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Abstract

Chinese word segmentation and part-of-
speech tagging are necessary tasks in terms
of computational linguistics and application
of natural language processing. Many re-
searchers still debate the demand for Chinese
word segmentation and part-of-speech tagging
in the deep learning era. Nevertheless, resolv-
ing ambiguities and detecting unknown words
are challenging problems in this field. Previ-
ous studies on joint Chinese word segmenta-
tion and part-of-speech tagging mainly follow
the character-based tagging model focusing
on modeling n-gram features. Unlike previ-
ous works, we propose a neural model named
SPANSEGTAG for joint Chinese word segmen-
tation and part-of-speech tagging following
the span labeling in which the probability of
each n-gram being the word and the part-
of-speech tag is the main problem. We use
the biaffine operation over the left and right
boundary representations of consecutive char-
acters to model the n-grams. Our experiments
show that our BERT-based model SPANSEG-
TAG achieved competitive performances on
the CTB5, CTB6, and UD, or significant im-
provements on CTB7 and CTB9 benchmark
datasets compared with the current state-of-
the-art method using BERT or ZEN encoders.

1 Introduction

Chinese word segmentation (CWS) and part-of-
speech (POS) tagging are necessary tasks in terms of
computational linguistics and application of natural
language processing (NLP). There are two primary
approaches for joint CWS and POS tagging, includ-
ing the two-step and one-step methods. The two-
step approach is to find words and then assign POS

tags to found words. Ng and Low (2004) proposed
the one-step approach that combines CWS and POS
tagging into a unified joint task. The one-step ap-
proach was proved better than two-step approach by
many prior studies (Jiang et al., 2008; Jiang et al.,
2009; Sun, 2011; Zeng et al., 2013; Zheng et al.,
2013; Kurita et al., 2017; Shao et al., 2017; Zhang et
al., 2018). These studies proposed various methods
incorporating linguistic features or contextual infor-
mation into their joint model. Remarkably, Tian et
al. (2020a) proposed a two-way attention mechanism
incorporating both context features and correspond-
ing syntactic knowledge from off-the-shelf toolkits
for each input character.

To our best knowledge, we observed all previous
studies for joint CWS and POS tagging following the
character-based tagging paradigm. The character-
based tagging effectively produces the best combi-
nation of word boundary and POS tag. However,
this character-based tagging paradigm does not give
us a clear explanation when processing overlapping
ambiguous strings. From the view of experimental
psychology, human perception and performance, Ma
et al. (2014) concluded that multiple words consti-
tuted by the characters in the perceptual span are
activated when processing overlapping ambiguous
strings. Besides, Tian et al. (2020b) shown that mod-
eling word-hood for n-gram information is essential
for CWS. Next, the current state-of-the-art method
for joint CWS and POS tagging also confirmed the
importance of modeling words and their knowledge,
e.g., POS tag (Tian et al., 2020a).

The previous studies in two views of experimen-
tal psychology, human perception and performance,
(Ma et al., 2014) and computational linguistics (Tian
et al., 2020b; Tian et al., 2020a) inspired us to
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Figure 1: The architecture of SPANSEGTAG for the joint
CWS and POS tagging with two stages via span labeling:
word segmentation and POS tagging.

propose the span labeling approach for joint CWS
and POS tagging. To avoid the model size depen-
dent on numbers of n-grams and their correspond-
ing POS tag, we use span to model n-gram and n-
gram with POS tag instead of using the memory net-
works in (Tian et al., 2020b; Tian et al., 2020a).
More particularly, inspired by Stern et al. (2017),
Zhang et al. (2020), and (Nguyen et al., 2021), we
use the biaffine operation over the left and right

boundary representations of consecutive characters
to model n-grams and their POS tag. As the prior
work of Nguyen et al. (2021), we use a simple post-
processing heuristic algorithm instead of using other
models to deal with the overlapping ambiguity phe-
nomenon (Li et al., 2003; Gao et al., 2005). Fi-
nally, we experimented with BiLSTM (Hochreiter
and Schmidhuber, 1997) and BERT encoders (De-
vlin et al., 2019).

