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Abstract

The lack of parallel data is an obstacle in data-
driven grammatical error correction. Recently,
researchers have addressed this problem by
exploring data augmentation methods. A
number of studies have focused on improving
the diversity of errors in generated data. To in-
vestigate the importance of error diversity and
its impact on performance improvements, we
designed and integrated 188 modules to gen-
erate token-level or span-level errors. Exper-
imental results demonstrate that the diversity
of errors is crucial to performance improve-
ments. The presented approach performs bet-
ter than the baseline of round-trip translation,
a purely data-driven approach. Furthermore,
we report that a larger monolingual corpus
does not always result in better performance.

1 Introduction

Grammatical error correction (GEC) is an impor-
tant NLP application that automatically corrects
mistakes in text, and can assist language learn-
ers in writing text. Typically, GEC is treated as
data-driven machine translation (MT), where an
erroneous sentence is ‘translated’ into a correct
one (Brockett et al., 2006). Sequence-to-sequence
models (Sutskever et al., 2014), which were orig-
inally proposed for MT, have also achieved excel-
lent performance in GEC (Junczys-Dowmunt et al.,
2018).

There are a number of publicly available datasets
for GEC. The Lang-8 corpus (Mizumoto et al.,
2012) is the largest among them, containing about

one million sentence pairs. However, the amount of
data is still insufficient for training high-quality neu-
ral machine translation (NMT) models. One promis-
ing way to address this issue is by generating ad-
ditional erroneous data by adding artificial errors
to grammatical sentences. Therefore, various state-
of-the-art studies have developed the GEC-specific
data augmentation methods in their ‘pre-training
and fine-tuning’ paradigm (Lichtarge et al., 2019;
Grundkiewicz et al., 2019; Kiyono et al., 2019).

Many studies aim at increasing the diversity in er-
ror types in augmented data, such that the model can
handle a wide range of errors. Wan et al. (2020)
presented a data augmentation method that injects
noises to hidden-state representations based on ER-
RANT error types (Bryant et al., 2017). Stahlberg
and Kumar (2021) used error generation models,
controlling types of generated errors.

However, there are two issues that need to be
discussed on the error diversity in augmented data.
First, we are not certain of performance changes
when error types vary. Previous studies did not ana-
lyze the contributions of diversity in error types due
to its lack of explicit control in augmented data. Sec-
ond, we are not certain of the performance of other
important factors for improving the usefulness of
artificial error data other than the variety of error
types; for example, the training epochs and the size
of the monolingual corpus for data augmentation.

In order to address these issues, we explore a rule-
based approach for data augmentation in the GEC
task. Although we are uncertain whether a purely
data-driven method for data augmentation (for ex-
ample, back-translation) actually generates diverse



errors, a rule-based approach allows explicit control
of error types. We can evaluate the impact of er-
ror diversity by changing the combination of error-
generating modules.

In this paper, we first classify errors in English
text into five categories to design a wide range of
modules for error generation. Next, we propose a
framework for integrating the modules, in order to
build artificial data with various errors. We con-
ducted experiments to examine the impact of error
diversity in the generated erroneous data. As a re-
sult, we verified that sufficient error type diversity in
augmented data is important for better performance
improvement. In addition to error types, we show
that generating artificial data at all epochs, not only
at once, and performing sufficient iterations in pre-
training improve the performance even without us-
ing large monolingual corpora. Furthermore, our
method achieves better performance than the base-
line of round-trip translation, one of the state-of-the-
art methods for data augmentation.

2 Related Work

2.1 GEC as MT

After the notable successes in machine translation,
the paradigm of NMT has been widespread in GEC
since Yuan and Briscoe (2016). Moreover, among
a variety of sequence-to-sequence models, Trans-
former (Vaswani et al., 2017) has also been popu-
lar in neural GEC (Junczys-Dowmunt et al., 2018),
which has advantages in translation quality and par-
allel computing.

2.2 Data Augmentation and Pre-Training

To make use of NMT in GEC, we need error
annotated learner corpora as supervision data for
NMT models. However, the size of the avail-
able supervision data in GEC is much smaller
than that of NMT (Junczys-Dowmunt et al., 2018).
Since preparing human-annotated GEC data is time-
consuming and expensive, researchers have ex-
plored data augmentation in GEC.

