistent scores on human-labeled con-
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Figure 3: The distribution of manually edited con-
structions scores. Higher scores indicates more posi-
tive contribution in the classification model.

structions. This result, while interesting, is also
consistent with what previous studies found on
pretrained language models. Researchers found
they can probe lexical or phrase level structures
in the model internal representations (7; Man-
ning et al., 2020).

4.2 Exploratory analysis

Following the confirmatory analysis, the ex-
ploratory analysis further investigates whether
the model can identify potential construc-
tions. In the previous confirmatory analysis,
we present the model with a human-made con-
struction and compare their prediction scores.
In contrast, the exploratory one asks the model
what is the most probable constructions in the
text, given it had learned the relations between
the texts and their sentiment polarities.

In the exploratory analysis, we use 2,429 se-
quences, which the model correctly classifies
the sentiment, to explore potential construction
patterns. By computing the model prediction
scores of each partition in each text, we ex-
tracted 3,297 candidate patterns. These pat-
terns are further filtered by the following crite-
ria: (1) their length (length of 3 to 10 characters



Pattern Translateion Model Score  Rating

HEE [ENT] recommend [ENT] 7.27 Positive
LR [ENT) (be) more looking forward to [ENT] 6.06 Positive
RS very good 4.63 Positive
ESE ) (being) extremely bad -5.77 Negative
[ENT] ##HEAHARE]  network speed of [ENT] is awful -6.18 Negative
[ENT] 1R/ [ENT] is terrible -6.82 Negative

Table 1: Excerpt of construction patterns discovered by the framework. Three positive and three negative
constructions are listed as examples. [ENT] is the placeholder for the proper noun (e.g. names of the network

providers) used in the text.

are included), (2) the absolute value of model
scores (only absolute values larger than the me-
dian are included), and (3) their pattern weights
(values larger than the median are included).

There are 248 construction patterns identi-
fied from the framework(see Table 1 for exam-
ples). Two annotators firstly rated the polari-
ties of these patterns. Secondly, they are also
asked if construction is embedded in the pat-
terns and generate a regular expression if there
is one. Annotators are both native speakers who
are graduate students in the Graduate Institute
of Linguistics, NTU.

Annotators have strong inter-rater agreement
on the patterns’ polarities, k = .80. There
are 110 patterns are rated as having positive
(22 patterns) or negative (88 patterns) senti-
ments, and the model score could significantly
predict sentiment ratings in the logistic regres-
sion model, b = 1.50, z = 2.59, p < 0.01. In ad-
dition, the annotators are able to extract 55 ad-
ditional constructions from the discovered pat-
terns.

Overall, the exploratory analysis shows en-
couraging results. The complete auto-generated
constructions still show agreements in their
model scores and human ratings. Furthermore,
a fraction of those auto-generated patterns, al-
though not in high proportion, can help hu-
man annotators construct constructions. Given
the labor-intensive nature of handcrafting con-
structions, the exploratory results of the current
model are still beneficial in identifying construc-
tions.

5 Conclusion

In this paper, we aim to draw attention to a
promising new direction in sentiment analysis.
The construction grammar provides a natural
ground to understand and extend the predic-
tive results from deep learning models. The
proposed framework, SentiCon, integrates the
classification model, the Shapley values, NLP
pipelines, and pattern weighting. Both confir-
matory and exploratory analyses show promis-
ing results on the model’s capacity to analyze
and discover potential constructions. Further-
more, the proposed framework help address the
issue of identifying constructions in the real-life
text corpus, which is otherwise time-consuming,
and may facilitate future theoretic and applica-
tion studies on construction grammar.
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