Our experiments show that our BERT-based
model SPANSEGTAG achieved competitive perfor-
mances on the CTB5, CTB6, UD1, and UD2, and
significant improvements on the two large bench-
mark datasets CTB7 and CTB9 compared with the
current state-of-the-art method using BERT or ZEN
encoders (Tian et al., 2020a). Our SPANSEGTAG

did not perfectly perform in five Chinese bench-
mark datasets. However, SPANSEGTAG achieved a
good recall of in-vocabulary words and their POS
tag scores on CTB6, CTB7 and CTB9 datasets. This
score is used to measure the performance of the seg-
menter in resolving ambiguities in word segmenta-
tion (Gao et al., 2005).

2 The Proposed Framework

We present the architecture of our proposed frame-
work, namely SPANSEGTAG, for joint CWS and
POS tagging in Figure 1. As we can see in Figure 1,
data path (1) indicates the input sentence to be fed
into the BERT encoder. The hidden state vector from
the BERT encoder is chunk into two vectors with
the same size as the forward and backward vectors
in the familiar encoder, BiLSTM. Next, all bound-
ary representations are fed into the SCORER module.
Data path (2) indicates the span representations for
the word segmentation task, and data path (5) indi-
cates the span representations for the POS tagging
task. Data path (3) indicates predicted spans repre-
senting predicted word boundaries. The SPANPOST-
PROCESSOR module produces the predicted spans
satisfying non-overlapping between every two spans.
Finally, given data paths (4) and (5), the data path (6)
indicates the joint CWS and POS tagging.



2.1 Joint Chinese Word Segmentation and
Part-of-speech Tagging as Two Stages Span
Labeling

The input sentence of joint CWS and POS tagging is
a sequence of characters X = x1x2 . . . xn with the
length of n. Given the input sentence X , the output
of CWS is a sequence of words W = w1w2 . . . wm

with the length ofm, and the output of Chinese POS
tagging is a sequence of POS tags T = t1t2 . . . tm
with the length of m, where 1 ≤ m ≤ n. Be-
sides, we have a property that the Chinese word wj

is constituted by one Chinese character or consecu-
tive characters. Therefore, we use the sequence of
characters xixi+1 . . . xi+k−1 to denote that the word
wj is constituted by k consecutive characters begin-
ning at character xi, where 1 ≤ k ≤ n and k = 1
representing single words and 2 ≤ k ≤ n represent-
ing compound words. We get the inspiration of span
representation in constituency parsing (Stern et al.,
2017) to use the span (i − 1, i − 1 + k) represent-
ing the word constituted by k consecutive characters
xixi+1 . . . xi+k−1 beginning at character xi, where
i−1 and i−1+k are the left and the right boundary
index of word xixi+1 . . . xi+k−1, respectively.

After presenting notations, we propose our ap-
proach for the joint CWS and POS tagging problem.
Firstly, to our knowledge, most recent works focus
on modeling the probability that a Chinese character
can be one in the combination of {B, I, E, S} and
Chinese POS tags set. Next, the current state-of-
the-art method for CWS approaching BIES tagging
of Tian et al. (2020b) proposed word-hood mem-
ory to model n-gram information. Additionally, the
current state-of-the-art method for joint CWS and
POS tagging approaching BIES tagging of Tian et
al. (2020a) shown that modeling n-gram knowledge,
e.g., word and POS tag, is essential. Therefore, we
get inspiration of Tian et al. (2020b) and Tian et al.
(2020a) to focus on modeling words and POS tags
in a straightforward way rather than modeling BIES
tags of characters. Given the input sentence X , our
idea is to model the probability that the consecutive
Chinese characters can be a word via one formula-
tion. Similarly, given the input sentence X , we also
model the probability that consecutive Chinese char-
acters can be assigned a specific POS tag or the non-
word tag via one formulation. To summarize, given

span representations, we formalize the joint CWS
and POS tagging task as two continuous sub-tasks
in our SPANSEGTAG as following: (i) binary classi-
fication dealing with word segmentation; (ii) multi-
class classification dealing with POS tagging.