Lichtarge et al. (2019) confirmed the effective-
ness of pre-training an NMT model on large artificial
data, and fine-tuning it on supervision data for GEC.
As explained in Section 1, several researchers have
explored data augmentation for GEC. Typically, data

augmentation methods for GEC make artificial data
by introducing errors into grammatical sentences.

Many studies have shown that simple token-level
perturbations are effective for data augmentation for
GEC. Grundkiewicz et al. (2019) used confusion
sets obtained from a spell checker to generate arti-
ficial errors; their system was ranked first in the two
tracks of the BEA-2019 shared task (Bryant et al.,
2019). Choe et al. (2019) used learner’s error pat-
terns and confusion sets, based on parts-of-speech,
to create preposition and inflection errors, achieving
the second-best result in the same shared task.

Back-translation, where the model generates an
erroneous sentence from the correct one, is an MT-
based error generation method (Rei et al., 2017).
Naive back-translation has a problem with the di-
versity of generated examples. To solve this prob-
lem, Xie et al. (2018) gave more diversity to erro-
neous sentences, adding noise into each hypothe-
sis in the beam. Kiyono et al. (2019) further stud-
ied the effectiveness of back-translation in large-
scale data. Stahlberg and Kumar (2021) used a
Seq2Edits (Stahlberg and Kumar, 2020) model for
span-level back-translation. This method can con-
trol the distribution of error types in the augmented
data.

Round-trip translation (RTT), in which a gram-
matical sentence is first translated into a bridge lan-
guage and then translated back, is also an effective
MT-based error generation method (Lichtarge et al.,
2019, 2020).

3 Error Categories

We categorize errors in English text into five cate-
gories to decompose various errors and investigate
the importance of error diversity. This categoriza-
tion is helpful to build error-generation modules,
since an appropriate error generation method differs
for each category. Additionally, we review previous
studies on data augmentation for GEC, related to this
categorization.

Function Word Errors in function words include
the misuse of prepositions and pronouns; for exam-
ple, for in “I went for (→to) Tokyo.” Errors in func-
tion words can be generated by word-level pertur-
bations. Izumi et al. (2003) proposed the first rule-
based error generation by replacing or deleting arti-



cles. Rozovskaya and Roth (2010) replaced prepo-
sitions following the error rate and patterns of non-
native writers.

Inflection Inflection errors involve inflectional
forms of adjectives, nouns, and verbs; for example,
goed in “I goed (→went) to Tokyo.” Most inflec-
tion errors occur at word-level, although some oc-
cur at span-level (e.g., perfect tense). Brockett et al.
(2006) generated inflection errors in mass nouns us-
ing regular expressions. Choe et al. (2019) produced
inflection errors of nouns and verbs.

Lexical Choice Lexical choice errors occur due to
the misuses of synonyms or affixes; for example, lost
in “I lost (→missed) my flight.” Xu et al. (2019)
generated suffix errors (e.g., arrive →arrival) using
confusion sets.

Word Order Word order errors are caused by in-
correct placements of words and phrases in sen-
tences; for example, “I my flight missed (→missed
my flight).” Word order errors can be generated
by swapping the order of adjacent words (Grund-
kiewicz et al., 2019).

Writing System Writing system errors include
spelling, punctuation, compound, orthography, and
case errors. For example, tu in “I went tu (→to)
Tokyo.” Grundkiewicz et al. (2019) generated con-
fusion sets of spelling errors using a spell checker.

4 Proposed Method

In this study, we designed 188 error-generation mod-
ules and a framework for integrating them into a data
augmentation method for GEC. Table 1 shows the
number of modules by category. The category “Oth-
ers” in the table includes modules on deleting fre-
quent function words and punctuations, and predict-
ing masked tokens. We first explain the details of
the modules, followed by a method for integrating
the modules.

4.1 Error Generation Module
The input sentence of our framework is tokenized
with SpaCy v2.31; each word token is tagged with a
part-of-speech tag, a dependency tag, a lemma, and
an IOB tag for the named entity. Error generation

1https://spacy.io/

Error category # Modules
Function word 154
Inflection 5
Lexical choice 2
Word order 6
Writing system 19
Others 2
Total 188

Table 1: Breakdown of error generation modules.

modules use the output of SpaCy to inject artificial
errors.