Formally, the first stage of our SPANSEGTAG for
CWS can be formalized as:

Ŝnovlp = SPANPOSTPROCESSOR(Ŝ) (1)

where SPANPOSTPROCESSOR(Ŝ) is introduced in
the work of Nguyen et al. (2021). SPANPOSTPRO-
CESSOR(Ŝ) solely is an algorithm for producing
the word segmentation boundary guaranteeing non-
overlapping between every two spans. The Ŝ is the
set of predicted spans as follows:

Ŝ = {(l, r) for 0 ≤ l ≤ n − 1 and l < r ≤ n

and SCORER(X , l, r).SEG > 0.5} (2)

where n is the length of the input sentence. The
l and r denote left and right boundary indexes of
the specific span. The SCORER(X , l, r).SEG is the
scoring module for the span (l, r) of sentence X .
The output of SCORER(X , l, r).SEG has a value in
the range of 0 to 1. We choose the sigmoid func-
tion as the activation function at the last layer of
SCORER(X , l, r).SEG module.

Next, given the set of predicted spans Ŝnovlp sat-
isfying non-overlapping between every two spans
for the input sentence X , the second stage of our
SPANSEGTAG to perform Chinese POS tagging can
be formalized as:

Ŷ = {((l, r), argmax
t̂∈T

SCORER(X , l, r).TAG[t̂])

for (l, r) ∈ Ŝnovlp}
(3)

where T is the union of Chinese POS tag set and the
non-word tag since the Ŝnovlp can include the incor-
rectly predicted span. The SCORER(X , l, r).TAG[t̂]
is the scoring module for the span (l, r) of sentence
X assigned tag t̂. To sum up, given the input sen-
tence X , the set Ŷ includes predicted spans with the



POS tag. Therefore, the set Ŷ is the result of the sec-
ond stage of our SPANSEGTAG and of the joint CWS
and POS tagging task.

The main idea of our SPANSEGTAG is formalized
through three Equations 1, 2, and 3. To train our
SPANSEGTAG, we have to optimize parameters in
SCORER(X , l, r).SEG and SCORER(X , l, r).TAG[t̂]
modules. As we clearly see that there is no pa-
rameters in the SPANPOSTPROCESSOR(Ŝ) mod-
ule. However, the optimization of parameters in
SCORER(X , l, r).TAG[t̂] based on the Ŝnovlp in-
directly optimizes parameters in our SPANSEG-
TAG by learning from the result of SPANPOST-
PROCESSOR(Ŝ). For example, if an incor-
rect span is assigned non-word tag, then our
SPANSEGTAG is trained to deal with this case via
SCORER(X , l, r).TAG[t̂] module.

Therefore, the cost function for training our
SPANSEGTAG is the combined loss of binary clas-
sification and multi-class classification. The cost
function for training CWS in our SPANSEGTAG is

JSEG(θ, θSEG) = −
1

∣D∣ ∑
X ,S∈D

(

1

(n(n + 1))/2

n−1

∑
l=0

n

∑
r=l+1

(

[(l, r) ∈ S] log (SCORER(X , l, r).SEG)

+ [(l, r) ∉ S] log (1 − SCORER(X , l, r).SEG)))

(4)

where D is the training set and ∣D∣ is the size of the
training set. For each pair (X ,S) in training set D,
we compute binary cross-entropy loss for all spans
(l, r), where 0 ≤ l ≤ n − 1 and l < r ≤ n, and n is
the length of sentence X . The term [(l, r) ∈ S] has
the value of 1 if span (l, r) belongs to the list S of
sentence X and conversely, of 0. Similarly, the term
[(l, r) ∉ S] has the value of 1 if span (l, r) does not
belong to the list S of sentence X and conversely, of
0. Notably, our training and prediction progress, we
discard spans with length greater than 7 as the max-
imum n-gram length following (Diao et al., 2020) to
reduce negative spans.

Next, the cost function for training Chinese POS
tagging in our SPANSEGTAG is the cross entropy

loss:

JTAG(θ, θTAG) =
1

∣D∣ ∑
X ,Y∈D

( 1

∣Ŝnovlp∣
∑

(l,r)∈Ŝnovlp

( − SCORER(X , l, r).TAG[t]

+ log ( ∑
t̂∈T

exp (SCORER(X , l, r).TAG[t̂]))))

(5)

where t denotes the truth label of span (l, r) from
Y in the input sentence X . Finally, the cost function
for training our SPANSEGTAG is

J(θ, θSEG, θTAG) = JSEG(θ, θSEG) + JTAG(θ, θTAG)
(6)