Modules for function word error are designed for
each function word; therefore this group occupies
the majority of the modules. They delete, replace, or
insert tokens based on their conditions. For exam-
ple, a module on the proposition than deletes than
with a probability of 0.2, and replaces than with
to, from, over, beyond with a probability of 0.4,
0.2, 0.1, 0.1, respectively2. Some modules insert
tokens. For example, an insertion module for arti-
cles and demonstratives inserts a, an, the, this, that,
these, those with a probability of 0.3, 0.3, 0.3, 0.025,
0.025, 0.025, 0.025, respectively, between two adja-
cent words if the preceding word is VB, VBD, VBG,
VBN, VBP, VBZ, or IN in Penn Treebank definition,
and if the subsequent word is NN, NNS, JJ, JJN, or
JJS. The module inserts articles and demonstratives
at the beginning of a sentence if its first word is NN,
NNS, JJ, JJN, or JJS.

The modules for inflection error change the in-
flectional form of adjectives, nouns, and verbs using
lemminflect3. The other modules include the
deletion of the passive auxiliary and replacement of
to in infinitive use with by or for.

The modules for lexical choice error are for suf-
fixes and synonyms. The suffix error module re-
places a suffix with another using a manually de-
fined suffix set. The synonym error module re-
places a word with one of its synonyms using Word-
Net (Miller, 1995).

The modules for word order error are divided into
two parts. The former part of modules move words
or spans by a distance sampled from their own nor-
mal distribution. The adverb word order module and

2We set the replacing words and the probabilities manually.
We may obtain further improvements by searching better pa-
rameters.

3https://github.com/bjascob/LemmInflect

https://spacy.io/
https://github.com/bjascob/LemmInflect


the interrogative word order module move adverbs
and interrogative words respectively. The module
for prepositional phrase word order detects prepo-
sitional phrases and moves them. There is another
special module that moves words regardless of its
syntactic role. The latter part of modules swap the
order of words in the detected spans. The adjective
word order module detects consecutive adjectives
and shuffles them. The “A of B” word order mod-
ule detects the pattern of “(noun phrase) of (noun
phrase)” and swaps the order of the two phrases.

The modules for writing system errors are imple-
mented in various styles. Punctuation error mod-
ules delete, insert or replace various punctuations.
Case error modules convert the first letter of a word
to lowercase or uppercase. The module applies to
named entities at the span-level4. The orthogra-
phy error module randomly deletes a space between
words. A variant of this module inserts a space into
words based on word frequency such that, for exam-
ple, “football” is more likely to be split into “foot
ball” than “foo tball.” The spelling error module
deletes, swaps, inserts, or replaces some characters
in words. The number of perturbing characters is
sampled from a geometric distribution. Characters
to be inserted or replaced with are sampled from a
pre-defined distribution computed by a feed-forward
network with a context window of five characters.

Due to space limitations, we cannot provide full
explanations of the modules. Please refer to the im-
plementation for details5.

4.2 Integrating Error-Generation Modules

We propose a framework to integrate the presented
modules. Figure 1 shows the outline of our frame-
work. The framework consists of a stack of mul-
tiple error-generation modules, with the aim of
generating diverse errors. Given a correct in-
put sentence, it generates erroneous text artificially
by applying error-generation modules one by one
to the input. We manually determined the or-
der for applying these modules, such that a sub-

4‘long Island’ is easier to correct than ‘long island’, as an
erroneous example of ‘Long Island’. The module addresses this
issue by span-level error generation.

5You can see the source code for our error-generating
method and all our experiments in https://github.com/
nymwa/arteraro.

grammatical sentence I went to Tokyo .

Module 1 “preposition to” OKI went to Tokyo .

I went for Tokyo .
beta distribution

µ = 0.05
σ = 0.05

 
threshold

0.2
0.2> 0.1

sampled
from uniform
distribution

Module 2 “1st sng. subj. pron.” OKI went for Tokyo .

I went for Tokyo .
beta distribution

µ = 0.03
σ = 0.03

 
threshold

0.05

0.2>

6>0.9

Stacked modules

erroneous sentence I went for Tokyo .

Figure 1: The outline of our error generation framework.

sequent module does not completely overwrite er-
rors made by preceding modules. For example, the
preposition error module precedes the spelling error

modules since “on
prep.
 for

spell.
 far” is preferable to

“on
spell.
 onn

prep.
 for.”6

An error-generation module is applied to each
word or span detected by the module. Each error-
generation module has its own beta distribution used
for sampling a threshold for each sentence7. For
each input word, an error-generation module checks
its applicability, samples the probability from the
uniform distribution for each word or span, and ap-
plies to it if the probability is smaller than the thresh-
old sampled for the sentence.