2.2 Decoding Algorithm for Predicted Span

As the problem in prior work of Nguyen et al.
(2021), in the predicted span set Ŝ mentioned in
Equation 2 there exists overlapping between some
two spans. To solve this, Nguyen et al. (2021)
keep the spans with the highest score and elimi-
nate the remainder. The overlapping ambiguity phe-
nomenon happens during our SPANSEGTAG predict-
ing compound words. Additionally, our SPANSEG-
TAG encounters the missing word boundary prob-
lem. That problem can be caused by originally pre-
dicted spans, the consequence of solving overlap-
ping ambiguity, or more than seven-character spans
mentioned in subsection 2.1. Finally, we add the
missing word boundary based on all predicted spans
(i− 1, i− 1+ k) with k = 1 to single words to deal
with the missing word boundary problem following
Nguyen et al. (2021). The detail of this algorithm is
shown in the work of Nguyen et al. (2021). To sum
up, SPANPOSTPROCESSOR(Ŝ) is considered as the
heuristic algorithm, while the inference algorithm in
(Ye and Ling, 2018) is optimal.

2.3 Span Scoring

Inspired by Zhang et al. (2020), the span scoring
module SCORER(X , l, r).SEG for finding probabil-
ity of word is computed by using a biaffine operation
over the left boundary representation of character xl
and the right boundary representation of character



xr:

SCORER(X , l, r).SEG = sigmoid(

[MLPleft
seg(fl ⊕ bl+1)

1
]

T

W(MLPright
seg (fr ⊕ br+1)))

(7)

where W ∈ R(d+1)×d and the symbol ⊕ denote the
concatenation operation. Similarly, the span scoring
module SCORER(X , l, r).TAG[t̂] for finding score
of a POS tag t̂ ∈ T is computed by:

SCORER(X , l, r).TAG[t̂] =

[MLPleft
tag(fl ⊕ bl+1)

1
]

T

Wt̂ [MLPright
tag (fr ⊕ br+1)

1
]

(8)

where Wt̂ ∈ R(d+1)×(d+1). As mentioned in subsec-
tion 2.1, we have 0 ≤ l ≤ n−1 and l < r ≤ n, where
n is the length of input sentence X . The MLPleft

seg,

MLPright
seg , MLPleft

tag and MLPright
tag are multilayer per-

ceptrons for transforming hidden states from en-
coder to left and boundary representations with the
output dimension of d for CSW and POS tagging
tasks. Vectors fi and bi denote forward and back-
ward hidden state vectors from BiLSTM encoder.
In case we use BERT encoder, we chunk the hid-
den state vector from BERT encoder into two vec-
tors with the same size as the forward and backward
hidden state vectors in the BiLSTM encoder.

2.4 Encoder Architecture

To experiment with our proposed SPANSEGTAG, we
use BiLSTM encoder (Hochreiter and Schmidhuber,
1997) and BERTBASE encoder for Chinese (Devlin
et al., 2019). In case we use LSTM encoder, we
use character pre-trained Chinese embedding with
the dimension of 64 provided Shao et al. (2017). In
case we use BERT encoder, we use only the hidden
state of the last layer of BERT as Tian et al. (2020a).

Datasets # Sent # Char # Word OOV

CTB5
Train 18,104 804,587 493,930 -
Dev 352 11,543 6,821 8.1
Test 348 13,738 8,008 3.5

CTB6
Train 23,420 1,055,583 641,368 -
Dev 2,079 100,316 59,955 5.4
Test 2,796 134,149 81,578 5.6

CTB7
Train 31,112 1,160,209 717,874 -
Dev 10,043 387,209 236,590 5.5
Test 10,292 398,626 245,011 5.2

CTB9
Train 105,971 2,642,998 1,696,340 -
Dev 9,850 209,739 136,468 2.9
Test 15,929 378,502 242,317 3.1

UD
Train 3,997 156,309 98,608 -
Dev 500 20,000 12,663 12.1
Test 500 19,206 12,012 12.4

Table 1: Statistics of five Chinese benchmark datasets.
We provide the number of sentences, characters, and
words. We also compute the out-of-vocabulary (OOV)
rate as the percentage of unseen words in the dev and test
set.