5 Experimental Settings

5.1 Training and Evaluation Dataset

We use the official datasets in Restricted Track in
the BEA-2019 Shared Task (Bryant et al., 2019)8,
which consists of four training datasets with anno-
tated errors: FCE train (Yannakoudakis et al., 2011),
NUCLE (Dahlmeier et al., 2013), Lang-8 (Mizu-
moto et al., 2012), and W&I train (Bryant et al.,
2019). We removed the identical source-target pairs
in the Lang-8 corpus, and over-sampled the FCE
train, NUCLE, and W&I train datasets three times.

Searching for hyperparameters on a validation set,
we evaluate GEC models on: the test set of the BEA-
2019 Shared Task, which is tuned for its valid set and

6Since a preposition error module refers to the original word
to select an erroneous word, it is impossible to produce errors
that combine prepositional and spelling errors in this example.

7The parameters of the beta distributions are set manually.
8https://www.cl.cam.ac.uk/research/nl/

bea2019st/

https://github.com/nymwa/arteraro
https://github.com/nymwa/arteraro
https://www.cl.cam.ac.uk/research/nl/bea2019st/
https://www.cl.cam.ac.uk/research/nl/bea2019st/


ERRANT scorer (Bryant et al., 2017); the test set
of the CoNLL-2014 Shared Task (Ng et al., 2014),
tuned for the CoNLL-2013 Shared Task (Ng et al.,
2013) dataset and M2 scorer (Dahlmeier and Ng,
2012); the test set of FCE in the official datasets
in the BEA-2019 Shared Task, tuned for its valid
set and ERRANT scorer; and the test set of JF-
LEG (Napoles et al., 2017), tuned for its valid set
and GLEU scorer (Napoles et al., 2015).

As source text for data augmentation, we use
monolingual corpora in the WMT 2020 news task9:
News crawl 2015–2020, Europarl v10, and News
Commentary v16. The total number of sentences in
these corpora is ca. 163.6M. When we use smaller
corpora, for example, “16M sentences”, we sample
16M sentences from the 163.6M sentences.

We preprocessed all the data by normalizing the
punctuations and decomposable characters (e.g., à).
We apply BPE-dropout (Provilkov et al., 2020) with
the vocabulary size of 16,000 to all the training and
evaluation data with a dropout probability of 0.1 for
source sentences in training data and 0 for other data.

5.2 Model
In all experiments, we use the Transformer Big
model (Vaswani et al., 2017) implemented in
fairseq v0.10.210 to train GEC models. It has
six Transformer blocks with 16-head self-attention
layers and a hidden-vector size of 1,024. We use the
GeLU activation function (Hendrycks and Gimpel,
2016) in feed-forward layers with a hidden-vector
size of 4,096. We tie embeddings of the input layers
of the encoder and the input and output layers of the
decoder (Press and Wolf, 2017). We use a pre-norm,
instead of a post-norm, for each Transformer layer
for better convergence. We decode an output with
a beam size of 12 and length normalization with a
penalty of 0.6. We train five models for each experi-
ment and report their average score and the score of
ensemble generation.

5.3 Pre-Training and Fine-Tuning
We pre-train models using augmented data and fine-
tune them using the target domain data. We call
this experiment “artificial+target setting.” We apply

9http://www.statmt.org/wmt20/
translation-task.html

10https://github.com/pytorch/fairseq

the presented error-generation framework at each
epoch. This means that the supervision data for pre-
training are different at each epoch. We fine-tune
models for 30 epochs in artificial+target settings.
The number of pre-training epochs is different for
each experiment. We call the experiment without
pre-training “target-only setting.” We train models
for 40 epochs in target-only settings.

5.4 Training Settings

We use: the cross-entropy loss with label smoothing
of 0.1; AdamW optimizer (Loshchilov and Hutter,
2019) with (β1, β2) = (0.9, 0.999); a learning rate
of 0.0015 for target-only settings and 0.001 for ar-
tificial+target settings; and a linear warm-up for the
first 8k steps and inverted squared decay following
the warm-up. The maximum length of the training
sentence is 400 tokens. We use dropout for the at-
tention and activation layers with a probability of
0.2, and other layers with that of 0.3. We apply a
weight decay of 0.001 and gradient clipping of 1.0
for target-only settings and 0.3 for artificial+target
settings. We set the max batch size as 4000 to-
kens. We accumulate gradients of 8 mini-batches
for target-only settings and 128 for artificial+target
settings.