3 Experiments

3.1 Datasets

We employ the CTB5, CTB6, CTB5, and CTB91

benchmark datasets from the Penn Chinese Tree-
bank (Xue et al., 2005), which has been widely used
in research on joint CWS and POS tagging. There
are 33 POS tags in CTB. The train/dev/test split for
CTB5, CTB6, CTB7 and CTB9 is according to pre-
vious studies (Zhang et al., 2014; Yang and Xue,
2012; Wang et al., 2011; Shao et al., 2017). We
also employ UD1 and UD2 to denote the datasets
using universal tag set and Chinese tag set from UD
(Nivre et al., 2016)2 following the research of Tian
et al. (2020a), respectively.

3.2 Implementation

The number of layers of BiLSTM is 1, and the hid-
den state size of BiLSTM is 200. The dropout rate
for embedding, BiLSTM, and MLPs is 0.1. We in-

1We officially employ the Penn Chinese TreeBank data
(LDC2016T13) from the Linguistic Data Consortium.

2We use the UD_Chinese-GSD dataset with the version 2.4,
which extracted from https://universaldepende
ncies.org/.



SPANSEGTAG CTB5 CTB6 CTB7 CTB9 UD1 UD2
Encoder MLP Size Seg Tag Seg Tag Seg Tag Seg Tag Seg Tag Seg Tag

BiLSTM

100 96.71 92.80 94.33 89.43 94.46 89.17 95.64 91.27 91.84 85.21 91.48 84.80
200 96.90 93.08 94.90 90.06 94.70 89.36 95.96 91.57 92.36 85.92 92.27 85.78
300 97.03 93.21 95.00 90.06 94.86 89.39 96.05 91.61 92.43 86.14 92.72 85.93
400 96.82 93.27 95.18 90.16 95.04 89.53 96.15 91.54 93.02 86.45 92.84 86.03
500 97.30 93.39 95.29 90.19 95.10 89.53 96.27 91.61 93.08 86.74 93.12 86.29

BERT

100 98.76 97.78 97.71 95.25 97.06 94.16 97.75 94.92 98.21 95.51 98.22 95.38
200 98.78 97.71 97.66 95.25 97.11 94.24 97.78 95.07 98.23 95.64 98.21 95.50
300 98.56 97.54 97.70 95.24 97.12 94.27 97.74 95.02 98.35 95.72 98.22 95.49
400 98.57 97.64 97.69 95.26 97.05 94.18 97.80 95.10 98.28 95.70 98.17 95.44
500 98.81 97.78 97.69 95.23 97.10 94.22 97.80 95.01 98.30 95.66 98.30 95.44

Table 2: Experimental results on development sets of six Chinese benchmark datasets.

herit hyper-parameters from the work of (Dozat and
Manning, 2017). We trained all models up to 100
with the early stopping strategy with patience epochs
of 20. We used AdamW optimizer (Ilya Loshchilov
and Frank Hutter, 2019) with the default configu-
ration and learning rate of 10-3. The batch size for
training and evaluating is up to 5000.

We did fine-tuning experiments based on BERT
(Devlin et al., 2019). We trained all models up to
100 with the early stopping strategy with patience
epochs of 15 following Tian et al. (2020a). The
dropout rate for MLPs is 0.1. We used AdamW opti-
mizer (Ilya Loshchilov and Frank Hutter, 2019) with
the default configuration and learning rate of 10-5.
The batch size for training is 16.

All models were selected based on the perfor-
mance of the development set. The measure we use
for the main result is F-score following previous re-
search. To evaluate F-score of joint CWS and POS
tagging, we use the library3 following the research
of Tian et al. (2020a). We also use paired t-test fol-
lowing the guide of the research (Dror et al., 2018)
to test the significance of our research.

3.3 Development Performance

In Table 2, we show the performance of SPANSEG-
TAG with the output size of MLPs mentioned in sub-
section 2.3. Concerning the BiLSTM encoder, the
larger MLP size gives the higher performance in all
datasets. Because we regard the joint CWS and POS

3https://github.com/chakki-works/se
qeval.

tagging as a span labeling task, it requires more con-
textual information. In view of dependency parsing,
Dozat and Manning (2017) chose the MLP size to
be 500 for unlabeled parsing. Regarding the BERT
encoder, the results of different MLP sizes are not
clearly distinguished as those of the BiLSTM en-
coder since the BERT encoder provides better con-
textual information.

3.4 Overall Performance

We run the final testing experiment with the BERT
encoder on six datasets compared to previous re-
sults, as shown in Table 3. Firstly, we can see our
SPANSEGTAG achieve competitive results on CTB5,
UD1, and UD2 compared with research of Tian et
al. (2020a) using BERT encoder. Our SPANSEGTAG

achieved the competitive or higher F-score on joint
CWS and POS tagging even we get the lower CWS
performance on CTB5, UD1, and UD2. Besides, our
SPANSEGTAG obtained the higher F-scores of joint
CWS and POS tagging on CTB6, CTB7, and CTB9
compared with (Tian et al., 2020a).

Compared with Tian et al. (2020a) using ZEN
(Diao et al., 2020) encoder, we note that the ZEN en-
coder, which enhances the n-gram information, was
better than the BERT encoder on many Chinese NLP
tasks (Diao et al., 2020). Though, our SPANSEGTAG

with BERT also obtained the higher joint CWS and
POS tagging performance on CTB6, CTB7, CTB9,

5We downloaded all pre-trained models of Tian et al.
(2020a) from their publicly resource https://github
.com/SVAIGBA/TwASP. However, we can not reproduce
the result on the UD2 dataset.



CTB5 CTB6 CTB7 CTB9 UD1 UD2
Seg Tag Seg Tag Seg Tag Seg Tag Seg Tag Seg Tag

Jiang et al. (2008) 97.85 93.41 - - - - - - - - - -
Kruengkrai et al. (2009) 97.87 93.67 - - - - - - - - - -
Sun (2011) 98.17 94.02 - - - - - - - - - -
Wang et al. (2011) 98.11 94.18 95.79 91.12 95.65 90.46 - - - - - -
Shen et al. (2014) 98.03 93.80 - - - - - - - - - -
Kurita et al. (2017) 98.41 94.84 - - 96.23 91.25 - - - - - -
Shao et al. (2017) 98.02 94.38 - - - - 96.67 92.34 95.16 89.75 95.09 89.42
Zhang et al. (2018) 98.50 94.95 96.36 92.51 96.25 91.87 - - - - - -
Tian et al. (2020a) (BERT) 98.77 96.77 97.39 94.99 97.32 94.28 97.75 94.87 98.32 95.60 98.33 95.46
Tian et al. (2020a) (ZEN) 98.81 96.92 97.47 95.02 97.31 94.32 97.77 94.88 98.33 95.69 98.18 95.49

SPANSEGTAG (BERT) 98.67 96.77 97.53 95.04 97.30 94.50‡ 97.86 95.22‡ 98.06 95.59 98.12 95.54

Table 3: Experimental results on test sets of six Chinese benchmark datasets. The symbol ‡ denotes that the improve-
ment is statistically significant at p < 0.01 compared with TwASP5(ZEN) (Tian et al., 2020a) using paired t-test.

and UD1. Moreover, our improvements on CTB7
and CTB9 is statistically significant at p < 0.01 us-
ing paired t-test. We can explain our improvements
by modeling all n-grams in the input sentence di-
rectly to the word segmentation and POS tagging
task via span labeling rather than indirectly accord-
ing to the work of Tian et al. (2020a). To sum up,
our SPANSEGTAG does not achieve state-of-the-art
performance on all six datasets. However, we ob-
tained significant results on two of the largest joint
CWS and POS tagging datasets, including CTB7
and CTB9. To explore the pros and cons of our
SPANSEGTAG, we provide analysis on the section 4.

4 Analysis

4.1 Recall of Out-of-vocabulary and
in-vocabulary Words

Inspired by the research of Gao et al. (2005), we test
the performance of detecting unknown words with
POS tags (RPOS-OOV) and the performance of resolv-
ing ambiguities in word segmentation with POS tags
(RPOS-iv), as shown in Table 4. The analysis re-
veals that our SPANSEGTAG tends to have the higher
RPOS-iv than RPOS-OOV. This analysis motivates us to
research the multi-view model of sequence tagging
and span labeling in future work.