6 Experimental Results

6.1 Impact of the Diversity of Error Types

To examine the importance of the diversity in error
types, we investigated GEC performance by chang-
ing the error variety in the artificial data used for
pre-training. Table 2 shows the results on 16M pre-
training for 10 epochs and fine-tuning.

When we pre-train models using data without er-
ror generation “No error (copy)”11, where the mod-
els are pre-trained for copying the monolingual data,
the performance is worse than that of the model
trained only with the target data, “Target-only.” This
result indicates that pre-training a model on erro-
neous data is necessary. The presented method
“All modules” exhibits remarkable improvements
over the target-only setting: 5.86, 5.46, and 2.54
points improvements (with ensembling) on BEA-19,
CoNLL 14, and JFLEG, respectively.

11We apply gradient clipping of 0.1 for this setting to prevent
divergence.

http://www.statmt.org/wmt20/translation-task.html
http://www.statmt.org/wmt20/translation-task.html
https://github.com/pytorch/fairseq


BEA-19
test

CoNLL
14

JFLEG
test

Target-only 59.09 / 63.56 54.03 / 56.79 57.33 / 58.15
Pre-training + fine-tuning, pre-trained on:
No error (copy) 60.02 / 62.96 52.39 / 53.85 55.93 / 56.09
All modules 67.32 / 69.42 60.60 / 62.25 60.12 / 60.69
Pre-training on errors from a specific group and others + fine-tuning
None (others only) 64.30 / 67.60 57.88 / 59.67 58.30 / 59.00
Function word 65.79 / 68.42 58.95 / 62.14 58.58 / 58.89
Inflection 64.26 / 67.80 59.53 / 61.44 58.74 / 59.23
Lexical choice 64.91 / 67.28 58.56 / 60.87 58.68 / 59.13
Word order 64.66 / 67.76 58.60 / 60.41 58.47 / 58.76
Writing system 66.11 / 68.54 59.83 / 62.11 59.69 / 60.34
Pre-training on errors excluding a specific group + fine-tuning
- Function word 66.57 / 69.36 59.64 / 61.62 59.79 / 60.17
- Inflection 67.03 / 69.00 60.80 / 62.66 60.10 / 60.82
- Lexical choice 67.12 / 69.52 60.47 / 61.84 60.12 / 60.81
- Word order 67.60 / 69.68 61.28 / 63.69 60.12 / 60.49
- Writing system 65.79 / 68.36 60.10 / 61.62 59.28 / 59.70

Table 2: The effect of error diversity. The left and right
scores represent the average score of five models and the
ensemble generation score, respectively.

Using only other modules for error generation,
“None (others only)” shows a considerable perfor-
mance gain over the target-only setting. This re-
sult implies that mask-prediction and deletion are
excellent heuristics even without linguistic features.
Adding one group of modules further improves the
performance. In particular, adding the modules for
writing system errors is effective.

When we add four groups of modules, the results
are almost identical to that of all modules, except
for writing system modules. This result indicates
that errors in the writing system play the most im-
portant role in the presented method. Although us-
ing all modules in error generation does not always
achieve the best performance, we observe that pre-
training on erroneous data of various types generally
improves GEC performance.

6.2 Impact of the Corpus Size

Kiyono et al. (2019) reported that the back-
translation approach for artificial error generation
benefits from the larger size of text data. Figure 2
depicts the GEC performance pre-trained on artifi-
cial errors and fine-tuned on the target domain data,
changing the size of the monolingual corpus from
which the proposed method generates the artificial
errors. The blue line presents the performance when
we change the size of the monolingual corpus with
the number of pre-training epochs fixed to 10. We
can see that the size of the monolingual corpus mat-
ters, as reported in a previous study.
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Figure 2: The effect of varying corpus size and training
epochs. The results are an average of five models. The
associated numbers indicate the training epochs.
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Figure 3: The effect of generating artificial data at every
epoch. The results are an average of five models. The
associated numbers indicate the training epochs.

However, in this experiment, we cannot distin-
guish whether the performance gain is caused by the
increased size of monolingual corpora or by the in-
creased total steps required to update the model pa-
rameters during pre-training. Thus, we conducted
another experiment where the total number of pre-
training steps was fixed, with monolingual corpus
of different sizes. The red line in Figure 2 shows
the result. Even when we reduced the corpus size to
1M, we did not observe a severe performance drop
unlike the blue line. This result suggests that the
size of monolingual corpus for artificial data is not
critical, and the number of total steps for updating
the model parameters during pre-training is essen-
tial. Additionally, this result implies that the pro-
posed method can train good GEC models for low-
resource languages if error-generation modules are
designed appropriately.

6.3 Impact of Generating Artificial Data at
Every Epoch

To investigate the effect of generating artificial error
data at every epoch, we compare two settings: gen-



BEA-19 CoNLL-13 CoNLL-14 FCE JFLEG
valid test (valid) (test) valid test valid test

P R F0.5 P R F0.5 F0.5 P R F0.5 F0.5 P R F0.5 GLEU GLEU
Choe et al. (2019) 63.54 31.48 52.79 76.19 50.25 69.06 - 74.76 34.05 60.33 - - - - - -
Grundkiewicz et al. (2019) 59.1 36.8 53.00 72.28 60.12 69.47 - - - 64.16 - - - 55.81 - 61.22
Lichtarge et al. (2020) - - - 75.4 64.7 73.0 - 74.7 46.9 66.8 - - - - - 64.9
Wan et al. (2020) - - - 72.6 61.3 70.0 - 72.3 48.8 65.9 - 65.4 53.6 62.6 - -
Stahlberg and Kumar (2021) - - - 77.7 65.4 74.9 - 75.6 49.3 68.3 - - - - - 64.7
Target only
single 52.28 28.01 44.56 63.31 46.68 59.09 37.52 65.72 31.59 54.03 51.61 58.85 31.58 50.18 52.25 57.33
ensemble 58.80 27.93 48.16 69.82 46.80 63.56 37.70 71.79 30.93 56.79 54.13 63.95 31.70 53.14 52.32 58.15
ensemble + reranking 59.43 32.69 51.07 70.39 53.01 66.06 44.28 67.42 42.86 60.49 55.37 62.44 35.85 54.38 54.89 60.49
Pre-training only
single 53.25 23.08 42.21 65.25 45.10 59.90 37.94 67.07 32.69 55.42 44.00 56.81 26.75 46.38 52.98 58.23
ensemble 54.50 23.04 42.81 66.61 45.33 60.89 38.19 67.87 32.48 55.73 44.09 57.38 26.82 46.73 53.04 58.37
ensemble + reranking 53.83 26.69 44.73 67.00 51.03 63.05 40.19 64.89 37.97 56.83 46.34 57.79 31.33 49.43 54.91 60.41
Pre-training + fine-tuning
single 60.91 34.19 52.61 74.39 57.38 70.20 45.45 73.74 41.30 63.71 56.58 63.26 38.26 55.94 55.81 60.98
ensemble 62.65 34.12 53.67 76.46 58.17 71.93 45.88 75.76 41.26 64.91 57.38 65.19 38.45 57.23 56.13 61.34
ensemble + reranking 61.12 37.74 54.39 74.66 62.27 71.80 49.03 70.91 49.39 65.23 57.36 64.46 39.68 57.31 58.07 63.47
Pre-training + fine-tuning + fine-tuning on subset of target data
single 58.96 41.61 54.39 72.23 63.39 70.28 - - - - 57.29 64.17 40.99 57.65 - -
ensemble 61.94 42.17 56.63 75.63 64.54 73.11 - - - - 58.83 66.34 41.37 59.19 - -
ensemble + reranking 61.73 43.13 56.83 75.03 65.28 72.85 - - - - 58.63 65.38 42.10 58.87 - -

Table 3: Comparison of the proposed method to other studies.

erating artificial data at every epoch; and generating
them only once and reusing them at every epoch.

Figure 3 shows the results. We can achieve a
higher performance when we generate artificial data
at every epoch than we do so only once. Further-
more, the red line is less affected by the data size,
whereas the blue line drops drastically when the data
size is smaller than 4M. This result suggests that
generating artificial data at every epoch is beneficial
for diversifying erroneous sentences and improving
the GEC performance regardless of the data size.