4.2 Combination Ambiguity String Error

In addition to RPOS-iv in subsection 4.1, we also fol-
low (Gao et al., 2005) to analyze combination ambi-

RPOS-OOV RPOS-iV

TwASP
(BERT)

TwASP
(ZEN)

Our
(BERT)

TwASP
(BERT)

TwASP
(ZEN)

Our
(BERT)

CTB5 83.81 83.81 82.73 97.54 97.55 97.54
CTB6 83.10 84.22 82.69 95.48 95.66 95.68
CTB7 79.94 79.39 80.19 95.20 95.25 95.33
CTB9 79.93 78.80 78.52 95.49 95.44 95.80
UD1 88.67 87.40 86.13 96.64 96.92 96.85

Table 4: Recall of out-of-vocabulary words and their POS
tags (RPOS-OOV) and recall of in-vocabulary words and
their POS tags (RPOS-iV). Notably, we do not provide
scores on UD2 dataset since we can not reproduce result
from the pre-trained model of Tian et al. (2020a).

guity string (CAS) errors, as shown in Table 5. The
CAS detection requires a judgment of the syntactic
and semantic sense of the segmentation. Hence, we
only use the CAS measure in a pilot study. Inspired
by (Gao et al., 2005), we test on a set of 70 high-
frequency CASs of each dataset. The result tells that
our SPANSEGTAG solves CASs slightly better than
TwASP (Tian et al., 2020a) on the CTB6, CTB7 and
CTB9 datasets. Hence, this error analysis will mo-
tivate the research community to improve the joint
CWS and POS tagging task.

4.3 Model Size and Inference Speed

In theory, our SPANSEGTAG is a O(n2) algorithm
due to computing of all possible span representa-
tions, which is equivalent to computing of mem-



CTB5 CTB6 CTB7 CTB9 UD1

TwASP (BERT) 96.43 93.72 94.26 94.61 96.40
TwASP (ZEN) 96.43 94.88 94.23 95.47 97.30
Our (BERT) 95.71 95.30 94.72 95.56 97.30

Table 5: CWS accuracies of TwASP (Tian et al., 2020a)
using BERT and ZEN versus our SPANSEGTAG on 70
high-frequency two-character CASs.

CTB5 CTB6 CTB7 CTB9 UD1

TwASP (BERT) 514 699 716 650 435
TwASP (ZEN) 989 1,010 1,170 1,100 909
Our (BERT) 433 434 435 441 413

Table 6: Model sizes (MB) of TwASP (Tian et al., 2020a)
using BERT and ZEN versus our SPANSEGTAG.

ory network for context features and corresponding
knowledge instances from off-the-shelf toolkits in
(Tian et al., 2020a). In practice, when use GPU Tesla
V100 via Google Colaboratory, the inference speed
of our SPANSEGTAG (BERT) and TwASP (BERT)
are 264 and 239 (sentence/second), respectively. We
notice that we did not count the time TwASP (Tian
et al., 2020a) consuming by running off-the-shelf
toolkits. Table 6 shows that the parameters of our
SPANSEGTAG are independent of the datasets and
significant smaller compared with TwASP (Tian et
al., 2020a).

5 Related Work

The one-step approach for joint CWS and POS tag-
ging was proved better than the two-step one by
many prior studies (Jiang et al., 2008; Jiang et al.,
2009; Sun, 2011; Zeng et al., 2013; Zheng et al.,
2013; Kurita et al., 2017; Shao et al., 2017; Zhang
et al., 2018). Besides, Tian et al. (2020a) confirmed
the importance of context features and correspond-
ing knowledge instances from off-the-shelf toolkits.
Our work is related to (Chen et al., 2016) in view of
using matrix for CWS and to (Sun and T’sou, 1995;
Chen and Goodman, 1996; Li et al., 2003; Gao et al.,
2005; Ma et al., 2014; Chen et al., 2016) concerning
dealing with ambiguity for CWS.

6 Conclusion

In this paper, we propose a neural approach for
joint CWS and POS tagging via span labeling.

Our proposed approach uses the biaffine opera-
tion over the left and right boundary representations
of consecutive characters to model the n-grams.
Our experiments show that our BERT-based model
SPANSEGTAG achieved competitive performances
on the CTB5, CTB6, and UD, and significant im-
provements on the CTB7 and CTB9 benchmark
datasets compared with the current state-of-the-art
method TwASP using BERT and ZEN encoders.
Our approach does not use any context features and
corresponding knowledge instances from off-the-
shelf toolkits and a significantly smaller model than
TwASP. However, our SPANSEGTAG has the disad-
vantage of the complexity and time running. For
future work, we will explore the architecture of the
BERT model (Devlin et al., 2019) for joint CWS and
POS tagging because the primitive of BERT also
has the complexity of O(n2) and the self-attention
mechanism over the input sentence may be related
to span representation.
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