6.4 Comparison with State-of-the-Art Models

To compare our methods with state-of-the-art mod-
els, we conduct experiments using larger artificial
data. We have shown that the effectiveness of the
diversity in error types and generation of artificial
data at every epoch. To verify the usefulness of
our approach compared to the previous studies on
data augmentation, we generate artificial data with
163.6M sentences 20 times, pre-train models for 20
epochs on the generated data, and fine-tune the mod-
els for 30 epochs. We accumulate gradients of 1,024
mini-batches and apply gradient clipping of 0.1 in
this pre-training setting for faster training.

We explain the previous methods used for com-
parison. Choe et al. (2019) addressed the effective-
ness of pre-training a model on artificial data, fine-
tuning the model on all target data, followed by fine-
tuning the model again on the subset of target train-
ing data whose domain is similar to a test set. In this

setting, we fine-tune the pre-trained models on all
target data for five epochs, followed by fine-tuning
on the subset (BEA-19 train for BEA-19 test, and
FCE train for FCE test) for 30 epochs.

Chollampatt et al. (2019) reranked the n-best can-
didates using the perplexity of each candidate com-
puted by BERT (Devlin et al., 2019). We calcu-
lated the perplexity using RoBERTa large (Liu et al.,
2019), following Salazar et al. (2020).

Table 3 shows the results. The “pre-training only”
setting, which can be considered as an unsupervised
GEC, exhibited close performances to the “target-
only” setting. In other words, the proposed ap-
proach for artificial error generation is close to the
fully supervised approach. The full models (the bot-
tom group of the table) achieved comparable perfor-
mance to the previous methods. The table also indi-
cates that fine-tuning on a subset of target data, and
model ensembling are quite effective in improving
the performance.

6.5 Comparison to RTT

We compare our method to RTT, which was veri-
fied by Lichtarge et al. (2019) for its effectiveness.
We round-trip 16M sentences using four bridge lan-
guages, German (De), Finnish (Fi), French (Fr),
and Latvian (Lv), and regard pairs of original and
round-tripped sentences as supervision data for pre-
training. Table 4 shows the performance of the
Transformer Base models that we prepared for RTT.
In the RTT experiments, we pre-trained models for



BLEU en → X X → en
De (WMT 14) 26.6 31.8
Fi (WMT 17) 22.8 26.0
Fr (WMT 14) 37.3 35.2
Lv (WMT 17) 18.3 19.1

Table 4: BLEU scores of RTT models on WMT test data
measured by SacreBLEU (Post, 2018).

BEA-19
test

CoNLL
14

JFLEG
test

RTT (De) 65.61 / 68.22 58.66 / 60.39 59.10 / 59.81
RTT (Fi) 65.89 / 68.25 60.09 / 62.02 59.45 / 59.65
RTT (Fr) 65.81 / 68.08 59.50 / 61.10 58.78 / 59.31
RTT (Lv) 65.80 / 67.97 58.79 / 60.51 59.20 / 59.65
RTT (all) 66.05 / 68.71 60.30 / 62.09 59.41 / 59.97
Ours 67.32 / 69.42 60.60 / 62.25 60.12 / 60.69

Table 5: Comparison of our method and RTT.

10 epochs using round-tripped data and fine-tuned
the models as we did for the erroneous data gener-
ated by the proposed method. To diversify the RTT
data, we explore the “all” setting, where a training
instance is chosen from the RTT’ed ones via four
languages at each epoch.

Table 5 shows the average scores of the five mod-
els. Our error-generation modules perform better
than all RTT configurations including the “all” set-
ting. We also emphasize that RTT requires much
more computations than the proposed modules be-
cause RTT must use an MT system twice (fore and
back translations) to obtain artificial data. In con-
trast, the proposed method does not require special
accelerators (e.g., GPUs and TPUs) for generating
data. Therefore, the presented method is not only
more effective but also more efficient than RTT.

7 Conclusion

In this study, we proposed a framework to gener-
ate artificial error data for GEC, incorporating var-
ious error-generation modules. We confirmed that
the diversity of errors improved the performance of
GEC models pre-trained on the error data. The per-
formance of the presented method was better than
that of the RTT baselines under the same conditions.
We observed that the size of the monolingual cor-
pus was less critical, but the number of total steps in
pre-training was important.

The presented error-generation modules have sev-
eral hyperparameters. Optimizing these hyperpa-
rameters for a specific dataset would be an imme-
diate future work. We further plan to combine the

error-generation modules with other methods. For
example, integrating error-generation modules in a
decoder of back-translation and/or round-trip trans-
lation model may be a promising direction.
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